The Can-Order Policy for One-Warehouse N-Retailer Inventory System: A Heuristic Approach

Size: px
Start display at page:

Download "The Can-Order Policy for One-Warehouse N-Retailer Inventory System: A Heuristic Approach"

Transcription

1 Atcle Te Can-Ode Polcy fo One-Waeouse N-Retale Inventoy ystem: A Heustc Appoac Vaapon Pukcanon, Paveena Caovaltongse, and Naagan Pumcus Depatment of Industal Engneeng, Faculty of Engneeng, Culalongkon Unvesty, Bangkok 133, Taland E-mal: [email protected] Abstact. We study an applcaton of te can-ode polcy n one-aeouse n-etale nventoy systems, and popose a eustc appoac fo settng te appopate nventoy polcy. On te can-ode polcy, an ode s tggeed en a etale s nventoy poston eaces ts must-ode level. Ten ote etales ae examned ete te nventoy eaces te can-ode level, and f so tey ae flled by ts ode as ell. Waeouse fulflls all nvolved etales nventoy to te ode-up-to levels. Te can-ode polcy s not only able to save te total system-de cost fom jont eplensment, but t s also smple to use. Compute smulaton s utlzed to pelmnaly study and to detemne te best-knon soluton. We popose a eustc appoac utlzng te decomposton tecnque, teatve pocedue, and golden secton seac to obtan te satsfyng total system-de cost. Ts can save ou computatonal tme to fnd te appopate nventoy polcy settng fom te educed seac space. We found tat te poposed eustc appoac pefoms vey ell t te aveage cost gap of less tan 2% compang to te best-knon soluton. Tus, te can-ode polcy can be vey useful fo suc systems. Keyods: Can-ode polcy, jont eplensment, one-aeouse n-etale nventoy system, eustc appoac. ENGINEERING JOURNAL Volume 18 Issue 4 Receved 27 eptembe 213 Accepted 25 Mac 214 Publsed 16 Octobe 214 Onlne at ttp://.engj.og/ DOI:1.4186/ej

2 DOI:1.4186/ej Intoducton Ts pape focuses on te one-aeouse n-etale nventoy system (OWNR) c s a geneal patten of to-ecelon supply can. uc system confonts te uncetanty of demand n ealty. upply coodnaton called centalzed contol as been dely appled to educe te total system-de cost and te demand vaaton, as ell as to mpove supply pefomance ncludng nventoy plannng pocess [1-3]. In addton, vaous supply cans gve te attenton nto contnuous eplensment accodng to te esponsve nfomaton tecnology. Ts can not only educe te buffe stocks but also mpove te ente system s pefomance. Hence, e concentate on te nventoy polcy fo contollng suc system unde stocastc demand and contnuous eplensment. A numbe of eseaces on OWNR ave been conducted unde ete contnuous o peodc eplensment. Tey poposed matematcal models and soluton appoaces fo settng an appopate nventoy polcy. Most of te oks studed to majo types of te nventoy polces: Fxed-nteval odeup-to polces and tock-based batc-odeng polces, on dffeent condtons and elevant paametes. Fute detals can be seen n te eves of Axsäte et al. [4], Wang et al. [5], and cnede et al. [6]. Focusng on contnuous eplensment, most eseaces manage multple etales by ndvdual odeng decson. Factually, multple etales can coodnate te odeng decson to sae te odeng cost en an ode s tggeed. It ceates an oppotunty fo educng te total system-de cost. We found tat just a fe oks concened ts cost-savng oppotunty n te odeng decsons. Wt egad to coodnated odeng decson, most lteatues appled jont eplensment poblem (JRP) to OWNR due to te smlaty of cost functons and soluton pocedues [7, 8]. JRP s ognally developed fo te mult-poduct nventoy poblem t te eplensment coodnaton of a goup of tems jontly odeed fom te same supple. Ceung and Lee [9] studed te ( Q), polcy. Wen te cumulatve demands ove all etales eac a gven Q unts (.e. tuckload sze fo all etales n sngle tp), an ode s placed at te aeouse to eplens te etale to te ode-up-to level. At te aeouse, a tadtonal eode pont-fxed ode quantty polcy as employed. Özkaya [1] poposed analytcal models and eustc appoaces fo fou types of jont eplensment polcy at te etales, and utlzed a tadtonal eode pont-based stock polcy at te aeouse. Fou types of jont eplensment polcy ae ( Q), polcy, ( Q,, T ) polcy, ( Q, T ) polcy, and ( s, 1, ) polcy. Te ( Q), polcy of Ceung and Lee [9] and Özkaya [1] as studed on dffeent stuctues. Te fome sets te taget sevce level at te aeouse and te penalty cost at te etales; meanle te latte sets te taget sevce level only at te etales. Te ( Q,, T ) polcy s a ybd contnuous and peodc eplensments. An ode s placed at te aeouse ete en te cumulatve demands ove all etales eac Q unts o en at least one demand aves n T tme unts afte te last odeng nstance. Te ( Q, T ) polcy s a peodc eplensment polcy and te odeng decson ases evey T tme unts. At te decson epoc, f at least Q demands ave accumulated fo te etales snce te last odeng nstance, an ode s placed at te aeouse. Te ( s, 1, ) polcy s a contnuous eplensment polcy en an ode s tggeed and any etale s nventoy poston eaces ts must-ode level s. Ten ote etales n te system ll be also ncluded by ts ode f at least one demand aves to eac etale. All poposed polces commonly ave te etale s ode-up-to level to c te aeouse eplenses all etales nventoes. Özkaya [1] soed compaatve esults among tese polces tout compang to te loe bound o te best-knon soluton. Ten, e tested Özkaya [1] s esults n te case of cossdockng system (no nventoy on-and at te aeouse) n ode to develop a smple loe bound 1 fo compason. Te testng esults soed a vast amount of cost gap beteen te Özkaya [1] s best soluton and te loe bound (156% on aveage). Gou et al. [11] ntoduced a jont eplensment polcy ee te aeouse takes a tadtonal eode pont-based stock polcy and te etales utlze te can-ode ( s, c, ) polcy. Te can-ode polcy as te same mecansm as te ( s, 1, ) polcy except te can-ode level c. Wen an ode s tggeed by a etale, ote etales ose nventoy poston eaces ts can-ode level c ll be ncluded by ts ode 1 Te smple loe bound can be detemned by to steps. Te fst step s to fnd te ode quantty Q fo all etales by assumng tat tey ae eplensed at te same ode nteval. Te second step s to fnd te eode pont s espondng to te taget sevce level. Tus, te total system-de cost can be calculated fom suc to decson vaables. 54 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

3 DOI:1.4186/ej as ell. Even toug zeo lead tme as assumed n te study, tey cannot povde an analytcal model due to te complcaton. Tus, compute smulaton as used nstead. Te esult soed tat about 5 to 2% of te cost can be saved as compang t te ndependent contolled polcy at te etales. Pukcanon et al. [12] also confmed te advantage of te can-ode polcy on OWNR by expementng on te boade anges of elevant factos. Te can-ode polcy can save te total system-de cost by ove 3% dependng on elevant factos. Neveteless, bot oks dd not povde a soluton appoac fo settng te appopate nventoy polcy. Tee ae ote eseaces on jont odeng decson conducted on dffeent cost stuctues. Coss-dockng systems ee caed out n Özkaya [8] and Gübüz [13]. Cetnkaya and Lee [14] studed vendo managed nventoy (VMI) system tout te oldng cost at etales. Axsäte and Zang [15] developed a jont odeng polcy by not concenng te saed odeng cost. Accodng to te exstng lteatues, coodnated odeng decson as been consdeed n vaous systems. It s nteestng to study nventoy polcy settng fo bot aeouse and all etales unde typcal cost stuctue contanng te odeng costs and te oldng costs at aeouse and all etales. nce te can-ode polcy not only pefoms ell as found n Gou et al. [11] and Pukcanon et al. [12] but also be stagtfoad and appealng to one s common sense [16]. Tus, n ts pape e focus on te can-ode polcy fo OWNR. Te can-ode polcy as fst ntoduced by Balnfy [17], and ten t as caed out by many eseaces n dffeent ays [18-24]. Te can-ode polcy as ntensvely studed on te mult-tem sngle-locaton nventoy system. Heetofoe fe of pevous eseaces focused on detemnng te appopate nventoy polcy settng fo te can-ode polcy n OWNR. Hence, ts pape s objectve s to popose a eustc appoac to detemne te appopate can-ode polcy n OWNR. We extend te knoledge of te can-ode polcy nto te to-ecelon nventoy system n ts study. Te pape s oganzed nto sx pats. ecton 2 descbes ou poblem t te elevant factos and assumptons. ecton 3 explans oveall metodology used n te eseac. ecton 4 poposes a eustc appoac t pelmnay analyss, concept, matematcal model and algotm. ecton 5 demonstates te expemental esults t analyss and dscusson. ecton 6 concludes all valuable fndngs and poposes deas to extend ts eseac on te can-ode polcy fo OWNR n futue studes. 2. Poblem Descpton Te system conssts of a aeouse and multple etales t sngle commodty. Let n denote te numbe of etales and denote te locaton ee te aeouse s set by = and te etale N, N {1, 2,..., n }. Waeouse s assgned n te fst ecelon called aeouse ecelon, and all etales ae assgned n te second ecelon called etale ecelon. Demands come fom eac etale s customes defned as end customes. A aeouse and multple etales ae coopeated as a sngle fm to concen te total systemde cost unde global nfomaton and centalzed contol. Te aeouse s avalable to old nventoes fo supplyng all etales odes. Inventoes at aeouse ae fulflled by an outsde supple ose ample stock s not consdeed n te poblem. Te aeouse dstbutes all equed tems to te etales n a sngle tp tout splttng lot. It s supposed tat uncapactated vecle s avalable to supply all equed tems n te ode. Multple etales ave te on nventoes to seve te custome demands. Posson demand s assumed to epesent te custome demands, denoted by c s a constant mean of custome demand at te etale. Regadng te can-ode ( s, c, ) polcy appled to ou system, t as to eode ponts: te mustode level s povdng nomal eplensment, and te can-ode level c makng specal eplensment. pecal eplensment s an oppotunty of a etale s jont eplensment en ote etales eac te must-ode levels. Wen te nventoy poston of any etale dops to o belo ts must-ode level s, an ode s tggeed to ceate nomal eplensment. Ten, ote etales n te system can also be ncluded by ts ode f te nventoy poston s at o belo ts can-ode level c ; a specal eplensment s occued. All te nvolved etales nventoes ae fulflled fom te aeouse to te on ode-up-to level. Consdeng sngle commodty, te aeouse modfes te can-ode polcy to a tadtonal ( s, ) polcy by settng ts can-ode level equals ts must-ode level. Te aeouse ssues an ode en ts nventoy poston eaces ts must-ode level s. Ten te outsde supple ll eplens te aeouse s nventoy to ts ode-up-to level. Te aeouse places an ode to te outsde supple f and only f etale ecelon tgges an ode to te aeouse. We dffeentate beteen ode cycle at ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 55

4 DOI:1.4186/ej etale ecelon and ode cycle at aeouse ecelon by defnng dspatc cycle and eplensment cycle fo etale ecelon and aeouse ecelon, espectvely. Ou system consdes all nventoy costs at bot ecelons. Te nventoy costs ae composed of 1) Te oldng costs at te aeouse and all etales, 2) Te majo odeng costs fo aeouse ecelon and etale ecelon, and 3) Te mno odeng costs fo etale ecelon. Te oldng cost occus at eac locaton avng pyscal stock. Te total oldng cost ove te tme peod at locaton ( HC ) can be detemned fom te unt oldng cost ( ) and te accumulated nventoy ove te tme peod ( INV ). Te majo odeng cost s te fxed cost occung once an ode s tggeed. Ts cost ncludes admnstatve costs, mateal andlng costs, and tanspotaton costs c do not depended on te numbe of etales n te ode. o, te etales n te system can sae te majo odeng cost togete fo eplensng n one ound tp. Te total majo odeng cost ove te tme peod at etale ecelon ( MJ ) s te etales majo odeng cost pe ode ( K ) multpled by te numbe of dspatc cycle ( ND ). mlaly, te total majo odeng cost ove te tme peod at aeouse ecelon ( MJ ) s te multplcaton of te aeouse majo odeng cost pe ode ( K ) and te numbe of eplensment cycle ( NR ). Te mno odeng cost s an addtonal cost of eac etale en eplensng te nventoes, suc as addtonal tanspotaton cost elatng to dstance o ote cages. Ts cost depends on te numbe of nvolved etales n tat ode. Te total mno odeng cost ove te tme peod ( MN ) s accumulated fom te nvolved etales n eac ode multpled by ts mno odeng cost of etale ( ) ove te tme peod. Po oks on coodnated odeng decson gnoed ts addtonal cost n spte of te fact tat ts addtonal cost dectly affects te nventoy polcy settng [23, 24]. Te concept of te can-ode polcy s balancng among educed majo odeng costs, vaed mno odeng costs, and nceased oldng costs. Reduced majo odeng cost occus f a specal eplensment s ncluded n an ode. On te ote and, fom specal eplensment tee s a esdual stock [23] c s a stock left above te must-ode level at te ode-tggeed pont. Ten, te nvolved etales ave to old moe stock nceasng te oldng cost. Meanle, te mno odeng costs can be ete educed o nceased dependng on te ode fequency at eac etale. Hence, e ave to consoldate all elevant costs to detemne te appopate nventoy polcy settng unde te total system-de cost mnmzaton. It s, oeve, dffcult to deal t te poblem manly because of te demand uncetanty, vaaton of etales ode quantty, etale s to-ode pont settng, and ode tme synconzaton at all locatons. In ts pape e smplfy te poblem by assumng zeo lead tme. Retales ode s nstantly dspatced fom te aeouse. All etales must-ode levels ae ten equal to zeo ( s =, N). Te aeouse s ode s also eplensed fom te outsde supple mmedately. In ts case, aeouse s must-ode level s equal to -1 because te aeouse s alloed to old zeo nventoy level untl te next eplensment ll be ssued. Ts can elp te aeouse not to keep te excessve stock atng fo te next dspatc to etale ecelon. Teefoe, decson vaables ae c, and. Te notatons and poblem fomulaton ae demonstated as follos: n = Numbe of etales n te system = Index of locaton ; te aeouse = and te etale N T = Te tme peod consdeed n te poblem (tme unts) s = Te must-ode level at te aeouse (unts); (Assgn s = -1 fom te zeo-lead tme assumpton) = Te ode-up-to level at te aeouse (unts) s = Te must-ode level at etale (unts); (Assgn s = fom te zeo-lead tme assumpton) c = Te can-ode level at etale (unts) = Te ode-up-to level at etale (unts) = Demand ate of etale (unts/tme unt) = Te unt oldng cost pe unt tme at te aeouse ($/unt tme unt) = Te unt oldng cost pe unt tme at etale ($/unt tme unt) K = Te aeouse s majo odeng cost pe a eplensment cycle ($/tme) K = Te etales majo odeng cost pe a dspatc cycle ($/tme) 56 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

5 DOI:1.4186/ej = Te mno odeng cost at etale ($) TC( c,, ) = Te total system-de cost pe unt tme ($/tme unt) HC = Te total oldng cost at locaton ove te tme T unts ($) MJ = Te total majo odeng cost at etale ecelon ove te tme T unts ($) MN = Te total mno odeng cost at etale ecelon ove te tme T unts ($) MJ = Te total majo odeng cost at aeouse ecelon ove te tme T unts ($) INV = Te accumulated nventoy ove tme peod at locaton (unt tme unt) ND = Te total numbe of dspatc cycle ove te tme T unts (tmes) NR = Te total numbe of eplensment cycle ove te tme T unts (tmes) j = An ndcato c equals 1 en etale s ncluded n te dspatc cycle j and equals (, ) otese Objectve functon: Mnmze TC( c,, ) n HC MJ MN MJ T (1) ee HC INV (2) MJ K ND (3) ND n MN (4) (, j) j1 1 MJ K NR (5) Te objectve functon of te poblem s to mnmze te total system-de cost pe unt tme. nce s and s can be gven by te zeo-lead tme assumpton, te total system-de cost pe unt tme can be a functon of only tee decson vaables: c,,. Ts enables us to smple manpulate te poblem. Hoeve, te poblem emans te complcatons, suc as demand uncetanty, vaaton of etales ode quantty, and ode-tme synconzaton at all locatons. 3. Metodology Dealng t te complcaton of ou poblem, te optmal soluton cannot be smply deved fom an analytcal appoac. Hence, e ntally study te can-ode polcy on OWNR by usng compute smulaton. Compute smulaton s an effcent appoac epesentng te nventoy pocess even n te complcated system. Te pelmnay study leads us to developng a eustc appoac. In addton, fom te smulaton e can detemne te best-knon soluton used to measue te poposed eustc appoac s pefomance Compute mulaton Te compute algotm epesentng te nventoy pocess s llustated n Fg. 1. Te nputs fo smulatng te system can be dvded nto tee goups as follos: ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 57

6 DOI:1.4186/ej Input paametes Relevant Factos: n = Numbe of etales λ = Demand ate at etale = Unt oldng cost at te aeouse = Unt oldng cost at etale K = Waeouse s majo odeng cost K = Retales majo odeng cost к = Mno odeng cost at etale Decson vaables: Waeouse s = -1 = [mn,max] Retale s = c = [mn,max] = [mn,max] Expement settng: I () = Intal nventoy level at te aeouse; I () = I () = Intal nventoy level at etale ; I () = T = Tme peod; T = 1, eed numbe = [, 99] Output secton A epot of nventoy costs and tansactons TART et Dspatc cycle j = 1 Replensment cycle = 1 Fo eac etale, Geneate nte-aval tme of demands and sot all demands by aval tme No Monto demand aval of te system Is demand aval tme < T? Yes Fo etale o ons an aved demand, ubtact demand fom nventoy poston I (t) = I (t) - demand Is I (t) s? Yes No Recod dspatc event and set dspatc cycle j = j+1 Dspatc quantty = - I (t), set I (t) =, and set δ (,j) = 1 Compute algotm Fo eac etale k, Is I k(t) c k? Yes Dspatc quantty = k - I k(t), set I k(t) = k, and set δ (k,j) = 1 Fo aeouse, No Collect total dspatc quantty Dspatc quantty = and set δ (k,j) = ubtact total dspatc quantty I (t) = I (t) total dspatc quantty Is I (t) s? No Yes Recod eplensment event and set eplensment cycle = +1 Replensment quantty = I (t) and set I (t) = Calculate nventoy costs Calculate total system-de costs pe unt tme END Fg. 1. Te compute algotm fo smulaton 1) Decson vaables ( c,, ): Eac vaable s nputted as a ange of mnmum and maxmum values. A combnaton of ( c,, ) s called soluton. A soluton povdes a value of te total systemde cost and ts tansacton (e.g. numbe of dspatc cycles, numbe of eplensment cycles). 2) Relevant factos (.e. cost paametes, demand ates, and numbe of etales): We set a combnaton of elevant factos to scenao. A scenao contans dffeent solutons. Te best soluton povdng te mnmum total system-de cost s selected fo eac scenao. 3) Expement settng: Let I () t denote te nventoy level of locaton at tme t. At te begnnng of te unnng peod, all locatons ntal nventoy levels stat at zeo, I () =. We cose 1, unnng peods fo ou smulaton, snce ts unnng peod povdes te steady state fo te system. Addtonally, vaous seed numbes ae tested to vefy te solutons snce dffeent seed numbes geneate dffeent nte-aval tme sets. Fnally, e obtan a epot of te nventoy costs and ts tansacton. In consequence, e can fnd te mnmum total system-de cost fo eac ange of decson vaables nputted unde a gven scenao Te Best oluton Fndng Input paametes Fst of all, e andomly select a seed numbe beteen [, 99] to use fo te fst eplcaton (.e. a eplcaton comes fom a seed numbe). Decson vaables ae nputted as a ange of mnmum and maxmum values. Te ange s dynamc dependng on ou settng. In te expement, e set te dt of ange to be 5 unts fo c and and 2 unts fo. nce ove 5 unts of c and ceates multpled combnatons spendng moe unnng tme. Weeas te ange s lage because lnealy ceates combnatons. Te fst ange can be set fom te ntal pont of and calculated by 58 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

7 DOI:1.4186/ej K and 2K due to te zeo-lead tme assumpton and te concept of N economc ode quantty. Fo example, ntal = 45 and ntal = 14, te fst anges ae dentfed as [41, 6], [11, 15], and c [1, 14]. Te next step s te pocess of movng te anges untl te soluton seems to be ose contnuously. Te ange s moved upad and donad by fxng te ange at all etales. Ten, e fnd te c and anges at te etale by keepng te same ange of and te c j and j anges at te etale j., c and anges ae canged epeatedly. We select te best soluton povdng te mnmzed total system-de cost fo te fst eplcaton. Afte tat, te valdaton pocess son n te next pat s utlzed to get te typcal best soluton Output valdaton Te typcal best soluton s a epesentatve of te best solutons fom vaous eplcatons. We defne te typcal best soluton as te best-knon soluton to geneally use n late sectons. nce abundant combnatons ae un n te fst eplcaton, n ts pocess e can educe unnecessay anges by statng at te best soluton s ange fom te fst eplcaton. By ts pocess, e can fnd te best soluton fo ote eplcatons faste. If tee s an eo fom te fst eplcaton, coss-ceckng s occued. In te plot testng (1 scenaos), e tested on ten andom seed numbes to detemne te best soluton fo eac seed numbe. We found tat te best-knon soluton appeaed snce te fst tee andom seed numbes ee conducted. Tus, nstead of a numbe of te expements e could save te computatonal tme on fve andom seed numbes fo detemnng eac seed numbe s best soluton. Consequently, e test anote fou eplcatons on dffeent andom seed numbes (afte te fst eplcaton as been done pevously). Most eplcatons povde te same best soluton; oeve, some dffeent solutons can appea. Ten, fo eac best soluton e detemne te aveage total system-de cost by addtonal 1 andom seed numbes. Te best-knon soluton s povded by te best soluton t te mnmum aveage total system-de cost Pefomance Measuement nce ts pape s objectve s to popose a eustc appoac fo settng te appopate can-ode polcy, te best-knon soluton s utlzed to compae t te eustc s best soluton. Heustc s pefomance s measued n tems of te cost gap calculated fom te follong equaton. ( HRT ) ( B ) ( TC TC ) 1 Cost Gap ( C. G.) (6) ( B ) TC ( HRT ) ( B ) ee TC and TC ae te aveage total system-de cost pe unt tme of te eustc appoac and te aveage total system-de cost pe unt tme of te best-knon soluton, espectvely. 4. Heustc Appoac Ts secton demonstates pelmnay analyss c s te man fndngs fom te compute smulaton leadng us to developng a eustc appoac, as ell as e smplfy te complcated model and popose an algotm to detemne te nventoy polcy settng Pelmnay Analyss In te pelmnay study, te expement as conducted fo 28 scenaos (see Appendx A). Identcal etales ae consdeed n te expement to study te effect of elevant factos. gnfcant fndngs ae demonstated as follos: ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 59

8 Total ystem-wde Cost pe Unt Tme Total ystem-wde Cost pe Unt Tme DOI:1.4186/ej Te ode-up-to level at te aeouse Fo a gven, e can fnd te soluton of ( c, ) povdng te mnmum aveage total system-de cost as llustated n Fg. 2. Tee ae to local mnmum solutons located n to anges: Range I te soluton occus at = and Range II t occus at >. Fo Range I, stats fom zeo and ten nceases to eac te last value befoe te cost lne tuns to a convex functon. Fo Range II, t s defned afte tat last value to postve nfnty. Te best-knon soluton (global mnmum soluton) defntely occus n ete Range I o Range II Range I Range II Te best-knon soluton Range I Range II Te best-knon soluton Mnmum oluton at Eac (Te value on te ozontal lne s -c - ) Mnmum oluton at Eac (Te value on te ozontal lne s -c - ) Fg. 2. (a) (b) To anges of te best-knon soluton: (a) te best-knon soluton occued n Range I; and (b) te best-knon soluton occued n Range II. Fo Range I, none of oldng stock at te aeouse povdes te loest total system-de cost snce te nceasng ceates te excessve stock. Weneve etale ecelon tgges an ode all excessve stock s consumed and te aeouse s must-ode level s alays eaced. Te aeouse s eplensed evey dspatc cycle; teefoe, t s not necessay to keep stock atng fo te next dspatc cycle. Fo Range II, a tade-off beteen te nceasng oldng costs and te educed odeng costs fo an nceasng s occued as found n te economc ode quantty. We can set = fo a g / ato, snce moe stock ceates moe nventoy cost (.e. te nceased oldng cost s lage tan te educed odeng cost). Hoeve, tee s a possblty tat te best-knon soluton can move fom Range I to Range II en a elevant facto s canged, suc as smalle / ato, ge K, o ge numbe of etales snce suc stuatons affect te aeouse to old nventoes so as to educe te fequency of eplensment Te can-ode level at te etales Fom te exstng lteatues, te ato of te majo odeng cost and te mno odeng cost s one of te most sgnfcant factos fo te can-ode polcy s pefomance, snce suc ato affects te can-ode level c to ceate a combnaton of etales n an ode [23, 24]. Teefoe, e consde te expements n case of zeo mno odeng cost and non-zeo mno odeng cost. Regadng te case of zeo mno odeng cost (154 scenaos), a esult demonstates tat fo 87.66% of all scenaos (135 scenaos) te value c = - 1, ee c and denote te optmal can-ode level and te optmal ode-up-to level of etale. Ts esult s consstent t te study of van Ejs [23] c soed tat en K / ato s appoacng nfnty, ten c = - 1 fo all tems. It mples tat all tems ae jontly eplensed as soon as an tem tgges an ode. Ote tems ae not odeed f tee as been no demand afte te pecedng ode. Ts concept s pupose s to mostly educe te odeng cost fom jontly eplensng all tems n te ode. Fo ote 19 scenaos occung te best soluton at c - 1, te esult ndcates tat TC s geate tan TC.1% on aveage t a standad devaton of ( 1) 6 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

9 Aveage Level Gap Aveage Pecentage of Cost Gap DOI:1.4186/ej % ee TC s te optmal aveage total system-de cost and system-de cost of te soluton at c = - 1. In case of non-zeo mno odeng cost (54 scenaos), smalle TC s te mnmum aveage total ( 1) K / ato nfluences a lage dffeence beteen c and as son n Fg. 3(a). nce suc dffeence can educe te numbe of nvolved etales n te ode and dspatc quantty, but ncease dspatc fequency. In te mult-tem sngle locaton poblem, van Ejs [23] uled tat f K / ato s less tan 5, te can-ode polcy mgt not appen to be Compang TC c = and ( 1) - 1. Addtonally, g demand ate affects a ge level gap beteen TC, te esult ndcates tat TC s geate tan ( 1) c and. TC by.91% on aveage t a standad devaton of 1.85%. malle K / ato nceases cost gap as son n Fg. 3(b). ettng c nea nceases te total odeng cost because of too many etales ncluded n an ode (a) (b) Fg. 3. Te effect of K / ato on te can-ode level at te etales: (a) Aveage level gap beteen and K / ato Demand ate, λ 2, and (b) Aveage pecentage of cost gap beteen TC Te ode-up-to level at te etales 5 ( 1) and TC. Wen e fx te nventoy polcy at te aeouse, te aveage total system-de cost at etale s a convex (unmodal) functon of as son n Fg. 4. Fgue 4(a) and Fgue 4(b) llustate dffeent scenaos but povde te same patten. Te convex functon occus fom a tade-off beteen te nceasng oldng costs and te educed odeng costs fo an nceasng, ten te economc ode quantty s detemned. 1.8% 1.6% 1.4% 1.2% 1.%.8%.6%.4%.2%.% K / ato c ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 61

10 Aveage Total ystem-wde Cost pe Unt Tme Aveage Total ystem-wde Cost pe Unt Tme DOI:1.4186/ej Fg (a) Convex functon of on gven : (a) cenao at = 2, n = 2, = 48; and (b) cenao at n = 4, = 27. K = 1, K = 1, (b) K = 5, =, K = 5, = 25, = 2, = 2.5, = 25, = 1, = 5, As te above esults, e can smplfy te matematcal model by usng te can-ode level c = - 1 snce small aveage cost gap beteen TC and TC s occued. Addtonally, a convex functon of ( 1) enables us to develop a eustc appoac at ease t one-dmensonal seac Matematcal Model level Ou pupose of developng a eustc appoac s to povde an appopate nventoy polcy ( c,, ). Te total system-de cost of matematcal model s able to be appoxmated as long as te acceptable soluton s povded. Ts can educe te complexty of ou model. Hence, elatng to te pelmnay analyss ou matematcal model utlzes te can-ode level at c = - 1. Ten, tee exsts only to decson vaables (, ) concened n te matematcal model. Van Ejs [23] developed exact equatons by usng c = - 1 fo non-dentcal tems on sngle locaton. Hs model used te exact pobablty of te specal eplensment, unlke ote models assumng Posson dstbutons. It pefomed vey ell en te K / ato s moe tan 5. Teefoe, e adapt s ok nto ou consdeaton. Based on van Ejs [23], e can calculate te nventoy cost at te etale ecelon close to te exact value. Hoeve, detemnaton of nventoy cost at aeouse s anote dffcult pat. Te aeouse s nventoy level s consumed by an uncetan lot-szng ode fom etale ecelon. Fom pelmnay testng, e detemne te expected dspatc quantty at etale ecelon by usng te exact model of van Ejs [23]. We found tat te expected dspatc quantty pe dspatc cycle s alays equal to te cumulatve demand fom all etales. Tus, e smplfy ts pat by assumng tat te aeouse s nventoy level s consumed contnuously follong te total Posson demand cumulated fom all etales,. By ts assumpton, aeouse ecelon and etale ecelon ae ndependent to fnd te mnmum nventoy costs at eac ecelon. Even toug te assumpton povdes te appoxmate aeouse s nventoy cost ge tan te aeouse s actual nventoy cost, e compensate te appoxmate value by utlzng te mnmum nventoy cost at etale ecelon. Te cost model can be fomulated fo a gven (, ) polcy. It follos tat, level N K 1 ( ) ) E[ H ] N K E[ H] TC(, ) E[ DT ] E[ RT ] (7) TC(, ) = Te long-un aveage total system-de cost pe unt tme ($/tme unt) ( ) = Te pobablty tat no demand aves fo etale dung a dspatc cycle EH [ ] = Te expected oldng cost of etale dung a dspatc cycle ($) 62 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

11 DOI:1.4186/ej EH [ ] = Te expected oldng cost of te aeouse dung a eplensment cycle ($) E[ DT ] = Te expected lengt of a dspatc cycle (tme unt) E[ RT ] = Te expected lengt of a eplensment cycle (tme unt) Accodng to te equaton (7), e consde te pobablty tat at least one demand aves fo etale dung a dspatc cycle to be consstent t te value c = - 1. uc pobablty affects te occuence of te mno odeng cost. Retale Ecelon Te model s developed accodng to te ndependent Posson pocess of demands fo ndvdual etales, so nte-aval tmes of demands ae exponentally dstbuted. uppose a dspatc cycle stats at tme. We defne te follong vaables accodng to stocastc pocess: DT = Tme untl etale tgges an ode to te aeouse (tme unt) DT = Tme untl any etale tgges an ode to te aeouse; DT mn( DT ) (tme unt) f () t = Pobablty densty functon of DT F () t = Dstbuton functon of DT f() t = Pobablty densty functon of DT Ft () = Dstbuton functon of DT Retale ll tgge an ode f te total demand fo etale fom tme equals. Tus, accodng to te exponental dstbuton of nte-aval tmes of demands, DT follos Elang dstbuton t paametes and. Te value of f () t and F () t ae detemned by te geneal fomula of Elang dstbuton [25]. Ten, te pobablty densty functon and dstbuton functon of DT can be calculated by f ( t) f ( t) 1 F ( t ) (8) N Tus, te expected lengt of a dspatc cycle s j F( t) 1 1 F ( t ) (9) N E[ DT ] tf ( t) dt 1 F( t) dt 1 F ( t) dt (1) t t t N Te expected oldng cost of etale dung a dspatc cycle s assocated t te etale s nventoy on and at te begnnng and at te end of te dspatc cycle. At te begnnng of te cycle, settng c = - 1 makes all etales nventoy on and equal. At te end of te cycle, te nventoy on and depends on te esdual stock level, c s a stock above te must-ode level en an ode s tggeed. Tus, e defne ( x ) as te pobablty tat at tme DT te esdual stock of etale equals x. Tee ae to cases fo detemnng ( x ). Te fst case s en te esdual stock level of etale s equal to zeo; only etale tgges an ode. Te second case s en te esdual stock level of etale s postve. o, an ode s tggeed by etale j. Tus, te value of ( x) can be calculated by te follong expessons: ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 63

12 DOI:1.4186/ej j t j ( x) ( ) Pos(, x) f ( t) dt f x t f ( t) 1 F ( t) dt f x, m e Pos(, m) m! (11) (12) ( ) f ( t) f j( t) 1 Fk( t ) (13) j k j, ( ee Pos(, m) s te pobablty densty functon of Posson demand at etale, and f ) () t s te pobablty densty functon tat at tme t any etale j tgges an ode. Tus, ( ) llustated n equaton (7) can be calculated by usng equaton (11) as ell. Te expected oldng cost of etale dung a dspatc cycle s ten gven by ( ) x t E[ H ] ( x) f ( t) dt (14) x 2 t Accodng to te equaton (1) and (14), e tansfom te expesson to detemne te expected oldng cost of etale pe unt tme nstead. Tus, E[ H ] ( ) x ( x) E[ DT ] x 2 (15) Waeouse Ecelon To smplfy ts pat, e assume tat te aeouse s nventoy level s consumed contnuously by all etales Posson demands t ate. Inte-aval tmes of demands ae exponentally dstbuted, and ten te dstbuton of tme untl aeouse tgges an ode to an outsde supple s Elang, smla to te etale ecelon. Let RT denote te tme untl aeouse tgges an ode to an outsde supple. Te aeouse ll tgge an ode f te total demand fom tme equals, so te dstbuton of RT s Elang t paametes and. Te expected lengt of a eplensment cycle s te mean of Elang dstbuton. Tus, E[ RT ]. In case of oldng nventoy at te aeouse, te expected oldng cost of te aeouse dung a eplensment cycle s estmated follong te contnuous demands fom te etale ecelon. Ten, e can E[ H] detemne te expected oldng cost of te aeouse pe unt tme by. Accodng to te E[ RT ] 2 fom te can be easly calculated fom EOQ expesson at te aeouse, e can fnd te optmal ode-up-to level at te aeouse devatve of te cost functon t espect to. We found tat fomula. Ten, 2K Consequently, e can fgue out te long-un aveage total system-de cost pe unt tme fo a gven (, ) polcy. Ten, te next secton ll demonstate te algotm of eustc appoac to detemne te appopate decson vaables by usng te cost model Te Algotm of Heustc Appoac Wt egad to te pelmnay analyss and te matematcal model, te follong analyses demonstate ou concept fo developng te eustc appoac. 64 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

13 DOI:1.4186/ej ) Accodng to to local mnmum solutons located nto to anges, e can dentfy te value of to = fo Range I and 2K fo Range II. 2) To develop an ntal soluton at etale ecelon by assumng c = - 1, e can use detemnstc model to fnd economcal jont odeng tme en evey etales s eplensed n an ode. 3) Fxng nventoy polcy at etale j and at te aeouse, te total nventoy cost at etale s a convex functon of. We can fnd te local mnmum TC(, ) at te gven j and. Teefoe, te decomposton tecnque and teatve pocedue can be appled to beak multple locatons nto a sngle locaton and to ecuently fnd te mnmum soluton as fa as te best soluton as been found. Bot tecnques ave been ntensvely used n JRP [19, 22-24, 26-28]. 4) nce te total nventoy cost at etale s a unmodal functon unde one-dmensonal unconstaned poblem. We apply te lne seac called golden secton seac c s a smple and effcent metod fo fndng te extemum of a unmodal functon [23, 29, 3]. Te golden secton seac s sutable fo te case of non-devatve functon, lke ou model, by successvely naong te ange of seac space untl te desed accuacy n te mnmum value of te objectve functon s aceved. A golden ato, c s a constant educton facto fo te sze of te nteval, s utlzed to mantan te successve ange of dynamc tples of ponts (.e. uppe pont, mddle pont, and loe pont). Advantageously, eac successve ange e only ant to pefom one ne functon evaluaton. Fom ts tecnque, e can detemne te optmal fo te gven j and and save computatonal tme. Te golden secton seac as vefed to effcently use t te can-ode polcy n van Ejs [23] s ok. Hence, te eustc appoac s outlned n te follong algotm llustated n Fg. 5. In step 1 detemnaton of te ntal soluton, e calculate te jont dspatcng tme ( T d ) by detemnstc model accodng to te follong expesson: T d 2( K ) N N (16) Ten, te ntal fo etale s detemned by adaptng Love [16] s metod. It s selectng c povdes te mnmum gap beteen to pobabltes: 1) te pobablty tat te demand fo etale dung tme T d s less tan o equal to suc and 2) te pobablty tat an ode s tggeed by any etale (.e. ncludng nomal eplensment and specal eplensment). Tus, n n m f Pos( Td, m 1) Pos( Td, m) n1 n1 1 m Otese (17) Te ntal fom equaton (17) s close to te optmal soluton tan obtaned fom T. d ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 65

14 DOI:1.4186/ej TART tep 1: Detemne ntal oluton at etale ecelon tep 2: Detemne te local optmal soluton fo eac ange R k: k = {1,2} tep 3: elect te best soluton at TC mn(, )= mn{tc mnr1(, ), TC mnr2(, )} END Output: Output: TC mnrk(, ) tep 1 tep 1.1: Calculate jont dspatcng tme (T d) tep 2 tep 2.1: (A) et values at te aeouse fo ange R k: k = {1,2} Fo ange R 1, set = and E[RT] = E[DT] (B) Calculate TC ntal(, ) tep 1.2: Fnd ntal fom T d by usng Posson pobablty functon Fo ange R 2, set = 2K λ / and E[RT] = / λ tep 2.2: Iteatve pocedue fo detemnng te local optmal soluton ( ) fo eac ange R k (A) et ntal value: - et loop y =, teaton m =, and assgn TC mnrk(, ) = TC ntal(, ) fo suc ntal value - Assgn etale = (B) et etale = +1, fx j and (C) Use golden secton seac fo detemnng te optmal unde gven j and (D) Update TC mnrk(, ) and f te bette soluton as been found (E) Count teaton m = m +1, go back to step (B) untl = n If = n, count loop y = y +1 (F) top f - fo ={1,...,n} does not cange n teatons n a o, o - TC mnrk(, ) of loop y and TC mnrk(, ) of loop y - 1 does not decease by moe tan ε% Otese go back to step (B) Fg. 5. Te algotm of eustc appoac. tep 2 s te most mpotant pocedue fo te eustc n ode to detemne te optmal fo eac ange of ange R 1 and R 2 (note tat fo ange R 1, te local optmal soluton occus at = and E[ RT ] E[ DT ], and fo ange R 2, t occus at 2K and E[ RT ] ). We use and te ntal fom step 1 to calculate te ntal long-un aveage total system-de cost pe unt tme, TC (, ). Te next step (2.2) s an teatve pocedue contanng steps (A) to (F). Fo eac teaton, ntal a golden secton seac s caed out fo etale : vay and fx j gven fom te pevous teaton. TC(, ) s an objectve functon fo golden secton seac. Te teatve pocess temnates as soon as evey does not cange n teatons n a o, o te mnmum long-un aveage total system-de cost pe unt tme, TCmn Rk (, ), fom te cuent loop does not decease fom te pevous loop by moe tan % (.e. en all etales ave been un, one loop s counted). Fom step 2, e obtan te local mnmum cost TCmn Rk (, ) fo k {1, 2}. Lastly, te compason of TCmn Rk (, ) fo k {1, 2} s caed out n step 3. Te mnmum long-un mn TC (, ), TC (, ). aveage total system-de cost pe unt tme s equal to 5. Expemental Results mn R1 mn R2 Te eustc appoac as been tested on vaous scenaos. Te expements on dentcal etales ae analyzed, specfcally n te case of zeo mno odeng cost and non-zeo mno odeng cost. nce bot cases affects te can-ode polcy at gven c = - 1 on dffeent esults as son n te pelmnay analyss. In addton, te expement on non-dentcal etales s also conducted to measue te eustc s pefomance on te dssmla stuaton. 66 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

15 DOI:1.4186/ej Identcal Retales Zeo mno odeng cost Accodng to tee elevant factos (.e. cost paametes, demand ates, and numbe of etales), tey ae desgned to examne te eustc s pefomance unde 154 scenaos (see Appendx A). Table 1 sos some numecal examples elatng to te best-knon soluton of te system and te best soluton fom te eustc appoac. We found tat te pefomance of eustc appoac depends on all elevant factos. It povdes an aveage cost gap at 1.5% t standad devaton of 1.11% ove vaous scenaos. Ou appoac pefoms ell fo g numbe of etales, g K / K ato, and g / ato. Let ( B ) and ( B ) denote te best-knon ode-up-to level at etale and at te aeouse ( ) detemned fom te compute smulaton. Let HRT ( HRT ) and denote te best ode-up-to level at etale and at te aeouse and tey ae calculated by te eustc appoac. Teoetcally, a lage numbe of etales nceases te jont eplensment oppotunty fom specal eplensment, ts can ( ) educe. Tus, a ge numbe of etales educes B ( HRT ) ( B ) to be close to and also nceases ( HRT ) to be close to. Teefoe, te cost gap can educe. Fo ge K / K ato, and ae affected n a smla patten. Regadng te / ato, ge ato nfluences te aeouse s stock equal to zeo. Consequently, te nventoy cost at etale ecelon becomes te man pat of te system. Ou matematcal model povdes cost expesson at etale ecelon nea te exact value and eustc appoac can detemne te mnmum soluton at etale ecelon. Ten, te eustc appoac povdes te (nea) best-knon soluton. Table 3. Numecal examples fo compason of te best-kno soluton and te eustc s best soluton unde dentcal etales tout mno odeng cost. Relevant factos Best-knon oluton (B) Heustc Appoac Instance K K n,, ( B ) c TC,, c CG ,3,4 1, ,3,4.52% ,5,6 1,42.94,5,6.% ,9, ,1,11 2.3% ,12, ,18, % ,4, ,4,5.5% ,15, ,14, % ,12, ,1,11 2.5% ,11, ,1,11.98% ,6, ,5,6.36% ,4, ,4,5.11% ,4, ,4,5.15% ,8, ,8,9 1.3% ,6, ,6,7.29% ,5,6 1, ,5,6.17% Non-zeo mno odeng cost Altoug te can-ode level s not necessay to be equal to - 1 en tee s a mno odeng cost, ou eustc appoac can be appled nto ts poblem n some stuatons. To dentfy suc a stuaton, e tested on 54 scenaos (see Appendx A) by manly vayng te mno odeng cost. Te value of K / ato ae dentfed follong van Ejs s ok [23]. Te expemental esults ae depcted n Fg. 6. ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 67

16 Aveage Pecentage of Cost Gap Aveage Pecentage of Cost Gap DOI:1.4186/ej % 2.5% 2.% 1.5% 1.%.5%.% K / ato (a) (b) Fg. 6. Te effect of K / ato on te can-ode level at te etales: (a) Heustc s pefomance and smulaton s pefomance en fxng c = - 1, and (b) Te effect of / ato. We found tat te eustc appoac povdes an aveage cost gap at 1.64% t standad devaton of 2.3% ove vaous scenaos. Heustc s pefomance s assocated t to easons. Fstly, ou eustc assumes c = - 1. As son n Fg. 6(a). Relatng to compute smulaton, e compae te best-knon soluton t te best soluton fxng c = - 1. Aveage pecentage of cost gap povdes n smulaton s lne. A smalle K / ato povdes a lage cost gap n smulaton s lne, consequently ou eustc also pefoms n te same ay. econdly, te nventoy cost at te aeouse s appoxmate. Cost gap of te eustc s lne s also added fom te smulaton s lne. Consdeng te / ato, a ge ato ( / s.4 and.6) nfluences te aeouse s stock equal to zeo. Ten, te eustc appoac povdes te (nea) best-knon soluton. On te ote and, a ge cost gap at te loe / ato comes fom an appoxmate nventoy cost at te aeouse, especally fo a small demand ate and g numbe of etales by te eason tat ou eustc gets = eeas te best-knon soluton s >. Te dffeence of soluton ceates a lage cost gap Non-Identcal Retales mulaton Heutstc To extend te expement on non-dentcal etales, e am at studyng te can-ode polcy on te etales dffeent demand ates because n ealty e fequently encounte suc stuaton. In addton, non-dentcal demands can ceate te dffeent dscount oppotuntes fom te saed odeng cost. Hence, t s nteestng to nvestgate and ts nquy as not been studed n te exstng lteatues. We tested on toetale scenaos and tee-etale scenaos (see Appendx B). Fgue 7 depcts te cost gap fom ou eustc appoac, as compaed to te best-knon solutons. Te eustc appoac povdes an aveage cost gap at 2.18% t standad devaton of.82% fo to-etale scenaos, and an aveage cost gap at 1.8% t standad devaton of.51% fo tee-etale scenaos. At small demand ate ato te eustc appoac pefoms ell because ode cycle of eac etale s not qute dffeent. o, te etales odeng cost can be moe saed t te balancng oldng costs. Hoeve, at a ge demand ate ato eustc s pefomance does not depend on te dffeent demand ates (.e. tee s no tend of te cost gap follong te demand ate ato). 5.% 4.5% 4.% 3.5% 3.% 2.5% 2.% 1.5% 1.%.5%.% K / ato Te / ato ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

17 Aveage Pecentage of Cost Gap Aveage Pecentage of Cost Gap DOI:1.4186/ej % 2.6% 2.4% 2.2% 2.% 1.8% 1.6% 1.4% 1.2% 1.% Aveage cost eo at 2.18% t standad devaton at.82% Demand Rate Rato 2.5% 2.% 1.5% 1.%.5%.% Aveage cost eo at 1.8% t standad devaton at.51% Demand Rate Rato Fg. 7. (a) (b) Heustc s pefomance unde non-dentcal etales: (a) To-etale scenaos, and (b) Tee-etale scenaos. As te expemental esults n vaous scenaos, te eustc appoac povdes te best solutons at a small aveage cost gap compang to te best-knon soluton. Moeove, te eustc appoac s computatonal tme can be saved fom te educed seac space as compang to te compute smulaton s computatonal tme. nce te golden secton seac can save te computatonal tme by educng te seacng ponts. It s a satsfactoy appoac to use fo te can-ode polcy settng unde OWNR. 6. Conclusons Ts pape poposed a eustc appoac fo detemnng on appopate can-ode polcy nto oneaeouse n-etale nventoy system. Dealng t te complcaton of ou poblem, compute smulaton as employed to exploe nsgts nto te can-ode polcy and to detemne te best-knon soluton. Te nsgts led us to developng te matematcal model and te algotm of te eustc appoac. Te man fndngs soed fom compute smulaton tat te aveage total system-de cost s a unmodal functon of te etale s ode-up-to level, en gven j and ae fxed. Decomposton tecnque and teatve pocedue can be appled to beak multple locatons nto a sngle locaton and to successvely fnd te mnmum as fa as te best soluton as been found. nce ou matematcal model s a non-devatve functon, e utlzed golden secton seac fo fndng te mnmum of a unmodal functon. Ts can save ou computatonal tme to fnd te appopate nventoy polcy settng. Te eustc appoac unde smplfed matematcal model and fxed c 1 pefoms vey ell, especally n case of g K / ato. Oveall, te expements tested on te de ange of data povded te cost gap of eustc appoac of less tan 2% on aveage. Wt satsfactoy computatonal tme and small cost gap, te eustc appoac s ell ot usng fo te can-ode polcy settng unde te oneaeouse n-etale nventoy system. In ts eseac, to man contbutons ee ganed. Fstly, te zeo lead tme assumpton can be ntepeted and appled n te stuaton en te ato of lead tme to ode cycle duaton s vey small. econdly, ou study can be used as te base case en e extend nto non-zeo lead tme. Futemoe, multple tems sould be concened to totally utlze te can-ode polcy on te aeouse. ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 69

18 DOI:1.4186/ej Appendx A: Pelmnay Expement In te pelmnay study, te expement s desgned on te dentcal etales. Te follong table sos 28 scenaos expemented n sequence. Te astesk () n te table means tat paamete s vaed. Table A1. Numecal nput fo pelmnay expement unde te dentcal etales Fxed Paametes cenao No. K K n Vaed Paametes 1) Relatonsp beteen and (8 scenaos) {1, 25, 5, 1, 25}; {.1,.2,...,1} {.1,.5, 1, 2.5, 5}; {.1,.3,.5,.7,.9, 1} 2) Relatonsp beteen, and K (2 scenaos) K {1, 9}; {.1,.3,.5,.7,.9, 1} K {1, 9}; {.2,.4,.6,.8} 3) Relatonsp beteen, and K (2 scenaos) K {75, 2}; {.1,.3,.5,.7,.9, 1} K {125, 25}; {.2,.4,.6,.8} 4) Relatonsp beteen,, and K / K (14 scenaos) K / K {1.5, 3, 4, 5, 1, 1, 15}; {1, 25} 5) Relatonsp beteen,, and (1 scenaos) {.5, 1, 3, 5, 1, 4, 1, 5} {.5, 1} 6) Relatonsp beteen,, and n (1 scenaos) n {4, 8, 12, 2} {.5, 1}; n {4, 8, 12} 7) Te effect of (54 scenaos) {5, 1, 25}; {.5, 2}; {.2,.4,.6}; n{2, 4, 8} 7 ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

19 cenao No. cenao No. cenao No. DOI:1.4186/ej Appendx B: Te Expement on Non-Identcal Retales Te follong table sos 45 scenaos on to-etale poblem and tee-etale poblem. All scenaos set dentcal cost components by K = 1, K = 5, =, = 2, and = 1. Table B1. Numecal nput fo te expement on non-dentcal etales: Demand Rate Demand Rate Demand Rate Demand Rate Rato Demand Rate Rato Demand Rate Rato , , 2, , , 2, , 1, , 1, 4 Acknoledgement Te colasp fom te Gaduate cool, Culalongkon Unvesty to commemoate te 72nd annvesay of s Majesty Kng Bumbala Aduladeja s gatefully acknoledged. Te autos ould lke tank te anonymous assocate edto, and efeees fo te elpful and valuable comments. A poton of te ok as pesented at 17 t Intenatonal Confeence on Industal Engneeng Teoy, Applcatons and Pactce (IJIE 213). Refeences [1] B. D. Wllams and T. Toka, A eve of nventoy management eseac n majo logstcs jounals: Temes and futue dectons, te Intenatonal Jounal of Logstcs Management, vol. 19, no. 2, pp , 28. [2] P. Kelle, H. cnede,. Wley-Patton, and J. Woosley, Healtcae supply can management, n Inventoy Management: Non-classcal ves. M. Y. Jabe, Ed., Baco Raton: CRC Pess, 29, pp [3] K. Asnde, A. Kanda, and. G. Desmuk, A Reve on supply can coodnaton: Coodnaton mecansms, managng uncetanty and eseac dectons, upply Can Coodnaton unde Uncetanty. Beln Hedelbeg: pnge, 211, pp [4]. Axsäte,. C. Gaves, and A. G. d. Kok, upply can opeatons: eal and dstbuton nventoy systems, Handbooks n Opeatons Reseac and Management cence, Elseve, 23, pp [5] Q. Wang, T.-M. Co, and T. C. E. Ceng, Contol polces fo mult-ecelon nventoy systems t stocastc demand, n upply Can Coodnaton unde Uncetanty. Beln Hedelbeg: pnge, 211, pp [6] H. cnede, D. B. Rnks, and P. Kelle, Poe appoxmatons fo a to-ecelon nventoy system usng sevce levels, Poducton and Opeatons Management, vol. 4, no. 4, pp , ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/) 71

20 DOI:1.4186/ej [7]. C. Gaves, On te detemnstc demand mult-poduct sngle-macne lot scedulng poblem, Management cence, vol. 25, no. 3, pp , Mac, 1979, [8] B. Y. Özkaya, Ü. Güle, and E. Bek, Te stocastc jont eplensment poblem: A ne polcy, analyss, and nsgts, Naval Reseac Logstcs (NRL), vol. 53, no. 6, pp , 26. [9] K. L. Ceung and H. L. Lee, Te nventoy beneft of spment coodnaton and stock ebalancng n a supply can, Management cence, vol. 48, no. 2, pp. 3-36, 22. [1] B. Y. Özkaya, tocastc jont eplensment poblem: A ne polcy and analyss fo sngle locaton and to ecelon nventoy systems, P.D. dssetaton, Industal Engneeng, Blkent Unvesty, Tukey, 25. [11] Q. Gou, L. Lang, C. Xu, and Y. Za, A modfed jont nventoy polcy fo VMI systems, Intenatonal Jounal of Infomaton Tecnology & Decson Makng (IJITDM), vol. 7, no. 2, pp , 28. [12] V. Pukcanon, P. Caovaltongse, and N. Pumcus, An applcaton of te can-ode polcy fo one-aeouse n-etale nventoy system, n 17t Intenatonal Confeence on Industal Engneeng: Teoy, Applcatons and Pactce, Pusan Natonal Unvesty, Busan, Koea, 213, pp [13] M. Ç. Gübüz, K. Monzade, and Y.-P. Zou, Coodnated eplensment stateges n nventoy/dstbuton systems, Management cence, vol. 53, no. 2, pp , Feb., 27. [14]. Cetnkaya and C.-Y. Lee, tock eplensment and spment scedulng fo vendo-managed nventoy systems, Management cence, vol. 46, no. 2, pp , Feb., 2. [15]. Axsäte and W.-F. Zang, A jont eplensment polcy fo mult-ecelon nventoy contol, Intenatonal Jounal of Poducton Economcs, vol. 59, pp , [16]. F. Love, Coodnated eplensment of multple tems, Inventoy Contol. Auckland: McGa-Hll, 1979, pp [17] J. L. Balntfy, On a basc class of mult-tem nventoy poblems, Management cence, vol. 1, no. 2, pp , Januay, 1964, [18] E. A. lve, ome caactestcs of a specal jont-ode nventoy model, Opeatons Reseac, vol. 13, no. 2, pp , Ma.-Ap., [19] E. A. lve, A contol system fo coodnated nventoy eplensment, Intenatonal Jounal of Poducton Reseac, vol. 12, no. 6, pp , [2] R. M. Tompstonej and E. A. lve, A coodnated nventoy contol system fo compound Posson demand and zeo lead tme, Intenatonal Jounal of Poducton Reseac, vol. 13, no. 6, pp , [21] E. A. lve, Establsng eode ponts n te (,c,s) coodnated contol system unde compound Posson demand, Intenatonal Jounal of Poducton Reseac, vol. 19, no. 6, pp , [22] A. Fedeguen, H. Goenevelt, and H. C. Tjms, Coodnated eplensments n a mult-tem nventoy system t compound Posson demands, Management cence, vol. 3, no. 3, pp , Mac, [23] M. J. G. van Ejs, On te detemnaton of te contol paametes of te optmal can-ode polcy, Zetscft fü Opeatons Reseac, vol. 39, no. 3, pp , [24] P. Melcos, Calculatng can-ode polces fo te jont eplensment poblem by te compensaton appoac, Euopean Jounal of Opeatonal Reseac, vol. 141, no. 3, pp , 22. [25] C. Fobes, M. Evans, N. Hastngs, and B. Peacock, Elang dstbuton, tatstcal Dstbutons, 4t ed. Jon Wley & ons, Inc., 21, pp [26] Y.-. Zeng, Optmal contol polcy fo stocastc nventoy systems t Makovan dscount oppotuntes, Opeatons Reseac, vol. 42, no. 4, pp , [27] N. Dellaet and E. van de Poel, Global nventoy contol n an academc osptal, Intenatonal Jounal of Poducton Economcs, vol , pp , [28] H. cultz and. G. Joansen, Can-ode polces fo coodnated nventoy eplensment t Elang dstbuted tmes beteen odeng, Euopean Jounal of Opeatonal Reseac, vol. 113, no. 1, pp. 3-41, [29] M. Evans, N. A. J. Hastngs, and J. B. Peacock, tatstcal Dstbutons, 3d ed. Wley, 2. [3] W. H. Pess,. A. Teukolsky, W. T. Vettelng, and B. P. Flanney, Numecal Recpes: Te at of scentfc computng, 3d ed. Cambdge Unvesty Pess, ENGINEERING JOURNAL Volume 18 Issue 4, IN (ttp://.engj.og/)

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand A ew eplenshment Polcy n a wo-echelon Inventoy System wth Stochastc Demand Rasoul Haj, Mohammadal Payesh eghab 2, Amand Babol 3,2 Industal Engneeng Dept, Shaf Unvesty of echnology, ehan, Ian ([email protected],

More information

Bending Stresses for Simple Shapes

Bending Stresses for Simple Shapes -6 Bendng Stesses fo Smple Sapes In bendng, te maxmum stess and amount of deflecton can be calculated n eac of te followng stuatons. Addtonal examples ae avalable n an engneeng andbook. Secton Modulus

More information

Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data

Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data 1 Addtonal Fle 1 - A model-based ccula bnay segmentaton algothm fo the analyss of aay CGH data Fang-Han Hsu 1, Hung-I H Chen, Mong-Hsun Tsa, Lang-Chuan La 5, Ch-Cheng Huang 1,6, Shh-Hsn Tu 6, Ec Y Chuang*

More information

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE Radoengneeng Aea Coveage Smulatons fo Mllmete Pont-to-Multpont Systems Usng Buldng Blockage 43 Vol. 11, No. 4, Decembe AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL

More information

TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS

TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS Hossen Jula α, Maged Dessouky β, and Petos Ioannou γ α School of Scence, Engneeng and Technology, Pennsylvana

More information

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization.

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization. IUST Intenatonal Jounal of Engneeng Scence, Vol. 19, No.3, 2008, Page 57-65 Chemcal & Cvl Engneeng, Specal Issue A ROUTING METHODOLOGY FOR HAARDOUS MATIALS TRANSPORTATION TO REDUCE THE RISK OF ROAD NETWORK

More information

Orbit dynamics and kinematics with full quaternions

Orbit dynamics and kinematics with full quaternions bt dynamcs and knematcs wth full quatenons Davde Andes and Enco S. Canuto, Membe, IEEE Abstact Full quatenons consttute a compact notaton fo descbng the genec moton of a body n the space. ne of the most

More information

An Algorithm For Factoring Integers

An Algorithm For Factoring Integers An Algothm Fo Factong Integes Yngpu Deng and Yanbn Pan Key Laboatoy of Mathematcs Mechanzaton, Academy of Mathematcs and Systems Scence, Chnese Academy of Scences, Bejng 100190, People s Republc of Chna

More information

Efficient Evolutionary Data Mining Algorithms Applied to the Insurance Fraud Prediction

Efficient Evolutionary Data Mining Algorithms Applied to the Insurance Fraud Prediction Intenatonal Jounal of Machne Leanng and Computng, Vol. 2, No. 3, June 202 Effcent Evolutonay Data Mnng Algothms Appled to the Insuance Faud Pedcton Jenn-Long Lu, Chen-Lang Chen, and Hsng-Hu Yang Abstact

More information

Joint Virtual Machine and Bandwidth Allocation in Software Defined Network (SDN) and Cloud Computing Environments

Joint Virtual Machine and Bandwidth Allocation in Software Defined Network (SDN) and Cloud Computing Environments IEEE ICC 2014 - Next-Geneaton Netwokng Symposum 1 Jont Vtual Machne and Bandwdth Allocaton n Softwae Defned Netwok (SDN) and Cloud Computng Envonments Jonathan Chase, Rakpong Kaewpuang, Wen Yonggang, and

More information

PCA vs. Varimax rotation

PCA vs. Varimax rotation PCA vs. Vamax otaton The goal of the otaton/tansfomaton n PCA s to maxmze the vaance of the new SNP (egensnp), whle mnmzng the vaance aound the egensnp. Theefoe the dffeence between the vaances captued

More information

Electric Potential. otherwise to move the object from initial point i to final point f

Electric Potential. otherwise to move the object from initial point i to final point f PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

PREVENTIVE AND CORRECTIVE SECURITY MARKET MODEL

PREVENTIVE AND CORRECTIVE SECURITY MARKET MODEL REVENTIVE AND CORRECTIVE SECURITY MARKET MODEL Al Ahmad-hat Rachd Cheaou and Omd Alzadeh Mousav Ecole olytechnque Fédéale de Lausanne Lausanne Swzeland [email protected] [email protected] [email protected]

More information

Statistical modelling of gambling probabilities

Statistical modelling of gambling probabilities Ttle Statstcal modellng of gamblng pobabltes Autho(s) Lo, Su-yan, Vcto.; 老 瑞 欣 Ctaton Issued Date 992 URL http://hdl.handle.net/0722/3525 Rghts The autho etans all popetay ghts, (such as patent ghts) and

More information

Perturbation Theory and Celestial Mechanics

Perturbation Theory and Celestial Mechanics Copyght 004 9 Petubaton Theoy and Celestal Mechancs In ths last chapte we shall sketch some aspects of petubaton theoy and descbe a few of ts applcatons to celestal mechancs. Petubaton theoy s a vey boad

More information

A Coverage Gap Filling Algorithm in Hybrid Sensor Network

A Coverage Gap Filling Algorithm in Hybrid Sensor Network A Coveage Ga Fllng Algothm n Hybd Senso Netwok Tan L, Yang Mnghua, Yu Chongchong, L Xuanya, Cheng Bn A Coveage Ga Fllng Algothm n Hybd Senso Netwok 1 Tan L, 2 Yang Mnghua, 3 Yu Chongchong, 4 L Xuanya,

More information

(Semi)Parametric Models vs Nonparametric Models

(Semi)Parametric Models vs Nonparametric Models buay, 2003 Pobablty Models (Sem)Paametc Models vs Nonpaametc Models I defne paametc, sempaametc, and nonpaametc models n the two sample settng My defnton of sempaametc models s a lttle stonge than some

More information

econstor zbw www.econstor.eu

econstor zbw www.econstor.eu econsto www.econsto.eu De Open-Access-Publkatonsseve de ZBW Lebnz-Infomatonszentum Wtschaft The Open Access Publcaton Seve of the ZBW Lebnz Infomaton Cente fo Economcs Babazadeh, Reza; Razm, Jafa; Ghods,

More information

Mixed Task Scheduling and Resource Allocation Problems

Mixed Task Scheduling and Resource Allocation Problems Task schedulng and esouce allocaton 1 Mxed Task Schedulng and Resouce Allocaton Poblems Mae-José Huguet 1,2 and Pee Lopez 1 1 LAAS-CNRS, 7 av. du Colonel Roche F-31077 Toulouse cedex 4, Fance {huguet,lopez}@laas.f

More information

A Mathematical Model for Selecting Third-Party Reverse Logistics Providers

A Mathematical Model for Selecting Third-Party Reverse Logistics Providers A Mathematcal Model fo Selectng Thd-Pat Revese Logstcs Povdes Reza Fazpoo Saen Depatment of Industal Management, Facult of Management and Accountng, Islamc Azad Unvest - Kaaj Banch, Kaaj, Ian, P. O. Box:

More information

A Novel Lightweight Algorithm for Secure Network Coding

A Novel Lightweight Algorithm for Secure Network Coding A Novel Lghtweght Algothm fo Secue Netwok Codng A Novel Lghtweght Algothm fo Secue Netwok Codng State Key Laboatoy of Integated Sevce Netwoks, Xdan Unvesty, X an, Chna, E-mal: {wangxaoxao,wangmeguo}@mal.xdan.edu.cn

More information

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above

More information

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)

More information

REAL TIME MONITORING OF DISTRIBUTION NETWORKS USING INTERNET BASED PMU. Akanksha Eknath Pachpinde

REAL TIME MONITORING OF DISTRIBUTION NETWORKS USING INTERNET BASED PMU. Akanksha Eknath Pachpinde REAL TME MONTORNG OF DSTRBUTON NETWORKS USNG NTERNET BASED PMU by Akanksha Eknath Pachpnde A Thess submtted to the Faculty of the Gaduate School of the Unvesty at Buffalo, State Unvesty of New Yok n patal

More information

LINES ON BRIESKORN-PHAM SURFACES

LINES ON BRIESKORN-PHAM SURFACES LIN ON BRIKORN-PHAM URFAC GUANGFNG JIANG, MUTUO OKA, DUC TAI PHO, AND DIRK IRMA Abstact By usng toc modfcatons and a esult of Gonzalez-pnbeg and Lejeune- Jalabet, we answe the followng questons completely

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Drag force acting on a bubble in a cloud of compressible spherical bubbles at large Reynolds numbers

Drag force acting on a bubble in a cloud of compressible spherical bubbles at large Reynolds numbers Euopean Jounal of Mechancs B/Fluds 24 2005 468 477 Dag foce actng on a bubble n a cloud of compessble sphecal bubbles at lage Reynolds numbes S.L. Gavlyuk a,b,,v.m.teshukov c a Laboatoe de Modélsaton en

More information

A New Estimation Model for Small Organic Software Project

A New Estimation Model for Small Organic Software Project 8 03 ACADEMY PUBLISHER A New Estmaton Model o Small Oganc Sotwae Poject Wan-Jang Han, Tan-Bo Lu, and Xao-Yan Zhang School O Sotwae Engneeng, Bejng Unvesty o Posts and Telecommuncaton, Bejng, Chna Emal:

More information

Impact on inventory costs with consolidation of distribution centers

Impact on inventory costs with consolidation of distribution centers IIE Tansactons (2) 33, 99± Imact on nventoy costs wth consoldaton of dstbuton centes CHUNG PIAW TEO, JIHONG OU and MARK GOH Deatment of Decson Scences, Faculty of Busness Admnstaton, Natonal Unvesty of

More information

Financing Terms in the EOQ Model

Financing Terms in the EOQ Model Financing Tems in the EOQ Model Habone W. Stuat, J. Columbia Business School New Yok, NY 1007 [email protected] August 6, 004 1 Intoduction This note discusses two tems that ae often omitted fom the standad

More information

Prejudice and the Economics of Discrimination

Prejudice and the Economics of Discrimination Pelmnay Pejudce and the Economcs of Dscmnaton Kewn Kof Chales Unvesty of Chcago and NB Jonathan Guyan Unvesty of Chcago GSB and NB Novembe 17, 2006 Abstact Ths pape e-examnes the ole of employe pejudce

More information

Charging the Internet Without Bandwidth Reservation: An Overview and Bibliography of Mathematical Approaches

Charging the Internet Without Bandwidth Reservation: An Overview and Bibliography of Mathematical Approaches JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 9, -xxx (2003) Chagng the Intenet Wthout Bandwdth Resevaton: An Ovevew and Bblogaphy of Mathematcal Appoaches IRISA-INRIA Campus Unvestae de Beauleu 35042

More information

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4.. VECTOR CONTROLLED RELUCTANCE SYNCHRONOUS MOTOR DRIVES WITH PRESCRIBED CLOSED-LOOP SPEED DYNAMICS Abstact: A new spee

More information

Modeling and computing constrained

Modeling and computing constrained F EAURE A RICLE HE COMPUAION OF CONSRAINED DYNAMICAL SYSEMS: MACHING PHYSICAL MODELING WIH NUMERICAL MEHODS Reseaches have nvestgated modelng and computaton of constaned dynamcal systems, but scentsts

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976-76-10-00

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn Arzona State Unversty & Ln Wen Unversty of Redlands MARKET PARTICIPANTS: Customers End-users Multnatonal frms Central

More information

AN EQUILIBRIUM ANALYSIS OF THE INSURANCE MARKET WITH VERTICAL DIFFERENTIATION

AN EQUILIBRIUM ANALYSIS OF THE INSURANCE MARKET WITH VERTICAL DIFFERENTIATION QUIIRIUM YI OF T IUR MRKT WIT VRTI IFFRTITIO Mahto Okua Faculty of conomcs, agasak Unvesty, 4-- Katafuch, agasak, 8508506, Japan [email protected] TRT ach nsuance poduct pe se s dentcal but the nsuance

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

On the Efficiency of Equilibria in Generalized Second Price Auctions

On the Efficiency of Equilibria in Generalized Second Price Auctions On the Effcency of Equlba n Genealzed Second Pce Auctons Ioanns Caaganns Panagots Kanellopoulos Chstos Kaklamans Maa Kyopoulou Depatment of Compute Engneeng and Infomatcs Unvesty of Patas and RACTI, Geece

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

E-learning Vendor Management Checklist

E-learning Vendor Management Checklist E-learning Vendor Management Checklist June 2008 Permission is granted to print freely, unmodified, this document from www.doingelearning.com or to copy it in electronic form. If linked to from the net

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

Molecular Dynamics. r F. r dt. What is molecular dynamics?

Molecular Dynamics. r F. r dt. What is molecular dynamics? What s molecula dynamcs? Molecula Dynamcs Molecula dynamcs (MD) s a compute smulaton technque that allows one to pedct the tme evoluton of a system of nteactng patcles (atoms, molecules, ganules, etc.).

More information

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Research Note APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES * Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

More information

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS

ON THE (Q, R) POLICY IN PRODUCTION-INVENTORY SYSTEMS ON THE R POLICY IN PRODUCTION-INVENTORY SYSTEMS Saifallah Benjaafa and Joon-Seok Kim Depatment of Mechanical Engineeing Univesity of Minnesota Minneapolis MN 55455 Abstact We conside a poduction-inventoy

More information

Statistical Discrimination or Prejudice? A Large Sample Field Experiment. Michael Ewens, Bryan Tomlin, and Liang Choon Wang.

Statistical Discrimination or Prejudice? A Large Sample Field Experiment. Michael Ewens, Bryan Tomlin, and Liang Choon Wang. Statstcal Dscmnaton o Pejudce? A Lage Sample Feld Expement Mchael Ewens, yan Tomln, and Lang Choon ang Abstact A model of acal dscmnaton povdes testable mplcatons fo two featues of statstcal dscmnatos:

More information

Discussion Papers. Thure Traber Claudia Kemfert

Discussion Papers. Thure Traber Claudia Kemfert Dscusson Papes Thue Tabe Clauda Kemfet Impacts of the Geman Suppot fo Renewable Enegy on Electcty Pces, Emssons and Pofts: An Analyss Based on a Euopean Electcty Maket Model Beln, July 2007 Opnons expessed

More information

The Cox-Ross-Rubinstein Option Pricing Model

The Cox-Ross-Rubinstein Option Pricing Model Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage

More information

Determinants of Borrowing Limits on Credit Cards Shubhasis Dey and Gene Mumy

Determinants of Borrowing Limits on Credit Cards Shubhasis Dey and Gene Mumy Bank of Canada Banque du Canada Wokng Pape 2005-7 / Document de taval 2005-7 Detemnants of Boowng mts on Cedt Cads by Shubhass Dey and Gene Mumy ISSN 1192-5434 Pnted n Canada on ecycled pape Bank of Canada

More information

How a Global Inter-Country Input-Output Table with Processing Trade Account. Can be constructed from GTAP Database

How a Global Inter-Country Input-Output Table with Processing Trade Account. Can be constructed from GTAP Database How a lobal Inte-County Input-Output Table wth Pocessng Tade Account Can be constucted fom TAP Database Manos Tsgas and Zh Wang U.S. Intenatonal Tade Commsson* Mak ehlha U.S. Depatment of Inteo* (Pelmnay

More information

FAIR VALUATION OF VARIOUS PARTICIPATION SCHEMES IN LIFE INSURANCE ABSTRACT

FAIR VALUATION OF VARIOUS PARTICIPATION SCHEMES IN LIFE INSURANCE ABSTRACT FAIR VALUAION OF VARIOUS PARIIPAION SHEMES IN LIFE INSURANE PIERRE DEVOLDER AND INMAULADA DOMÍNGUEZ-FABIÁN BY Insttut des Scences Actuaelles, Unvesté atholque de Louvan, 6 ue des Wallons, 348 Louvan la

More information

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

More information

I = Prt. = P(1+i) n. A = Pe rt

I = Prt. = P(1+i) n. A = Pe rt 11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest

More information

A PARTICLE-BASED LAGRANGIAN CFD TOOL FOR FREE-SURFACE SIMULATION

A PARTICLE-BASED LAGRANGIAN CFD TOOL FOR FREE-SURFACE SIMULATION C A N A L D E E X P E R I E N C I A S H I D R O D I N Á M I C A S, E L P A R D O Publcacón núm. 194 A PARTICLE-BASED LAGRANGIAN CFD TOOL FOR FREE-SURFACE SIMULATION POR D. MUÑOZ V. GONZÁLEZ M. BLAIN J.

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Security of Full-State Keyed Sponge and Duplex: Applications to Authenticated Encryption

Security of Full-State Keyed Sponge and Duplex: Applications to Authenticated Encryption Secuty of Full-State Keyed Sponge and uplex: Applcatons to Authentcated Encypton Bat Mennnk 1 Reza Reyhantaba 2 aman Vzá 2 1 ept. Electcal Engneeng, ESAT/COSIC, KU Leuven, and Mnds, Belgum [email protected]

More information

Simultaneous Detection and Estimation, False Alarm Prediction for a Continuous Family of Signals in Gaussian Noise

Simultaneous Detection and Estimation, False Alarm Prediction for a Continuous Family of Signals in Gaussian Noise Sultaneous Detecton and Estaton, False Ala Pedcton fo a Contnuous Faly of Sgnals n Gaussan Nose D Mchael Mlde, Robet G Lndgen, and Mos M Bean Abstact New pobles ase when the standad theoy of jont detecton

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Performance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application

Performance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application Internatonal Journal of mart Grd and lean Energy Performance Analyss of Energy onsumpton of martphone Runnng Moble Hotspot Applcaton Yun on hung a chool of Electronc Engneerng, oongsl Unversty, 511 angdo-dong,

More information

Applied Mathematical Modelling

Applied Mathematical Modelling Appled Matematcal Modellng 7 (01) 09 050 ontents lsts avalable at cverse cencerect Appled Matematcal Modellng journal omepage: www.elsever.com/locate/apm A mult-product mult-ecelon nventory control model

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

International Business Cycles and Exchange Rates

International Business Cycles and Exchange Rates Revew of Intenatonal Economcs, 7(4), 682 698, 999 Intenatonal Busness Cycles and Exchange Rates Chstan Zmmemann* Abstact Models of ntenatonal eal busness cycles ae not able to account fo the hgh volatlty

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Department of Economics Working Paper Series

Department of Economics Working Paper Series Depatment of Economcs Wokng Pape Sees Reputaton and Effcency: A Nonpaametc Assessment of Ameca s Top-Rated MBA Pogams Subhash C. Ray Unvesty of Connectcut Yongl Jeon Cental Mchgan Unvest Wokng Pape 23-3

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS 21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

In some supply chains, materials are ordered periodically according to local information. This paper investigates

In some supply chains, materials are ordered periodically according to local information. This paper investigates MANUFACTURING & SRVIC OPRATIONS MANAGMNT Vol. 12, No. 3, Summer 2010, pp. 430 448 ssn 1523-4614 essn 1526-5498 10 1203 0430 nforms do 10.1287/msom.1090.0277 2010 INFORMS Improvng Supply Chan Performance:

More information

IMPACT ANALYSIS OF A CELLULAR PHONE

IMPACT ANALYSIS OF A CELLULAR PHONE 4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng

More information

The Costs of Disposal and Recycling. An Application to Italian Municipal Solid Waste Services

The Costs of Disposal and Recycling. An Application to Italian Municipal Solid Waste Services The Costs of Dsposal and Recyclng. An Applcaton to Italan Muncpal Sold Waste Sevces Gazano Abate Fabzo Ebetta Govann Faquell Davde Vannon No. 3 Decembe 011 www.caloalbeto.og/wokng_papes 011 by Gazano Abate,

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

Research on Cloud Computing Load Balancing Based on Virtual Machine Migration

Research on Cloud Computing Load Balancing Based on Virtual Machine Migration Send Odes fo Repnts to [email protected] 334 The Open Cybenetcs & Systecs Jounal, 205, 9, 334-340 Open Access Reseach on Cloud Coputng Load Balancng Based on Vtual Machne Mgaton Lu Kun,*, Xu Gaochao

More information

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo. ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) [email protected] Abstract

More information

Trading Volume and Serial Correlation in Stock Returns in Pakistan. Abstract

Trading Volume and Serial Correlation in Stock Returns in Pakistan. Abstract Tading Volume and Seial Coelation in Stock Retuns in Pakistan Khalid Mustafa Assistant Pofesso Depatment of Economics, Univesity of Kaachi e-mail: [email protected] and Mohammed Nishat Pofesso and Chaiman,

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

Retailers must constantly strive for excellence in operations; extremely narrow profit margins

Retailers must constantly strive for excellence in operations; extremely narrow profit margins Managng a Retaler s Shelf Space, Inventory, and Transportaton Gerard Cachon 300 SH/DH, The Wharton School, Unversty of Pennsylvana, Phladelpha, Pennsylvana 90 [email protected] http://opm.wharton.upenn.edu/cachon/

More information

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

More information

Tracking/Fusion and Deghosting with Doppler Frequency from Two Passive Acoustic Sensors

Tracking/Fusion and Deghosting with Doppler Frequency from Two Passive Acoustic Sensors Tacking/Fusion and Deghosting with Dopple Fequency fom Two Passive Acoustic Sensos Rong Yang, Gee Wah Ng DSO National Laboatoies 2 Science Pak Dive Singapoe 11823 Emails: [email protected], [email protected]

More information

An MILP model for planning of batch plants operating in a campaign-mode

An MILP model for planning of batch plants operating in a campaign-mode An MILP model for plannng of batch plants operatng n a campagn-mode Yanna Fumero Insttuto de Desarrollo y Dseño CONICET UTN [email protected] Gabrela Corsano Insttuto de Desarrollo y Dseño

More information

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing

Questions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow

More information

UNIVERSIDAD DE LA REPÚBLICA Facultad de Ingeniería RESOURCE ALLOCATION IN NETWORKS FROM A CONNECTION-LEVEL PERSPECTIVE

UNIVERSIDAD DE LA REPÚBLICA Facultad de Ingeniería RESOURCE ALLOCATION IN NETWORKS FROM A CONNECTION-LEVEL PERSPECTIVE UNIVERSIDAD DE LA REPÚBLICA Facultad de Ingeneía Tess paa opta al Título de Docto en Ingeneía Eléctca RESOURCE ALLOCATION IN NETWORKS FROM A CONNECTION-LEVEL PERSPECTIVE (ASIGNACIÓN DE RECURSOS EN REDES

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information