Solutions to Practice Questions (Bonds)


 Angelica Pitts
 4 years ago
 Views:
Transcription
1 Fuqua Business School Duke University FIN 350 Global Financial Management Solutions to Practice Questions (Bonds). These practice questions are a suplement to the problem sets, and are intended for those of you who want more practice. They are Optional, and are not part of the required material. 2. It is recommended that you look at these problems only after you fully understand how to solve the problem sets, the examples we covered in class, and the ones in the lecture notes. 3. Please note that I have collected these exmples from previous teaching material I have had. As such, while in most cases the notation will match the one used in class, the match is not 00%. 4. Some of these questions are easier than the ones you are expected to know how to solve, while others are above the level of knowledge you are expected to show on quizes and the final. ENJOY!
2 FIN 350 Solutions to Practice Questions 2. Suppose you invest $,000. You will have $2,000 in 0 years with this investment. We want to calulate ˆr so that: $2, 000 = $, 000( + ˆr) 0. Solving for ˆr, we get 2=(+ˆr) 0 (2) 0 =+ˆr.078 = + ˆr ˆr =7.8% Note: A useful rule of thumb is the Rule of 72. It says that for reasonable rates of return, the time it takes to double your money is approximately r% 72. Note that in this problem, 72 0 years r 7.2%. r% 2. The credit card company claims that the annual interest rate is 2.583% = 8.996%. However, with monthly compounding, the effective annual rate is (.0583) 2 =20.74%. The rate of 8.996% corresponds to an annual rate compounded monthly. 3. First, let us solve for the equivalent monthly rate ˆr: ( + ˆr) 2 =.2 ˆr =(.2) /2 =0.9489%. The present value of what you get is therefore given by PV + = 500 +ˆr = ( + ˆr) 2 ( + ˆr) 60 ˆr [ ] ( + ˆr) 60 =22, The present value of what you will have to pay back is given by [ 500 PV = ( + ˆr) 60 +ˆr ] ( + ˆr) ( + ˆr) [ ] = ( + ˆr) 60 ˆr ( + ˆr) 20 =20, Since the present value of the money you will get is larger than that you will have to pay back (PV + >PV ), you should accept the offer. 4. (a) We are interested in calculating Observe that so that C ( + r) n + C ( + r) 2n + C +. ( + r) 3n PV ( + r) n = C ( + r) 2n + C +, ( + r) 3n PV PV ( + r) n = C ( + r) n
3 FIN 350 Solutions to Practice Questions 3 which, after rearranging, yields C ( + r) n. (b) Let PVP t denote the present value of a tyear deferred perpetuity paying $ at the beginning of every year. It can be shown that PVP t = ( + r) t +r = r /r ( + r) t. Also, notice that the perpetuity that we are interested in is simply the sum of a year deferred perpetuity paying $ at the beginning of every year; a 2year deferred perpetuity paying $ at the beginning of every year; a 3year deferred perpetuity paying $ at the beginning of every year; Therefore, PVP + PVP 2 + PVP 3 + = /r + /r +r + /r ( + r) 2 + Observe that PV +r = /r +r + /r ( + r) 2 +, so that PV PV +r = r. After rearranging terms, we find that +r r 2. (c) The equivalent semiannual rate ˆr must solve ( + ˆr) 2 =., which implies ˆr =4.88%. The present value of this perpetuity is therefore given by (.0488) 8 500(.0488) =7, (d) Using the formula on slide I..?? (in lecture notes), we have 00(.) =, (a) For no arbitrage to hold, the price of bond B should be three times the price of bond A. This is simply because the face value of bond B is three times the face value of bond A, and both bonds are year zero coupon bonds. Therefore, to make an arbitrage profit you should sell bond B and buy three units of bond A. The cashflow diagram of this strategy is: position Time 0 Time Buy 3 unites of Bond A Sell Bond B Combined 5 0 Thus, you make an arbitrage profit today of $5.
4 FIN 350 Solutions to Practice Questions 4 (b) If you buy bond A you get a return of approximately %, which is clearly greater than 2%. As such you will borrow from the bank at 2% and buy bond A. More specificaly, you can borrow from the bank = $98.04 dollars and buy unit of bond A for $90. This leaves you with an arbitrage profit of $8.04 today. The arbitrage table is as follows: Position Time 0 Time Borrow From Bank Buy Bond B Combined (a) First, let s find the discount factors for and 2 years: DF, and DF 2. We know that the present value of each of the bonds is given by C DF + C 2 DF 2. This implies that the following two equations for the two bonds: 85.0 = 3DF + 03DF = 0DF + 0DF 2 Solving these two equations for the two unknowns DF anddf 2 yields: DF =0.9, DF 2 =0.8. Therefore, the price of a 2 year zero coupon bond with a face of $00 should be F DF 2 = 00(0.8) = $80. (b) r = DF = 0.9 =0. and r 2 = = =0.2. DF (c) For a zero coupon bond the yield is always equal to the relevant spot rate. Thus, y = r 2 =0.2. (d) The yield to maturity of a two year r%(annual) coupon bond solves the equation Thus for bond A the yield to maturity solves 85. = C +y + C + F ( + y) y A ( + y A ) 2, and for bond B it solves 97 = y B ( + y B ) 2. Solving these two equations either directly or by trial and error gives y A = y B = Comment: In an exam a solution stating that each of the two yields is between 0. and 0.2 would suffice.
5 FIN 350 Solutions to Practice Questions 5 7. (a) The one year zero coupon bond s price satisfies PV A = F DF, which implies that the one year discount factor is DF = PV A F = =0.9. On the other hand, the price of bond B satisfies Pluging in the relevant known values yields PV B = C DF +(C + F ) DF = 0DF + 0DF 2 = 0(0.9) + 0DF 2 = 9 + 0DF 2. Therefore, DF 2 = (02.5 9)/0 = 0.85, which implies that the price of a two year zero coupon bond with face of value of $00 is F DF 2 = 00(0.85) = $85. (b) If the 2 year zero coupon bond is $95 dollars an easy way to make an arbitrage profit is to sell the 2 year zero coupon bond and buy the one year zero coupon bond. This will generate a profit of = $5 dollars today. At the end of the first year you will receive $00, since you are long the one year zero coupon bond. You can use this $00 in order to cover the $00 you need to pay at the end of the second year, as you are short the two year zero coupon bond. (c) If there were no arbitrage opportunities the price of a 2 year zero coupon bond with face value of $00 would have to be F DF 2 = 00(0.85) = $85. This implies that the 2 year zero coupon bond is underpriced relative to a replicating portfolio of a 2 year zero coupon bond, which uses bonds A and B. First find the portfolio that would replicate a 2 year zero coupon bonds using bonds A and B: { 00nA +0n B = 0 0n B = 00 { na = n B = Since the bond is cheaper than the replicating portfolio we buy the bond and sell the replicating portfolio. This implies that we buy the bond, buy units of bond A and sell units of bond B. Notice: The replicating portfolio of the 2 year zero coupon bonds consist of short position of units of bond A and long position units of bond B. Since in the arbitrage strategy we are selling the replicating portfolio we need to put a minus in front of the relevant quantities (i.e, under the arbitrage strategy we buy units of bond A and sell units of bond B). This gives an arbitrage profit of $85 $80 = $5
6 FIN 350 Solutions to Practice Questions 6 at time 0. At time, the replicating portfolio generates a cash (in)flow of At time 2 it generates a cash (in)flow of (00) (0) = $ (0) = $00. This is enough to cover the $00 cash (out)flow which is required in order to pay the person who bought the 2year zero coupon bond from us. Here is the complete arbitrage table: Strategy C 0 C C 2 Buy 0.09 bonds A Sell 0.9 bonds B Buy 2year ZCB Total 5 0 0
Coupon Bonds and Zeroes
Coupon Bonds and Zeroes Concepts and Buzzwords Coupon bonds Zerocoupon bonds Bond replication Noarbitrage price relationships Zero rates Zeroes STRIPS Dedication Implied zeroes Semiannual compounding
More informationYield to Maturity Outline and Suggested Reading
Yield to Maturity Outline Outline and Suggested Reading Yield to maturity on bonds Coupon effects Par rates Buzzwords Internal rate of return, Yield curve Term structure of interest rates Suggested reading
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationCHAPTER 4. The Time Value of Money. Chapter Synopsis
CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money
More informationBond Valuation. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Bond Valuation: An Overview
Bond Valuation FINANCE 350 Global Financial Management Professor Alon Brav Fuqua School of Business Duke University 1 Bond Valuation: An Overview Bond Markets What are they? How big? How important? Valuation
More informationIng. Tomáš Rábek, PhD Department of finance
Ing. Tomáš Rábek, PhD Department of finance For financial managers to have a clear understanding of the time value of money and its impact on stock prices. These concepts are discussed in this lesson,
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationAnalysis of Deterministic Cash Flows and the Term Structure of Interest Rates
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationGlobal Financial Management
Global Financial Management Bond Valuation Copyright 999 by Alon Brav, Campbell R. Harvey, Stephen Gray and Ernst Maug. All rights reserved. No part of this lecture may be reproduced without the permission
More informationHow to calculate present values
How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance
More informationFIN40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
More informationFinance 350: Problem Set 6 Alternative Solutions
Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas
More informationDetermination of Forward and Futures Prices. Chapter 5
Determination of Forward and Futures Prices Chapter 5 Fundamentals of Futures and Options Markets, 8th Ed, Ch 5, Copyright John C. Hull 2013 1 Consumption vs Investment Assets Investment assets are assets
More informationInstitutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 081 Institutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
More informationACI THE FINANCIAL MARKETS ASSOCIATION
ACI THE FINANCIAL MARKETS ASSOCIATION EXAMINATION FORMULAE 2009 VERSION page number INTEREST RATE..2 MONEY MARKET..... 3 FORWARDFORWARDS & FORWARD RATE AGREEMENTS..4 FIXED INCOME.....5 FOREIGN EXCHANGE
More informationBond Valuation. Capital Budgeting and Corporate Objectives
Bond Valuation Capital Budgeting and Corporate Objectives Professor Ron Kaniel Simon School of Business University of Rochester 1 Bond Valuation An Overview Introduction to bonds and bond markets» What
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES 1. Expectations hypothesis. The yields on longterm bonds are geometric averages of present and expected future short rates. An upward sloping curve is
More informationFixed Income: Practice Problems with Solutions
Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semiannual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.
More informationManual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 5. Bonds. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More informationForward Contracts and Forward Rates
Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16
More informationTopics Covered. Ch. 4  The Time Value of Money. The Time Value of Money Compounding and Discounting Single Sums
Ch. 4  The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate For now, we will omit the section 4.5 on inflation
More informationPrepared by: Dalia A. Marafi Version 2.0
Kuwait University College of Business Administration Department of Finance and Financial Institutions Using )Casio FC200V( for Fundamentals of Financial Management (220) Prepared by: Dalia A. Marafi Version
More information1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
More informationCALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time
CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses
More informationInvestments Analysis
Investments Analysis Last 2 Lectures: Fixed Income Securities Bond Prices and Yields Term Structure of Interest Rates This Lecture (#7): Fixed Income Securities Term Structure of Interest Rates Interest
More informationChapter 4. Time Value of Money. Copyright 2009 Pearson Prentice Hall. All rights reserved.
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationChapter 4. Time Value of Money. Learning Goals. Learning Goals (cont.)
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationFinal Exam Practice Set and Solutions
FIN469 Investments Analysis Professor Michel A. Robe Final Exam Practice Set and Solutions What to do with this practice set? To help students prepare for the final exam, three practice sets with solutions
More informationManual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 6. Variable interest rates and portfolio insurance. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam
More information5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
More informationFNCE 301, Financial Management H Guy Williams, 2006
REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter  The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationDetermination of Forward and Futures Prices
Determination of Forward and Futures Prices Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 Short selling A popular trading (arbitrage) strategy is the shortselling or
More informationThe Time Value of Money
The Time Value of Money Future Value  Amount to which an investment will grow after earning interest. Compound Interest  Interest earned on interest. Simple Interest  Interest earned only on the original
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationClass Note on Valuing Swaps
Corporate Finance Professor Gordon Bodnar Class Note on Valuing Swaps A swap is a financial instrument that exchanges one set of cash flows for another set of cash flows of equal expected value. Swaps
More informationTest 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A.
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A. The choice to offset with a put option B. The obligation to deliver the
More informationExercise 6 8. Exercise 6 12 PVA = $5,000 x 4.35526* = $21,776
CHAPTER 6: EXERCISES Exercise 6 2 1. FV = $10,000 (2.65330 * ) = $26,533 * Future value of $1: n = 20, i = 5% (from Table 1) 2. FV = $10,000 (1.80611 * ) = $18,061 * Future value of $1: n = 20, i = 3%
More informationI. Readings and Suggested Practice Problems. II. Risks Associated with DefaultFree Bonds
Prof. Alex Shapiro Lecture Notes 13 Bond Portfolio Management I. Readings and Suggested Practice Problems II. Risks Associated with DefaultFree Bonds III. Duration: Details and Examples IV. Immunization
More information1. If the opportunity cost of capital is 14 percent, what is the net present value of the factory?
MØA 155  Fall 2011 PROBLEM SET: Hand in 1 Exercise 1. An investor buys a share for $100 and sells it five years later, at the end of the year, at the price of $120.23. Each year the stock pays dividends
More informationTopic 3: Time Value of Money And Net Present Value
Topic 3: Time Value of Money And Net Present Value Laurent Calvet calvet@hec.fr John Lewis john.lewis04@imperial.ac.uk From Material by Pierre MellaBarral MBA  Financial Markets  Topic 3 1 2. Present
More informationLecture 4: Properties of stock options
Lecture 4: Properties of stock options Reading: J.C.Hull, Chapter 9 An European call option is an agreement between two parties giving the holder the right to buy a certain asset (e.g. one stock unit)
More informationKey Concepts and Skills. Chapter Outline. Basic Definitions. Future Values. Future Values: General Formula 11. Chapter 4
Key Concepts and Skills Chapter 4 Introduction to Valuation: The Time Value of Money Be able to compute the future value of an investment made today Be able to compute the present value of cash to be received
More informationDiscounted Cash Flow Valuation
Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationWe first solve for the present value of the cost per two barrels: (1.065) 2 = 41.033 (1.07) 3 = 55.341. x = 20.9519
Chapter 8 Swaps Question 8.1. We first solve for the present value of the cost per two barrels: $22 1.06 + $23 (1.065) 2 = 41.033. We then obtain the swap price per barrel by solving: which was to be shown.
More informationChapter 6 APPENDIX B. The Yield Curve and the Law of One Price. Valuing a Coupon Bond with ZeroCoupon Prices
196 Part Interest Rates and Valuing Cash Flows Chapter 6 APPENDIX B The Yield Curve and the Law of One Price Thus far, we have focused on the relationship between the price of an individual bond and its
More informationChapter 8. Step 2: Find prices of the bonds today: n i PV FV PMT Result Coupon = 4% 29.5 5? 100 4 84.74 Zero coupon 29.5 5? 100 0 23.
Chapter 8 Bond Valuation with a Flat Term Structure 1. Suppose you want to know the price of a 10year 7% coupon Treasury bond that pays interest annually. a. You have been told that the yield to maturity
More informationFINANCIAL MATHEMATICS FIXED INCOME
FINANCIAL MATHEMATICS FIXED INCOME 1. Converting from Money Market Basis to Bond Basis and vice versa 2 2. Calculating the Effective Interest Rate (Nonannual Payments)... 4 3. Conversion of Annual into
More informationChapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS
Chapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS 41 a. PV (present value) is the value today of a future payment, or stream of payments, discounted at the appropriate rate of interest.
More informationBank: The bank's deposit pays 8 % per year with annual compounding. Bond: The price of the bond is $75. You will receive $100 five years later.
ü 4.4 lternative Discounted Cash Flow Decision Rules ü Three Decision Rules (1) Net Present Value (2) Future Value (3) Internal Rate of Return, IRR ü (3) Internal Rate of Return, IRR Internal Rate of Return
More informationTime Value Conepts & Applications. Prof. Raad Jassim
Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on
More informationA) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2%
1 Exam FM Questions Practice Exam 1 1. Consider the following yield curve: Year Spot Rate 1 5.5% 2 5.0% 3 5.0% 4 4.5% 5 4.0% Find the four year forward rate. A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2% 2.
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationAccounting Building Business Skills. Interest. Interest. Paul D. Kimmel. Appendix B: Time Value of Money
Accounting Building Business Skills Paul D. Kimmel Appendix B: Time Value of Money PowerPoint presentation by Kate WynnWilliams University of Otago, Dunedin 2003 John Wiley & Sons Australia, Ltd 1 Interest
More informationManual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall
More informationPractice Set #2 and Solutions.
FIN672 Securities Analysis & Portfolio Management Professor Michel A. Robe Practice Set #2 and Solutions. What to do with this practice set? To help MBA students prepare for the assignment and the exams,
More informationPractice Set #1 and Solutions.
Bo Sjö 140503 Practice Set #1 and Solutions. What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These sets
More informationClick Here to Buy the Tutorial
FIN 534 Week 4 Quiz 3 (Str) Click Here to Buy the Tutorial http://www.tutorialoutlet.com/fin534/fin534week4quiz3 str/ For more course tutorials visit www.tutorialoutlet.com Which of the following
More informationConvenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. YuhDauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
More informationMGT201 Lecture No. 07
MGT201 Lecture No. 07 Learning Objectives: After going through this lecture, you would be able to have an understanding of the following concepts. Discounted Cash Flows (DCF Analysis) Annuities Perpetuity
More informationn(n + 1) 2 1 + 2 + + n = 1 r (iii) infinite geometric series: if r < 1 then 1 + 2r + 3r 2 1 e x = 1 + x + x2 3! + for x < 1 ln(1 + x) = x x2 2 + x3 3
ACTS 4308 FORMULA SUMMARY Section 1: Calculus review and effective rates of interest and discount 1 Some useful finite and infinite series: (i) sum of the first n positive integers: (ii) finite geometric
More informationChapter 2 Present Value
Chapter 2 Present Value Road Map Part A Introduction to finance. Financial decisions and financial markets. Present value. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted
More information1.3.2015 г. D. Dimov. Year Cash flow 1 $3,000 2 $5,000 3 $4,000 4 $3,000 5 $2,000
D. Dimov Most financial decisions involve costs and benefits that are spread out over time Time value of money allows comparison of cash flows from different periods Question: You have to choose one of
More informationBond Price Arithmetic
1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously
More informationYou just paid $350,000 for a policy that will pay you and your heirs $12,000 a year forever. What rate of return are you earning on this policy?
1 You estimate that you will have $24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each
More informationCHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Answers to Concept Questions 1. No. As interest rates fluctuate, the value of a Treasury security will fluctuate. Longterm Treasury securities have substantial
More informationPractice Questions for Midterm II
Finance 333 Investments Practice Questions for Midterm II Winter 2004 Professor Yan 1. The market portfolio has a beta of a. 0. *b. 1. c. 1. d. 0.5. By definition, the beta of the market portfolio is
More informationLOS 56.a: Explain steps in the bond valuation process.
The following is a review of the Analysis of Fixed Income Investments principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: Introduction
More informationa. What is the sum of the prices of all the shares in the index before the stock split? The equation for computing the index is: N P i i 1
7 Stock Index Futures: Introduction 44 Answers to Questions and Problems 1. Assume that the DJIA stands at 8340.00 and the current divisor is 0.25. One of the stocks in the index is priced at $100.00 and
More informationHow to Calculate Present Values
How to Calculate Present Values Michael Frantz, 20100922 Present Value What is the Present Value The Present Value is the value today of tomorrow s cash flows. It is based on the fact that a Euro tomorrow
More information9. Time Value of Money 1: Present and Future Value
9. Time Value of Money 1: Present and Future Value Introduction The language of finance has unique terms and concepts that are based on mathematics. It is critical that you understand this language, because
More informationt = 1 2 3 1. Calculate the implied interest rates and graph the term structure of interest rates. t = 1 2 3 X t = 100 100 100 t = 1 2 3
MØA 155 PROBLEM SET: Summarizing Exercise 1. Present Value [3] You are given the following prices P t today for receiving risk free payments t periods from now. t = 1 2 3 P t = 0.95 0.9 0.85 1. Calculate
More informationBF 6701 : Financial Management Comprehensive Examination Guideline
BF 6701 : Financial Management Comprehensive Examination Guideline 1) There will be 5 essay questions and 5 calculation questions to be completed in 1hour exam. 2) The topics included in those essay and
More informationMBA Finance PartTime Present Value
MBA Finance PartTime Present Value Professor Hugues Pirotte Spéder Solvay Business School Université Libre de Bruxelles Fall 2002 1 1 Present Value Objectives for this session : 1. Introduce present value
More informationChapter The Time Value of Money
Chapter The Time Value of Money PPT 92 Chapter 9  Outline Time Value of Money Future Value and Present Value Annuities TimeValueofMoney Formulas Adjusting for NonAnnual Compounding Compound Interest
More informationVALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below
VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below 1. Determine the value of the following riskfree debt instrument, which promises to make the respective
More informationFinancial Markets and Valuation  Tutorial 1: SOLUTIONS. Present and Future Values, Annuities and Perpetuities
Financial Markets and Valuation  Tutorial 1: SOLUTIONS Present and Future Values, Annuities and Perpetuities (*) denotes those problems to be covered in detail during the tutorial session (*) Problem
More informationCHAPTER 6 DISCOUNTED CASH FLOW VALUATION
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and
More informationFin 3312 Sample Exam 1 Questions
Fin 3312 Sample Exam 1 Questions Here are some representative type questions. This review is intended to give you an idea of the types of questions that may appear on the exam, and how the questions might
More informationNet Present Value (NPV)
Investment Criteria 208 Net Present Value (NPV) What: NPV is a measure of how much value is created or added today by undertaking an investment (the difference between the investment s market value and
More informationFIN 3710. Final (Practice) Exam 05/23/06
FIN 3710 Investment Analysis Spring 2006 Zicklin School of Business Baruch College Professor Rui Yao FIN 3710 Final (Practice) Exam 05/23/06 NAME: (Please print your name here) PLEDGE: (Sign your name
More informationBond valuation. Present value of a bond = present value of interest payments + present value of maturity value
Bond valuation A reading prepared by Pamela Peterson Drake O U T L I N E 1. Valuation of longterm debt securities 2. Issues 3. Summary 1. Valuation of longterm debt securities Debt securities are obligations
More informationa. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
More information1. Present Value. 2. Bonds. 3. Stocks
Stocks and Bonds 1. Present Value 2. Bonds 3. Stocks 1 Present Value = today s value of income at a future date Income at one future date value today of X dollars in one year V t = X t+1 (1 + i t ) where
More informationAssumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk
Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton,
More informationCHAPTER 5 HOW TO VALUE STOCKS AND BONDS
CHAPTER 5 HOW TO VALUE STOCKS AND BONDS Answers to Concepts Review and Critical Thinking Questions 1. Bond issuers look at outstanding bonds of similar maturity and risk. The yields on such bonds are used
More informationMathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
More informationChapter 11. Bond Pricing  1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.
Bond Pricing  1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is
More informationCHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
More informationFinancial Math on Spreadsheet and Calculator Version 4.0
Financial Math on Spreadsheet and Calculator Version 4.0 2002 Kent L. Womack and Andrew Brownell Tuck School of Business Dartmouth College Table of Contents INTRODUCTION...1 PERFORMING TVM CALCULATIONS
More informationPractice Set #3 and Solutions.
FIN672 Securities Analysis & Portfolio Management Professor Michel A. Robe Practice Set #3 and Solutions. What to do with this practice set? To help MBA students prepare for the assignment and the exams,
More informationThe Mathematics of Financial Planning (supplementary lesson notes to accompany FMGT 2820)
The Mathematics of Financial Planning (supplementary lesson notes to accompany FMGT 2820) Using the Sharp EL738 Calculator Reference is made to the Appendix Tables A1 to A4 in the course textbook Investments:
More informationProblems and Solutions
Problems and Solutions CHAPTER Problems. Problems on onds Exercise. On /04/0, consider a fixedcoupon bond whose features are the following: face value: $,000 coupon rate: 8% coupon frequency: semiannual
More informationThe Option to Delay!
The Option to Delay! When a firm has exclusive rights to a project or product for a specific period, it can delay taking this project or product until a later date. A traditional investment analysis just
More informationMODULE: PRINCIPLES OF FINANCE
Programme: BSc (Hons) Financial Services with Law BSc (Hons) Accounting with Finance BSc (Hons) Banking and International Finance BSc (Hons) Management Cohort: BFSL/13/FT Aug BACF/13/PT Aug BACF/13/FT
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
More informationComputational Finance Options
1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to
More information