Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk
|
|
|
- Joleen Ferguson
- 9 years ago
- Views:
Transcription
1 Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton, etc.) Three types of traders Hedger Attempts to reduce exposure to operating risk within firm Speculator Profiting from a bet that markets will move in a certain direction Arbitrageurs Profiting without any risk Forward contracts Forward A binding agreement (obligation) to buy/sell an asset or a commodity in the future, at a price set today Contract specifies: Features and quantity of the asset to be delivered Delivery logistics (time/date/place) Underlying Asset exchanged at maturity Long = S T K Short = K - S T Forward Price with No storage cost: F 0 = S 0 (1 + r ) T F 0 = Spot price + Opportunity cost Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk E.g. Spot price is $450, risk free rate = 4%, F 0 = $477. Is there arbitrage opportunity? Theoretical forward price = 450 e (4% * 1) = => There is an arbitrate opportunity. How? Time 0 1 Year Sell 1 forward contract S T Borrow $ (468.36) Buy gold spot and sell it at time T (450) S T If F 0 = $460 Time 0 1 Year Buy 1 forward contract 0 S T 460 Short 1oz. gold 450 -S T Borrow/repay the bank (450)
2 E.g. Bond is 1,074 and Forward price is 1,060. There are two $50 coupon payments semi-annually. Rates are 8% (6mo.) and 9% (1yr) with continuous compounding. Theoretical forward price: 1074 * e Arbitrage follows: Time 0 6 month 1 Year Buy Forward S T Sell bond 1, S T Borrow/repay the bank Borrow/repay the bank -1, , Spot $600, rate is 5% (1 year continuous compounding). Storage cost is 2% continuously compounding proportionate to spot price. What is 1 year forward price? F 0 = 600e (5% + 2%)(1) = If F 0 = 650, how is arbitrage realized? F theoretical < F0 so we take a short position Today 1 year Sell 1 forward contract ST Borrow $ e 5% = Buy underlying including storage fees 600*(e 2% -1) ST Convenience yield Ownership of physical commodity provides benefits that are not obtained by the holders of contracts for future delivery. (c y )T F 0 = S 0 e S0 < F0: Contango occurs when c > y S0 > F0: Backwardation occurs when y >c Currency Forwards F 0 = S 0 e (r-rf)t r : T-year domestic risk-free interest rate rf : T-year foreign risk-free interest rate S 0 : Spot exchange rate e.g. S0 = 2.30 r = 0.04 r f = 0.05, T = 1 F 0 = 2.30e ( ) = C$/ Synthetic Long Currency Forward Today One Year 1 2
3 e.g. The 8 month rate in the U.S. is 5% with semi-annual compounding. The 8 month interest rate in France is 6% compounded continuously. The spot exchange rate is 1.89 US$/. The 8 month forward exchange rate is 1.95 is there an arbitrage opportunity? S 0 = $1.89/ F 0 = $1.95/ R C = mln(1+rm/m) = 2 ln(1+0.05/2) = (convert to domestic continuous rate) F hypothetical = S 0 e (r-rf)(t) = 1.89e ( ) (8/12) = $/ Today 8 Months Sell Forward ST Borrow * 1.89 = 4.94% continuous Convert borrowed USD and invest in for 8 months ST Valuing a Forward Contract Value of a long forward contract Value of a short forward contract f = (F 0 K)e -rt f = (K F 0 )e -rt e.g. 1 year long forward contract on non-dividend paying stock was entered when stock is at $40 and the risk free rate is 10% p.a., continuously compounded. What is forward price and initial value of forward contract? f 0 = 0 F 0 = 40e (10%) (1) = Six months later stock price is $45, what is forward price and value of forward contract? F 6m = 45e (10%)(0.5) = f 6m = F 6m F 0 e rf = e -(10%)(.5) = 2.96 Margin Requirements Margin requirements are established based on the risk level of daily transactions. Underlyings which are highly volatile and prone to large daily fluctuations in spot price will have larger margin requirements relative to a more stable underlying. e.g. A company enters into a short futures contract to sell 5,000 bushels of wheat for 250 cents per bushel. The initial margin is $3,000 and the maintenance margin is $2,000. What price change would lead to a margin call? Under what circumstance could they withdraw $1500 from the margin account? Initial value: 250 cents / 100 * 5000 = 12, /12500 = MI% Trigger a margin call 1000/12500 = 8% 250 * 8% = 20 cent drop $1500 margin withdrawn 1500 /12,500 = 12% 250 * 12% = 30 cent gain
4 e.g. Suppose there are no storage costs for crude oil and the interest rate for borrowing or lending is 5% per annum. How could you have made money on January 8, 2007 by trading June 2007 and December 2007 contracts on crude oil? Prices below Open High Low Settle Change Jun Dec June 30 th S 0 = F hypo for June = S June (1+5%) 1/2 = 60.01(1.05) 1/2 = January June December Long 1 June future 0 S June Short 1 Dec future S Dec Borrow 5% buy oil in June Dec delivery S Dec Why do we need derivatives? CDS Trading Initiation (event) Creditworthiness exchange rate drops, foreign reserves, credit rating Risk regional CDS index, global CDS index Ex Debt GDP Hypothesis Effect driven by opacity & riskiness Benefits of CDS Initiation Facilitates risk sharing expansion of the risk return space Allows hedging of adverse selection risk Adverse selection, systematic risk Costs Many more to infer asset value Not that options push down the stock price but true value MSCI Emerging Markets Exposure ETF vs EM forwards 1. Forward Stack & Roll a. Liquidity b. Transaction costs 2. Full capitals w/ ETF vs. Margin a. Cost of Capital needs to be put up front for ETFs 3. Tracking Error a. Trading timing b. Premium/discount on ETF trading c. Dividend forecast error 4. Short position access is easier for forward contracts
5 Hedging example 1 Portfolio worth 100M, B = 1.2, index futures price = 1000, contract is $250 times index Change the beta to 0.5. a) What position should the company take? # contracts = (B-B*)P N /F N = (1.2.5)(100,000,000/(250)(1000)) = 280 contracts b) Company wants to increase beta to 1.5, what position should they take? # contracts = B*-B P N /F N = ( )(100,000,000/(250)(1000)) = 120 contracts Hedging example 2 Portfolio of 50 million, Beta of 0.87, the manager is concerned about the performance of the market over the next two months and plans to use three month future contracts on the S&P 500 to hedge the risk. The current index is 1,250, one contract is on $250 times the index, the risk free rate is 6% per annum and the dividend yield on the index is 3% per annum. The current three month futures price is 1,259. a) What position should fund manager take to hedge exposure to market over next 2 months. # contracts = B PN/FN = 0.87(50,000,000 / (250)(1254)) = => 138 b) Calculate effect of strategy if index in 2 months is 1100 or Assume 1mo future price is 0.25% higher than index level at this time. Index drops > 1100 Gain on short position = ( ) * 250 * 135 = 5,390,625 Loss of Portfolio = 3% * 2/12 = 0.5% ( )/1250 = -11.5% actual return R P 1% =.87 ( 11.5% -1%) = % Portfolio return = % => 50mil * = Net result: Gain of = 453,125 Interest rate forwards and futures Conversion Factor Example Maturity 21years 3m + days => round to 21 years 3 months Value today = ( i=1 3.5 /1.03 i + 100/ ) / 1.03 (1/2) = Adjust for actual interest 3.5/2 = = Conversion Factor /100 = Cash price for bond = ( /32) * = $ Example: Cheapest bond to deliver. Given: most recent settle = = Bond 1 = (93.25*1.0382) = 2.69 Bond 2 = (93.25 * ) = 1.87 Bond 3 = (93.25*1.2615) = 2.12 Accrued interest for T-bonds : Actual/Actual ratio Corporate & Municipal : 30/360
6 Forward Rate Agreement (FRA) Hedging Interest rate Risk Firm expects to receive 1 million in 6 months, they plan to invest the money for 3 months firm enters into a contract with a bank. Under the contract the firm will earn 5% per annum w/ quarterly compounding for the three money period starting in six months on a principal of 1 million. N = 1,000,000 Forward Rate = 5% 6mo LIBOR = 4.4% (annual rate w/ quarterly comp) No hedge 1,000,000 * 4.4/4 = 11,000 interest With hedge Long pay 11,000 Short pay 1,000,000 * (0.05/4) = 12,500 Diff of 1500 / (1 + (0.044/4)) = Settle (1mill ) (0.044/4) = 12,500 OR Settle = [L(R k R)(T 2 -T 1 )] / [1 + R(T 2 -T 1 )] 1,000,000 ( ) 0.25 / (1 + (0.044)(0.25) 1, Value of FRA Difference between Rk & R: 2 scalars: i) L (notional) ii)horizon (T2 T1), good rate for 1 year better than good rate for 1 month. Rk = 5% L = 1,000,000 3 months from now, invest for 3months Rf = R 2 T 2 R 1 T 1 / T 2 -T 1 = (0.045)(0.5) (0.043)(0.25) /.25 = continuously comp. Convert to 1F2 = Value to the party receiving Rk is 1,000,000( )(0.25)e *0.5 = US Treasury Bonds Quoted in dollars and thirty-seconds e.g. a bond price of is equal to where 4/32 = e.g. Party Long: Receives 6% coupon US T-Bond Long <= Bond 6% Coupon $$$ => Short Conversion factor required for fairness. Consider 2 bonds Bond Coupon Yield FV Mat Value Conversion factor 1 7% 6.4% year = PV (coupons + FV) w/ r = 6% 2 5% 6.4% year Payment bond 1 = (95 21/32 * ) = Payment bond 2 = (95 21/32 * ) = 84.59
7 Bond 1 2 Market Price Invoice Price Invoice Market Bond 2 is cheapest to deliver for short party Conversion rules 1) 15 years to maturity 2) Discount rate for calculation is always 6% per annum with semi-annual compounding 3) Round down to nearest 3 months Duration-Based Hedge Ratio Optimal number of contracts to use for hedging is N* = PD P / F C D F FC = contract price for the interest-rate future contract DF = duration of the asset underlying the futures contract at maturity of the future contract PL = value of the portfolio being hedged DP = duration of asset being hedged at maturity of the hedge e.g. Portfolio A consists of a one-year zero coupon bond with a face value of $2000 and a 10-year zero coupon bond with a face value of $6000. Portfolio B consists of a 5.95-year zero-coupon bond with a face value of $5000. The current yield on all bonds is 10% per annum. a. Show that both portfolios have the same duration. b. Show the % changes in the values of the two portfolios for a 0.1% per annum increase in yields are the same. c. What are the % changes in the values of the two portfolios for a 5% per annum increase in yields? Method 1 D B = 5.95 (Since you get your payment at a later date) D A = 2000e -(.1)(1) * e -(.1)(10) *10 / 2000e -(.1)(1) e -(.1)(10) = 5.95 Method 2 Portfolio Proportion A 1 : D A1 = 1year PV = 2000e -(.1)(1) = % A 2 : D A2 = 10 years PV = 6000e -(.1)(10) = % D A = (.45)1 + (.55) 10 = 5.95 e.g. Suppose that on January 20 a corporate treasurer learns that US$10 million will be received on May 5. The funds will be needed for a major capital investment in November. The treasurer therefore plans to make a six-month Eurodollar deposit as soon as the funds are received. The treasurer is concerned that Eurodollar rates may decline between January 20 and May 5 and decides to hedge using the one June Eurodollar futures. On January 20 the June Eurodollar futures is quoted at a) What Eurodollar futures position should the company take? Explain. How many June Eurodollar futures contracts should the company use to hedge its exposure? b) On May 5, the June Eurodollar futures was quoted at 96.00, and the six-month Eurodollar deposit rate was 4.20% per annum with semiannual compounding. Determine the firm s profit or loss on the Eurodollar futures position.
8 Q is a Eurodollar futures quote, (100-Q)% is the annualized Eurodollar futures interest rate for a threemonth period beginning on the 3 rd Wed. of the delivery month Price of 1 contract = 10,000[ (100-Q)] Position of Treasurer Treasurer wants to be long for the protection from rate decrease Optimal Number of Contracts = N* = PD P / F C D F = 10(.5)/1(.25) = 20 Jan20: Price of 1 future = 10,000(100-25( )) = 988,000 May5: Price of 1 future = 10,000(100-25(100-96)) = 990,000 Gain = 20(990, ,000) = 40,000 (10mil 40,000) (0.042/2) = 10,250, /10mil = 2.51% => 5.02% per annum Suppose the term structure of interest rates is flat in the US and Australia. The USD interest rate is 7% per annum and the AUD rate is 9% per annum. The current value of the AUD is 0.62 USD. Under the terms of a swap agreement, a financial institution pays 8% per annum in AUD and receives 4% per annum in USD. The principles in the two currencies are $12 million USD and $20 million AUD. Payments are exchanged every year, with one exchange having just taken place. The swap will last two more years. What is the value of the swap to the financial institution? Assume all interest rates are continuously compounded. Solution 1 - Difference in Value between USD & AUD Bonds Institution: Short USD Bond & Long AUD Bonds PV USD Bond = 0.48e -0.07(1) e -0.07(2) = USD USD Coupon = 12million * 0.04 = 0.48 PV AUD Bond = 1.6e-0.09(1) e-0.09(2) = AUD Coupon =20million * 0.08 = 1.6 Value of swap = B 0 -S 0 B F = (19.504) = => -795,000 Solution 2 Value as Series of Forward Exchange Agreements 1 st year forward exchange F 0 = S 0 e (RD-Rf)t = 0.62e ( )(1) = nd year forward F 0 =S 0 e (RD-Rf)t = 0.62e ( )(2) = Value of swap = (.48 (1.6*0.6077))e -0.07(1) + (12.48-(21.6*.5957)e -0.07(2) = -795,000 Valuation of Equity Swaps To lower risk, the fund manager agrees to pay a dealer S&P 100 return for 8.75% fixed Index moves as follows I 0 =2500 I 6mo = 2600 I 12mo = 2570 R 6mo = 2600/ = 4% Fund manager pays => Swap dealer 0.04(1,000,000) = 40,000 Swap Dealer => Fund manager (1,000,000)(182/365) = 43,630 Period 1 Net payment: Swap dealer to fund manager = 3630 R 12mo 2570/ = -1.15% => 1,000,000 (0.0115) = 11,500 Period 2 Net payment: Swap dealer to fund manager =
9
2 Stock Price. Figure S1.1 Profit from long position in Problem 1.13
Problem 1.11. A cattle farmer expects to have 12, pounds of live cattle to sell in three months. The livecattle futures contract on the Chicago Mercantile Exchange is for the delivery of 4, pounds of cattle.
Chapter 5 - Determination of Forward and Futures Prices
Chapter 5 - Determination of Forward and Futures Prices Investment assets vs. consumption assets Short selling Assumptions and notations Forward price for an investment asset that provides no income Forward
550.444 Introduction to Financial Derivatives
550.444 Introduction to Financial Derivatives Week of October 7, 2013 Interest Rate Futures Where we are Last week: Forward & Futures Prices/Value (Chapter 5, OFOD) This week: Interest Rate Futures (Chapter
Chapter 1 - Introduction
Chapter 1 - Introduction Derivative securities Futures contracts Forward contracts Futures and forward markets Comparison of futures and forward contracts Options contracts Options markets Comparison of
Notes for Lecture 2 (February 7)
CONTINUOUS COMPOUNDING Invest $1 for one year at interest rate r. Annual compounding: you get $(1+r). Semi-annual compounding: you get $(1 + (r/2)) 2. Continuous compounding: you get $e r. Invest $1 for
Interest Rate Futures. Chapter 6
Interest Rate Futures Chapter 6 1 Day Count Convention The day count convention defines: The period of time to which the interest rate applies. The period of time used to calculate accrued interest (relevant
Determination of Forward and Futures Prices
Determination of Forward and Futures Prices Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 Short selling A popular trading (arbitrage) strategy is the shortselling or
CFA Level -2 Derivatives - I
CFA Level -2 Derivatives - I EduPristine www.edupristine.com Agenda Forwards Markets and Contracts Future Markets and Contracts Option Markets and Contracts 1 Forwards Markets and Contracts 2 Pricing and
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
Determination of Forward and Futures Prices. Chapter 5
Determination of Forward and Futures Prices Chapter 5 Fundamentals of Futures and Options Markets, 8th Ed, Ch 5, Copyright John C. Hull 2013 1 Consumption vs Investment Assets Investment assets are assets
Equity-index-linked swaps
Equity-index-linked swaps Equivalent to portfolios of forward contracts calling for the exchange of cash flows based on two different investment rates: a variable debt rate (e.g. 3-month LIBOR) and the
Chapter 10 Forwards and Futures
Chapter 10 Forwards and Futures Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives.
Chapter 1 - Introduction
Chapter 1 - Introduction Derivative securities Futures contracts Forward contracts Futures and forward markets Comparison of futures and forward contracts Options contracts Options markets Comparison of
CHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
Chapter 3: Commodity Forwards and Futures
Chapter 3: Commodity Forwards and Futures In the previous chapter we study financial forward and futures contracts and we concluded that are all alike. Each commodity forward, however, has some unique
Learning Curve Interest Rate Futures Contracts Moorad Choudhry
Learning Curve Interest Rate Futures Contracts Moorad Choudhry YieldCurve.com 2004 Page 1 The market in short-term interest rate derivatives is a large and liquid one, and the instruments involved are
Futures Price d,f $ 0.65 = (1.05) (1.04)
24 e. Currency Futures In a currency futures contract, you enter into a contract to buy a foreign currency at a price fixed today. To see how spot and futures currency prices are related, note that holding
Reading: Chapter 19. 7. Swaps
Reading: Chapter 19 Chap. 19. Commodities and Financial Futures 1. The mechanics of investing in futures 2. Leverage 3. Hedging 4. The selection of commodity futures contracts 5. The pricing of futures
Introduction, Forwards and Futures
Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35
Finance 350: Problem Set 6 Alternative Solutions
Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas
CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS
1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
This act of setting a price today for a transaction in the future, hedging. hedge currency exposure, short long long hedge short hedge Hedgers
Section 7.3 and Section 4.5 Oct. 7, 2002 William Pugh 7.3 Example of a forward contract: In May, a crude oil producer gets together with a refiner to agree on a price for crude oil. This price is for crude
Hedging Strategies Using Futures. Chapter 3
Hedging Strategies Using Futures Chapter 3 Fundamentals of Futures and Options Markets, 8th Ed, Ch3, Copyright John C. Hull 2013 1 The Nature of Derivatives A derivative is an instrument whose value depends
How To Invest In Stocks And Bonds
Review for Exam 1 Instructions: Please read carefully The exam will have 21 multiple choice questions and 5 work problems. Questions in the multiple choice section will be either concept or calculation
Figure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
Interest rate Derivatives
Interest rate Derivatives There is a wide variety of interest rate options available. The most widely offered are interest rate caps and floors. Increasingly we also see swaptions offered. This note will
Fina4500 Spring 2015 Extra Practice Problems Instructions
Extra Practice Problems Instructions: The problems are similar to the ones on your previous problem sets. All interest rates and rates of inflation given in the problems are annualized (i.e., stated as
SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Financial Economics
SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS Financial Economics June 2014 changes Questions 1-30 are from the prior version of this document. They have been edited to conform
Lecture 5: Forwards, Futures, and Futures Options
OPTIONS and FUTURES Lecture 5: Forwards, Futures, and Futures Options Philip H. Dybvig Washington University in Saint Louis Spot (cash) market Forward contract Futures contract Options on futures Copyright
VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS
Graduate School of Business Administration University of Virginia VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS Interest-rate swaps have grown tremendously over the last 10 years. With this development,
FIN 472 Fixed-Income Securities Forward Rates
FIN 472 Fixed-Income Securities Forward Rates Professor Robert B.H. Hauswald Kogod School of Business, AU Interest-Rate Forwards Review of yield curve analysis Forwards yet another use of yield curve forward
Lecture 09: Multi-period Model Fixed Income, Futures, Swaps
Lecture 09: Multi-period Model Fixed Income, Futures, Swaps Prof. Markus K. Brunnermeier Slide 09-1 Overview 1. Bond basics 2. Duration 3. Term structure of the real interest rate 4. Forwards and futures
MONEY MARKET FUTURES. FINANCE TRAINER International Money Market Futures / Page 1 of 22
MONEY MARKET FUTURES 1. Conventions and Contract Specifications... 3 2. Main Markets of Money Market Futures... 7 3. Exchange and Clearing House... 8 4. The Margin System... 9 5. Comparison: Money Market
Advanced forms of currency swaps
Advanced forms of currency swaps Basis swaps Basis swaps involve swapping one floating index rate for another. Banks may need to use basis swaps to arrange a currency swap for the customers. Example A
SOLUTION1. exercise 1
exercise 1 Stock BBB has a spot price equal to 80$ and a dividend equal to 10$ will be paid in 5 months. The on year interest rate is equal to 8% (c.c). 1. Calculate the 6 month forward price? 2. Calculate
Chapter 15 - Options Markets
Chapter 15 - Options Markets Option contract Option trading Values of options at expiration Options vs. stock investments Option strategies Option-like securities Option contract Options are rights to
CHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS 1. a. The closing price for the spot index was 1329.78. The dollar value of stocks is thus $250 1329.78 = $332,445. The closing futures price for the March contract was 1364.00,
Chapter 5 Financial Forwards and Futures
Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT PROBLEM SETS 1. In formulating a hedge position, a stock s beta and a bond s duration are used similarly to determine the expected percentage gain or loss
Eurodollar Futures, and Forwards
5 Eurodollar Futures, and Forwards In this chapter we will learn about Eurodollar Deposits Eurodollar Futures Contracts, Hedging strategies using ED Futures, Forward Rate Agreements, Pricing FRAs. Hedging
You just paid $350,000 for a policy that will pay you and your heirs $12,000 a year forever. What rate of return are you earning on this policy?
1 You estimate that you will have $24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each
BEAR: A person who believes that the price of a particular security or the market as a whole will go lower.
Trading Terms ARBITRAGE: The simultaneous purchase and sale of identical or equivalent financial instruments in order to benefit from a discrepancy in their price relationship. More generally, it refers
A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2%
1 Exam FM Questions Practice Exam 1 1. Consider the following yield curve: Year Spot Rate 1 5.5% 2 5.0% 3 5.0% 4 4.5% 5 4.0% Find the four year forward rate. A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2% 2.
Chapter 16: Financial Risk Management
Chapter 16: Financial Risk Management Introduction Overview of Financial Risk Management in Treasury Interest Rate Risk Foreign Exchange (FX) Risk Commodity Price Risk Managing Financial Risk The Benefits
Pricing Forwards and Swaps
Chapter 7 Pricing Forwards and Swaps 7. Forwards Throughout this chapter, we will repeatedly use the following property of no-arbitrage: P 0 (αx T +βy T ) = αp 0 (x T )+βp 0 (y T ). Here, P 0 (w T ) is
Chapter 3 Fixed Income Securities
Chapter 3 Fixed Income Securities Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Fixed-income securities. Stocks. Real assets (capital budgeting). Part C Determination
Trading the Yield Curve. Copyright 1999-2006 Investment Analytics
Trading the Yield Curve Copyright 1999-2006 Investment Analytics 1 Trading the Yield Curve Repos Riding the Curve Yield Spread Trades Coupon Rolls Yield Curve Steepeners & Flatteners Butterfly Trading
Interest Rate and Currency Swaps
Interest Rate and Currency Swaps Eiteman et al., Chapter 14 Winter 2004 Bond Basics Consider the following: Zero-Coupon Zero-Coupon One-Year Implied Maturity Bond Yield Bond Price Forward Rate t r 0 (0,t)
Fixed Income Portfolio Management. Interest rate sensitivity, duration, and convexity
Fixed Income ortfolio Management Interest rate sensitivity, duration, and convexity assive bond portfolio management Active bond portfolio management Interest rate swaps 1 Interest rate sensitivity, duration,
CHAPTER 11 CURRENCY AND INTEREST RATE FUTURES
Answers to end-of-chapter exercises ARBITRAGE IN THE CURRENCY FUTURES MARKET 1. Consider the following: Spot Rate: $ 0.65/DM German 1-yr interest rate: 9% US 1-yr interest rate: 5% CHAPTER 11 CURRENCY
Fixed Income Arbitrage
Risk & Return Fixed Income Arbitrage: Nickels in Front of a Steamroller by Jefferson Duarte Francis A. Longstaff Fan Yu Fixed Income Arbitrage Broad set of market-neutral strategies intended to exploit
Financial Instruments. Chapter 2
Financial Instruments Chapter 2 Major Types of Securities debt money market instruments bonds common stock preferred stock derivative securities 1-2 Markets and Instruments Money Market debt instruments
Derivative: a financial instrument whose value depends (or derives from) the values of other, more basic, underlying values (Hull, p. 1).
Introduction Options, Futures, and Other Derivatives, 7th Edition, Copyright John C. Hull 2008 1 Derivative: a financial instrument whose value depends (or derives from) the values of other, more basic,
Fixed Income: Practice Problems with Solutions
Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semi-annual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.
FINANCIAL MATHEMATICS MONEY MARKET
FINANCIAL MATHEMATICS MONEY MARKET 1. Methods of Interest Calculation, Yield Curve and Quotation... 2 1.1 Methods to Calculate Interest... 2 1.2 The Yield Curve... 6 1.3 Interpolation... 8 1.4 Quotation...
Web. Chapter FINANCIAL INSTITUTIONS AND MARKETS
FINANCIAL INSTITUTIONS AND MARKETS T Chapter Summary Chapter Web he Web Chapter provides an overview of the various financial institutions and markets that serve managers of firms and investors who invest
Introduction to swaps
Introduction to swaps Steven C. Mann M.J. Neeley School of Business Texas Christian University incorporating ideas from Teaching interest rate and currency swaps" by Keith C. Brown (Texas-Austin) and Donald
INVESTMENT DICTIONARY
INVESTMENT DICTIONARY Annual Report An annual report is a document that offers information about the company s activities and operations and contains financial details, cash flow statement, profit and
CHAPTER 9 SUGGESTED ANSWERS TO CHAPTER 9 QUESTIONS
INSTRUCTOR S MANUAL MULTINATIONAL FINANCIAL MANAGEMENT, 9 TH ED. CHAPTER 9 SUGGESTED ANSWERS TO CHAPTER 9 QUESTIONS 1. What is an interest rate swap? What is the difference between a basis swap and a coupon
Introduction to Futures Contracts
Introduction to Futures Contracts September 2010 PREPARED BY Eric Przybylinski Research Analyst Gregory J. Leonberger, FSA Director of Research Abstract Futures contracts are widely utilized throughout
Futures Contracts. Futures. Forward Contracts. Futures Contracts. Delivery or final cash settlement usually takes place
Futures 1 Futures Contracts Forward Contracts Futures Contracts Forwards Private contract between 2 parties Not standardized Usually one specified contract date Settled at end of contract Delivery or final
Manual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall
Futures Contract Introduction
Futures Contract Introduction 1 The first futures exchange market was the Dojima Rice exchange in Japan in the 1730s, to meet the needs of samurai who being paid in rice and after a series of bad harvests
b. June expiration: 95-23 = 95 + 23/32 % = 95.71875% or.9571875.9571875 X $100,000 = $95,718.75.
ANSWERS FOR FINANCIAL RISK MANAGEMENT A. 2-4 Value of T-bond Futures Contracts a. March expiration: The settle price is stated as a percentage of the face value of the bond with the final "27" being read
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment
DERIVATIVES Presented by Sade Odunaiya Partner, Risk Management Alliance Consulting DERIVATIVES Introduction Forward Rate Agreements FRA Swaps Futures Options Summary INTRODUCTION Financial Market Participants
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
ECON 4110: Sample Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Economists define risk as A) the difference between the return on common
Market Linked Certificates of Deposit
Market Linked Certificates of Deposit This material was prepared by Wells Fargo Securities, LLC, a registered brokerdealer and separate non-bank affiliate of Wells Fargo & Company. This material is not
Options/1. Prof. Ian Giddy
Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2
In this chapter we will learn about. Treasury Notes and Bonds, Treasury Inflation Protected Securities,
2 Treasury Securities In this chapter we will learn about Treasury Bills, Treasury Notes and Bonds, Strips, Treasury Inflation Protected Securities, and a few other products including Eurodollar deposits.
FIXED-INCOME SECURITIES. Chapter 11. Forwards and Futures
FIXED-INCOME SECURITIES Chapter 11 Forwards and Futures Outline Futures and Forwards Types of Contracts Trading Mechanics Trading Strategies Futures Pricing Uses of Futures Futures and Forwards Forward
Coupon Bonds and Zeroes
Coupon Bonds and Zeroes Concepts and Buzzwords Coupon bonds Zero-coupon bonds Bond replication No-arbitrage price relationships Zero rates Zeroes STRIPS Dedication Implied zeroes Semi-annual compounding
Lecture 4: Properties of stock options
Lecture 4: Properties of stock options Reading: J.C.Hull, Chapter 9 An European call option is an agreement between two parties giving the holder the right to buy a certain asset (e.g. one stock unit)
Measurement Concepts for Banking, Trading, and Investing
Banking,, Banking,, for the MFM Orientation September 1, 2010 Banking,, If you are going to work with bankers, traders, or investment managers, it is important for you to understand the language and concepts
Forwards and Futures
Prof. Alex Shapiro Lecture Notes 16 Forwards and Futures I. Readings and Suggested Practice Problems II. Forward Contracts III. Futures Contracts IV. Forward-Spot Parity V. Stock Index Forward-Spot Parity
Chapter 12 Practice Problems
Chapter 12 Practice Problems 1. Bankers hold more liquid assets than most business firms. Why? The liabilities of business firms (money owed to others) is very rarely callable (meaning that it is required
Chapter 8. Step 2: Find prices of the bonds today: n i PV FV PMT Result Coupon = 4% 29.5 5? 100 4 84.74 Zero coupon 29.5 5? 100 0 23.
Chapter 8 Bond Valuation with a Flat Term Structure 1. Suppose you want to know the price of a 10-year 7% coupon Treasury bond that pays interest annually. a. You have been told that the yield to maturity
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter - The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
International Financial Management. Prerequisites
International Financial Management Prerequisites 1. The quoted interest rate is 5% p.a. What is the effective interest rate for 6 months if the quoted interest rate is a) simple, b) annually compounded,
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A.
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A. The choice to offset with a put option B. The obligation to deliver the
SAMPLE MID-TERM QUESTIONS
SAMPLE MID-TERM QUESTIONS William L. Silber HOW TO PREPARE FOR THE MID- TERM: 1. Study in a group 2. Review the concept questions in the Before and After book 3. When you review the questions listed below,
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
YIELD CURVE GENERATION
1 YIELD CURVE GENERATION Dr Philip Symes Agenda 2 I. INTRODUCTION II. YIELD CURVES III. TYPES OF YIELD CURVES IV. USES OF YIELD CURVES V. YIELD TO MATURITY VI. BOND PRICING & VALUATION Introduction 3 A
International Finance and Hedging Currency Risk. John Board
International Finance and Hedging Currency Risk John Board Country Risk Country Risk The risk that the business environment in the host country changes unexpectedly Increases the risk to multinational
Derivative Users Traders of derivatives can be categorized as hedgers, speculators, or arbitrageurs.
OPTIONS THEORY Introduction The Financial Manager must be knowledgeable about derivatives in order to manage the price risk inherent in financial transactions. Price risk refers to the possibility of loss
Practice Questions for Midterm II
Finance 333 Investments Practice Questions for Midterm II Winter 2004 Professor Yan 1. The market portfolio has a beta of a. 0. *b. 1. c. -1. d. 0.5. By definition, the beta of the market portfolio is
Pricing Forwards and Futures
Pricing Forwards and Futures Peter Ritchken Peter Ritchken Forwards and Futures Prices 1 You will learn Objectives how to price a forward contract how to price a futures contract the relationship between
ANALYSIS OF FIXED INCOME SECURITIES
ANALYSIS OF FIXED INCOME SECURITIES Valuation of Fixed Income Securities Page 1 VALUATION Valuation is the process of determining the fair value of a financial asset. The fair value of an asset is its
Introduction. Part IV: Option Fundamentals. Derivatives & Risk Management. The Nature of Derivatives. Definitions. Options. Main themes Options
Derivatives & Risk Management Main themes Options option pricing (microstructure & investments) hedging & real options (corporate) This & next weeks lectures Introduction Part IV: Option Fundamentals»
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
Exchange-traded Funds
Mitch Kosev and Thomas Williams* The exchange-traded fund (ETF) industry has grown strongly in a relatively short period of time, with the industry attracting greater attention as it grows in size. The
TMX TRADING SIMULATOR QUICK GUIDE. Reshaping Canada s Equities Trading Landscape
TMX TRADING SIMULATOR QUICK GUIDE Reshaping Canada s Equities Trading Landscape OCTOBER 2014 Markets Hours All market data in the simulator is delayed by 15 minutes (except in special situations as the
Hot Topics in Financial Markets Lecture 1: The Libor Scandal
Hot Topics in Financial Markets Lecture 1: The Libor Scandal Spot and Forward Interest Rates Libor Libor-Dependent Financial Instruments The Scandal 2 Spot Interest Rates Bond Market The yield on a bond
CHAPTER 14 INTEREST RATE AND CURRENCY SWAPS SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS
CHAPTER 14 INTEREST RATE AND CURRENCY SWAPS SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS QUESTIONS 1. Describe the difference between a swap broker and a swap dealer. Answer:
PERMANENT HEALTH FUND FINANCIAL STATEMENTS
FINANCIAL STATEMENTS Years Ended August 31, 2001 and 2000 Deloitte & Touche LLP Suite 2300 333 Clay Street Houston, Texas 77002-4196 Tel: (713) 982-2000 Fax: (713) 982-2001 www.us.deloitte.com INDEPENDENT
or enters into a Futures contract (either on the IPE or the NYMEX) with delivery date September and pay every day up to maturity the margin
Cash-Futures arbitrage processes Cash futures arbitrage consisting in taking position between the cash and the futures markets to make an arbitrage. An arbitrage is a trade that gives in the future some
Chapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
