Finance 350: Problem Set 6 Alternative Solutions
|
|
|
- Brice Buck Powell
- 10 years ago
- Views:
Transcription
1 Finance 350: Problem Set 6 Alternative Solutions Note: Where appropriate, the final answer for each problem is given in bold italics for those not interested in the discussion of the solution. I. Formulas This section contains the formulas you will need for this homework set: 1. Present Value (PV) Formula (a.k.a. Zero Coupon Bond Formula): V 0 = V N (1 + R/m) mt (1) where V N is the dollar amount to be received N periods in the future. m is the number of compounding periods per annum, T is the number of years until the money is received and R is the nominal interest rate (a.k.a. APR). Note that this formula is equivalent to: V 0 = V N (1 + i) N where i = R/m and N = mt. I will use this notation interchangeably throughout. 2. Future Value (FV) Formula: V N = V 0 (1 + i) N (2) where V 0 is the dollar amount received today. Note that the future value formula is just an algebraic manipulation of the present value formula. 1
2 3. Present Value of an Annuity Formula: A 0 = a (1 + i) + a (1 + i) a 2 (1 + i) + a N 1 (1 + i) N = 1 (1 + i) N a i where a is the amount of the annuity payment and i and N are as defined above. 4. Future Value of an Annuity Formula: A N = a (1 + i)n 1 i where a is the amount of the annuity payment and i and N are as defined above. 5. Index Forward Price Formula: (3) (4) F = S 0 e (r f d)t (5) where S 0 is the price of the underlying security at time 0, r f is the risk-free rate, d is the dividend yield and T is the time to maturity. 6. Interest Rate Futures Price: F = 100 InterestRate (6) where F is the futures price. The interest rate is typically LIBOR. II. Problems 1. 1.a The farmer is going to be selling the wheat in the future so he is concerned that the future spot price will be low, which would result in low revenues from the sale of his wheat. He can hedge this risk by selling futures on wheat. 1 1 An easy way to remember whether one should buy or sell futures contracts to hedge price risk is to simply consider what action will be taken in the future. Since the farmer needs to sell his wheat in the future, he should sell futures contracts. 2
3 This short position in the futures contract obligates him to sell the wheat in the future at the delivery price (i.e. the future price at the inception date of the contract). Assuming his expectation is correct, the farmer is going to harvest 60,000 bushels in September. Since each contract is for 5,000 bushels, she will need to sell 60,000/5,000 = 12 contracts. And, since the harvest will take place in September, she should sell September contracts. 1.b Table (1) below considers three scenarios for the future spot price of wheat. The gain from the futures position, assuming a cash settlement, is computed using the formula: (F S T ) Quantity. The quantity in parentheses is the payoff to the seller of a futures contract. We multiply by the quantity since the payoff is per unit, which in this case is a bushel. For example, the $9,600 gain from the futures position when the spot price is $3.25 is computed as ($3.41 $3.25) 60, 000. The revenue from the sale at the spot price is simply the total number of bushels times the price per bushel in the market, or 60, 000 $3.25 = $195, 000. It is important point to recognize that, regardless of the future spot price, the total revenue from the farmer s position is $204,600, as shown on the last row of the table. That is, the farmer is perfectly hedged. Table 1: Future Spot Price of Wheat $3.25 $ 3.35 $3.45 Revenue from Sale at Spot Price $195,000 $201,000 $207,000 Gain/Loss from Futures Position $9,600 $3,600 -$2,400 Total $204,600 $204,600 $204,600 1.c The strategy here is to compare the money he receives in September under his two options: (1) earn a salary and lease the farmland or (2) farm the wheat himself. Begin by computing the future value of all money the farmer will receive under the first scenario. He receives a salary of $3,500 per month for nine months (January to September), with each payment at the end of the month. Therefore, the first 3
4 payment he will receive is in one month. We should recognize this exercise as computing the future value of an annuity, where the compounding is monthly (m = 12) and the number of periods (N) is nine, implying i = 0.048/12 = Thus, F V = $3, 500 ( ) = $32, (see equation (4)) This is the value of the salary in September, which is in addition to the $5,000 he receives for leasing the land. Finally, we must account for the opportunity cost of using the $150,000 to pay for seed and equipment. Assume he invested this money by placing it into a bank account earning 4.8% p.a. The future value of this money (equation (2)) is: $150, 000 ( ) 9 = $155, Summing these three future values yields: $32, $5, $155, = $192, If he decides to farm the wheat himself, he is going to have 60,000 bushels harvested in September. The per bushel price he needs to get in order to be indifferent between the salaried position and farming is found by equating the total revenue from the salaried position ($192,495.94) to the total revenue he will receive from the harvest (60, 000 P ), where P is the price per bushel. Thus, $192, = 60, 000 P. Solving for P yields $3.208 per bushel. If he receives more than this price, he should farm himself. Anything less than this price and the farmer should choose to take the salaried position. 1.d We need to compare the revenue generated from selling in December, less storage costs, with the revenue generated from selling in September, while accounting for the time value of money. We determined in part 1.b that the farmer was guaranteed $204,600 if he entered into a September futures position. 4
5 Consider the revenue generated from a future sale of the wheat in December, assuming the farmer takes a hedging position in futures and pays the storage costs. Locked in at $3.515 per bushel under the terms of the futures contracts, the farmer is guaranteed to receive: 60, 000 $3.51 = $210, 900 in December. Discounting this figure back to September yields $210, 900/( ) 3 = $208, We must deduct from this figure the present value (as of September) of the storage costs, which may be computed as the present value of a 3-period annuity: 1 ( ) 3 $1, 200 = $3, (7) The net revenue from selling in December is $208, $3, = $204, Thus, storing the wheat and selling it forward in December results in greater net revenue for the farmer (a difference of $ $204, = $217.92). 1.e If the farmer can store an additional 40,000 bushels of wheat at no additional cost (beyond the $1,200 per month), there is an opportunity to increase net revenues. The farmer should buy 40,000 bushels of wheat in September, store the wheat for three months and then sell it in December. He can execute the September purchase and December sale using futures contracts to lock in his costs and revenues. To buy 40,000 bushels of wheat in September, the farmer must buy 40,000/5,000 = 8 September contracts. Under the future price specified in the contracts, the farmer must pay 5, 000 $3.41 = $17, 050 per contract, or 8 $17, 050 = $136, 400 in total. To sell these additional bushels in December, the farmer must sell 8 December contracts. Under the future price specified in the contracts, the farmer will receive 5, 000 $3.515 = $17, 575 per contract, or 8 $17, 575 = $140, 600 in total. Discounting this amount back to September yields $140, 600/( ) 3 = $138, We now add this figure to the farmer s initial cost to get a net gain, in September dollars, equal to $138, $136,400 = $2, (Note: we could compute the net profits at any point in time by simply discounting this figure appropriately). 5
6 1.f The problem here is that we ve introduced another source of uncertainty in addition to the price uncertainty, namely, crop uncertainty. The hedging strategy devised above will not perfectly hedge the farmer s revenue uncertainty (price * quantity), only the price uncertainty. We want to devise a strategy to hedge the farmer s revenue uncertainty. Consider the two possible revenue outcomes of the farmer. In the bad harvest, the farmer brings to market 50,000 bushels and sells them at the spot price of $3.60/bushel for revenue of $180,000. In the good harvest, the farmer brings to market 70,000 bushels and sells them at the spot price of $3.20/bushel for revenue of $224,000. If the farmer takes a position in September futures, we know that his per bushel payoff will be (S t F ). Since we know the futures price and (are assuming) we know the future spot price we can compute this quantity under both scenarios. In the good harvest year, the futures payoff is $3.20 $3.41 = $ In the bad harvest year, the futures payoff is $3.60 $3.41 = $0.19. The aggregate payoff in the bad harvest is: 50, 000 $ X (0.19), (8) where X is the number of bushels. This equation says that the farmer will receive 50, 000 $3.60 from the sale of his wheat in a bad year, plus some amount from his futures position. In a good harvest, the farmer s revenue is: 70, 000 $ X ( 0.21). (9) For hedging purposes, the farmer wants these two quantities to be equal. That is, regardless of whether there is a good harvest or a bad harvest, the farmer wants exactly the same revenue. Setting equation (8) and (9) equal and solving for X yields X = 110, 000. This tells the farmer how many bushels he must buy in the future. With 5,000 bushels per contract, the farmer needs to buy 110,000/5,000 = 22 contracts. Table (2) below shows that this position does indeed completely hedge revenue risk. Revenue from the harvest is simply price times quantity. For example, in the good harvest, $ , 000 = $224, 000. Revenue from the futures position is just the difference between the delivery price and the spot price times the quantity. For example, in the good harvest, ($3.20 $3.41) 110, 000 = $23,
7 Table 2: State Harvest Futures Total Revenue Revenue Revenue Good Harvest $224,000 $-23,100 $200,900 Bad Harvest $180,000 $20,900 $200, Consider the forward pricing relation in equation (5). Solving for d yields: d = r f 1 T ln(f/s 0) Substituting for the right hand side variables d = ln(971.67/966.67) = produces an implied dividend yield of 4.436%. 3. The futures contract is trading in the market for $ true price (according to the forward price formula) is: F = S 0 e (r f d)t = $966.67e ( )0.25 = $ However, the Thus, the futures contract is trading at a discount, implying we should buy the contract in the market and sell the underlying asset (the index). The cash we receive from the sale of the asset can be invested in a T-bill earning the risk-free rate. The arbitrage table in Table 3 outlines the strategy. As Table 3 illustrates, by shorting the index, investing the proceeds in the a T-bill and buying the future, we ensure ourself a risk-free profit of $1.04 per unit of index. Since each contract is for 250 times the index, the total profit per contract is 250 $1.04 = $260. Alternatively, we could have realized the profit in the future, as illustrated in Table 4. This two strategies are, in fact, monetarily equivalent since the future profits in Table 4, when discounted back 3 months, are equal to the profits found in table 3 (1.04 = 1.06e ). 7
8 Table 3: Position T = 0 (Today) T = 0.25 Buy Future 0 S T - $ Sell e dt Units of the Index $ S T Invest in T-Bill -$971.67e = $ $ Net Position $ Table 4: Position T = 0 (Today) T = 0.25 Buy Future 0 S T - $ Sell e dt Units of the Index $ S T Invest in T-Bill -$ $957.05e = $ Net Position 0 $ Since the manager owns the fund, he would like to hedge this position by selling futures on the index. Thus, if the value of the index falls, his long position in the fund will fall, but will be exactly offset by his profits on his short position in the futures. The question is, how many contracts must he sell? By selling forward the index, the manager ensures a return of ( )/800 = 16.67%. Thus, the value of his fund is ( ) $10 million = $ million at year end. Each futures contract on the S&P500 has a notional value of 250 times the index or = $233, Thus, the manager must sell $11, 670, 000/$233, = 50 contracts. To illustrate the hedge, consider the scenario where the index level falls to in December. The value of the fund declines to /800) 10 million = $10.42 million. However, the short futures position gains ( ) = $1.25 million. This follows from being short 50 contracts and each contract being worth 250 times the level of the index. Thus, the value of the manager s aggregate position is $10.42 million + $1.25 million = $11.67 million. No consider a rise in the level of the S&P500 to 1,000. The value of the fund will be (1, 000/800) 10 million = $12.5 million. However, the futures 8
9 position will lose ( , 000) = $0.83 million. Thus, the value of the manager s aggregate position is $12.5 million $0.83 million = $11.67 million. Remark: Note that this hedging strategy is equivalent to the manager liquidating his position in the fund and investing the proceeds at the risk-free rate. Although this rate is not explicitly given in the problem, it is implied by the futures contract (see equation (5)). As discussed in class and the lecture notes, the manager may not want to liquidate his position either because of transaction costs or a desire to maintain his position in the index s assets. 5. Our company is going to be receiving Swiss Francs in the future, which we will then want to exchange (i.e. sell) for $US. Thus, we want to sell SFR/$ futures. By doing so, we ensure ourselves of receiving: 8 million SFR 0.8 SFR/$ = $10 million. Table 5 illustrates the hedge. Table 5: Future Exchange Rate Position 0.4 SFR/$ 1.6 SFR/$ Revenue from Sale 20 5 Forward Contract Net Position $10 million $10 million Regardless of the future exchange rate, our $US income is the same. 6. Borrowing at LIBOR (i.e. a floating rate loan) exposes the company to interest rate risk: if the LIBOR rises, so do the payments on the loan. Thus, we want to enter into another contract that offsets this risk, a contract that pays us when the interest rate increases. In a eurodollar futures contract, if the interest rate (LIBOR) rises, the futures price will fall. This can be seen in equation (6). Since the Eurodollars 9
10 futures contract is currently trading at 92, equation (6) implies that the interest rate is at 8%. To lock in this rate, we must sell two March Eurodollar futures contracts. Underlying each contract is a notional 90-day, $1 million loan to be entered into upon expiration of the futures contract (sometime in the middle of March). To determine if the hedge works, first consider what the total interest payment would be under a fixed 8% loan for one quarter: (0.08/4) $2 million = $40, 000. Now suppose that LIBOR rises to 10% prior to entering the loan. The interest on the loan will be (0.10/4) $2 million = $50, 000, an increase of $10,000. However, our position in the futures contracts will yield: (2/4) 1, 000, 000 (.92.90) = $10, 000, exactly offsetting the increased interest payment. 2 Alternatively, should LIBOR fall to 6%, the interest payment on our loan would fall to (0.06/4) $2 million = $30, 000, an decrease of $10,000. However, our position in the futures contracts will lose: (2/4) 1, 000, 000 (.92.94) = $10, 000, exactly offsetting the decreased interest payment. In both cases, the interest payment is fixed at $40, a The futures price should be, according to equation (5), The contract is underpriced. F = e ( )(1/12) = b Since the market price for the contract is too low, we should buy the contract and sell the replicating portfolio. Consider the arbitrage table in Table 6. Alternatively, as in problem 3, we could have taken a position to obtain the arbitrage profits in the future. 7.c The intuition was laid out above: we buy the underpriced security (the futures contract) and short the replicating portfolio (the underlying asset and a T-bill). The actual mechanics can be described in more detail as follows: 2 The gain from the futures position comes from having sold 2 contracts, each for a loan in the amount of $1 million for a length of 0.25 years. 10
11 Table 6: Position T = 0 (Today) T = 1/12 Buy Future 0 S T Sell e dt Units of the Index S T Invest in T-Bill 701e 0.05 (1/12) = Net Position At time 0 (today) buy the futures contract, which costs nothing, short a fraction (exp( dt )) of the index and invest part of the proceeds from the short sale in a T-bill. We need not short the entire index because of the dividend yield since the owner will receive dividends that they can reinvest in the index that make up for owning slightly less than a full unit. We could have placed the entire proceeds from the short sale in the T-bill, but this would have postponed our profits until the future (one month from now). Instead, we withhold In one month, we must buy back a full unit of the index, which just offsets the unit of index we get from owning the futures contract. The T-bill matures and pays off 701, just offsetting the 701 we owed from the futures contract. 7.d Intuitively, a fall in the dividend yield works in our favor since we are short the asset in our arbitrage position. Thus, we have to pay out less in the form of dividends to the holder of the index. The new arbitrage table is now seen in Table 7 Table 7: Position T = 0 (Today) T = 1/12 Buy Future 0 S T Sell e dt Units of the Index S T e (1/12) Invest in T-Bill 701e 0.05 (1/12) = Net Position 0.25 (1 e (1/12) S T In addition to the 0.25 we make today, we also receive some (small) 11
12 fraction of the future value of the index. 8. The Japanese investors are going to be receiving $US 5 million in two months, which they will then want exchange (i.e. sell) for Yen. Thus, the hedge SEI wants to establish involves selling futures contracts. The question is how many? The current futures price is $/Yen, implying the exposed Yen is million Yen. Since each contract is for 12.5 million Yen, SEI wants to buy /12.5 = 45 contracts. That is, they are contracting today to buy Yen in the future (equivalently they are selling $US). To illustrate the hedge, Table 8 considers two scenarios: (1) the exchange rate decreases to $/Yen and (2) the exchange rate increases to $/Yen. Table 8: Future Exchange Rate Position $/Yen $/Yen $US Yen $US Yen Capital Raised Buy Forward Contracts Net Position Note that the net position in Yen is the same (except for rounding error as a result of our inability to buy fractional contracts). In the Capital Raised column the $US amount raised is independent of the future exchange rate. However, the future Yen amount is exchange rate dependent and changes accordingly (5/0.007 = , 5/0.010 = 500). To compute the value of the long position in the forward contracts, consider the $US payoff to a short position in one contract: (X T F T ) or ( )= Since there are 12.5 million Yen per contract, this amounts to million = million Yen per contract. We are short 45 contracts implying a total payoff of = $US1.06 million. To translate this figure into Yen, simply divide by the prevailing exchange rate, 0.007, to get million Yen. 12
13 9. 9.a Recall the interest rate futures price from equation (6). F = 100 InterestRate Given the prices, it is straightforward to back out the implied LIBOR rates by subtracting the price from 100. The rates are reproduced in Figure 1 and plotted against maturity in Figure 2. Figure 1: Expiration Date LIBOR Future Prices Implied LIBOR (=100-Price) Mar Jun Sep Dec Mar Jun Sep Dec Mar Jun Sep Dec b The company needs to borrow $12 million in September, which it will repay in December. Each contract is equivalent to $1 million loan, implying the company will need to sell twelve contracts. The intuition is that the company is undertaking a loan that will become more expensive as LIBOR rises. Therefore, they need an instrument that will payoff when LIBOR rises to offset the additional interest expense on the loan. Since the price of the futures contract decreases as LIBOR rises, they should sell the contract(s). 13
14 Figure 2: Futures Implied LIBOR Mar-97 May-97 Jul-97 Sep-97 Nov-97 Jan-98 Mar-98 May-98 Jul-98 Maturity Date Sep-98 Nov-98 Jan-99 Mar-99 May-99 Jul-99 Sep-99 Nov-99 9.c Table 9 shows illustrates the working of the hedge when the interest rate increases or decreases by one percentage point. All dollar values are in millions. Table 9: Future (LIBOR) Interest Rate Position 4.78% 5.78% 6.78% Interest Expense on Loan $ $ $ Short 12 Futures Contracts -$ $0 $ Total Expense $ $ $ Note that regardless of the future interest rate, the total expense is the same. Consider the $ in the Interest Expense on Loan row. The company has taken out a four month loan of $12 million with an interest rate equal to LIBOR+150bp (bp = basis points). Thus, the effective periodic 14
15 interest rate is ( )/4 = Multiplying the principal amount of the loan ($12 million) by this rate yields the interest expense of $ million. Similar computations yield the interest expenses under the other two interest rate scenarios. 9.d This is the opposite of the situation of above since now they are in a position to lend instead of borrow. Thus, they should buy 3 contracts. 9.e The December Eurodollar contracts are at $94.04, which implies a LIBOR of 5.96%. Table 10 shows the net payoffs to different LIBOR rates from a position in Eurodollar futures contracts and lending. Table 10: Future (LIBOR) Interest Rate Position 4.96% 5.96% 6.96% Interest Earned on Loan $7,500 $0 -$7,500 Long 3 Futures Contracts $29,700 $37,200 $44,700 Total Gain $37,200 $37,200 $37,200 These solutions are produced by Michael R. Roberts. Thanks go to Jen Rother for her excellent assistance, and to an anonymous TA. Any remaining errors are mine. 15
Hedging with Futures and Options: Supplementary Material. Global Financial Management
Hedging with Futures and Options: Supplementary Material Global Financial Management Fuqua School of Business Duke University 1 Hedging Stock Market Risk: S&P500 Futures Contract A futures contract on
2 Stock Price. Figure S1.1 Profit from long position in Problem 1.13
Problem 1.11. A cattle farmer expects to have 12, pounds of live cattle to sell in three months. The livecattle futures contract on the Chicago Mercantile Exchange is for the delivery of 4, pounds of cattle.
Chapter 5 Financial Forwards and Futures
Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment
Eurodollar Futures, and Forwards
5 Eurodollar Futures, and Forwards In this chapter we will learn about Eurodollar Deposits Eurodollar Futures Contracts, Hedging strategies using ED Futures, Forward Rate Agreements, Pricing FRAs. Hedging
Interest Rate Futures. Chapter 6
Interest Rate Futures Chapter 6 1 Day Count Convention The day count convention defines: The period of time to which the interest rate applies. The period of time used to calculate accrued interest (relevant
Chapter 2 An Introduction to Forwards and Options
Chapter 2 An Introduction to Forwards and Options Question 2.1. The payoff diagram of the stock is just a graph of the stock price as a function of the stock price: In order to obtain the profit diagram
CHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
Simple Interest. and Simple Discount
CHAPTER 1 Simple Interest and Simple Discount Learning Objectives Money is invested or borrowed in thousands of transactions every day. When an investment is cashed in or when borrowed money is repaid,
Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.
Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero
Interest rate Derivatives
Interest rate Derivatives There is a wide variety of interest rate options available. The most widely offered are interest rate caps and floors. Increasingly we also see swaptions offered. This note will
CFA Level -2 Derivatives - I
CFA Level -2 Derivatives - I EduPristine www.edupristine.com Agenda Forwards Markets and Contracts Future Markets and Contracts Option Markets and Contracts 1 Forwards Markets and Contracts 2 Pricing and
11 Option. Payoffs and Option Strategies. Answers to Questions and Problems
11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expiration for various
Learning Curve Interest Rate Futures Contracts Moorad Choudhry
Learning Curve Interest Rate Futures Contracts Moorad Choudhry YieldCurve.com 2004 Page 1 The market in short-term interest rate derivatives is a large and liquid one, and the instruments involved are
Assumptions: No transaction cost, same rate for borrowing/lending, no default/counterparty risk
Derivatives Why? Allow easier methods to short sell a stock without a broker lending it. Facilitates hedging easily Allows the ability to take long/short position on less available commodities (Rice, Cotton,
Introduction, Forwards and Futures
Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35
Interest Rate and Currency Swaps
Interest Rate and Currency Swaps Eiteman et al., Chapter 14 Winter 2004 Bond Basics Consider the following: Zero-Coupon Zero-Coupon One-Year Implied Maturity Bond Yield Bond Price Forward Rate t r 0 (0,t)
INTRODUCTION TO OPTIONS MARKETS QUESTIONS
INTRODUCTION TO OPTIONS MARKETS QUESTIONS 1. What is the difference between a put option and a call option? 2. What is the difference between an American option and a European option? 3. Why does an option
550.444 Introduction to Financial Derivatives
550.444 Introduction to Financial Derivatives Week of October 7, 2013 Interest Rate Futures Where we are Last week: Forward & Futures Prices/Value (Chapter 5, OFOD) This week: Interest Rate Futures (Chapter
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
Chapter 1 - Introduction
Chapter 1 - Introduction Derivative securities Futures contracts Forward contracts Futures and forward markets Comparison of futures and forward contracts Options contracts Options markets Comparison of
VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS
Graduate School of Business Administration University of Virginia VALUATION OF PLAIN VANILLA INTEREST RATES SWAPS Interest-rate swaps have grown tremendously over the last 10 years. With this development,
Forwards and Futures
Prof. Alex Shapiro Lecture Notes 16 Forwards and Futures I. Readings and Suggested Practice Problems II. Forward Contracts III. Futures Contracts IV. Forward-Spot Parity V. Stock Index Forward-Spot Parity
In this chapter we will learn about. Treasury Notes and Bonds, Treasury Inflation Protected Securities,
2 Treasury Securities In this chapter we will learn about Treasury Bills, Treasury Notes and Bonds, Strips, Treasury Inflation Protected Securities, and a few other products including Eurodollar deposits.
Determination of Forward and Futures Prices. Chapter 5
Determination of Forward and Futures Prices Chapter 5 Fundamentals of Futures and Options Markets, 8th Ed, Ch 5, Copyright John C. Hull 2013 1 Consumption vs Investment Assets Investment assets are assets
CHAPTER 8 SUGGESTED ANSWERS TO CHAPTER 8 QUESTIONS
INSTRUCTOR S MANUAL: MULTINATIONAL FINANCIAL MANAGEMENT, 9 TH ED. CHAPTER 8 SUGGESTED ANSWERS TO CHAPTER 8 QUESTIONS. On April, the spot price of the British pound was $.86 and the price of the June futures
Finding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
This act of setting a price today for a transaction in the future, hedging. hedge currency exposure, short long long hedge short hedge Hedgers
Section 7.3 and Section 4.5 Oct. 7, 2002 William Pugh 7.3 Example of a forward contract: In May, a crude oil producer gets together with a refiner to agree on a price for crude oil. This price is for crude
CHAPTER 7 FUTURES AND OPTIONS ON FOREIGN EXCHANGE SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS
CHAPTER 7 FUTURES AND OPTIONS ON FOREIGN EXCHANGE SUGGESTED ANSWERS AND SOLUTIONS TO END-OF-CHAPTER QUESTIONS AND PROBLEMS QUESTIONS 1. Explain the basic differences between the operation of a currency
Futures Price d,f $ 0.65 = (1.05) (1.04)
24 e. Currency Futures In a currency futures contract, you enter into a contract to buy a foreign currency at a price fixed today. To see how spot and futures currency prices are related, note that holding
CHAPTER 11 CURRENCY AND INTEREST RATE FUTURES
Answers to end-of-chapter exercises ARBITRAGE IN THE CURRENCY FUTURES MARKET 1. Consider the following: Spot Rate: $ 0.65/DM German 1-yr interest rate: 9% US 1-yr interest rate: 5% CHAPTER 11 CURRENCY
VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below
VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below 1. Determine the value of the following risk-free debt instrument, which promises to make the respective
A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2%
1 Exam FM Questions Practice Exam 1 1. Consider the following yield curve: Year Spot Rate 1 5.5% 2 5.0% 3 5.0% 4 4.5% 5 4.0% Find the four year forward rate. A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2% 2.
We first solve for the present value of the cost per two barrels: (1.065) 2 = 41.033 (1.07) 3 = 55.341. x = 20.9519
Chapter 8 Swaps Question 8.1. We first solve for the present value of the cost per two barrels: $22 1.06 + $23 (1.065) 2 = 41.033. We then obtain the swap price per barrel by solving: which was to be shown.
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A.
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A. The choice to offset with a put option B. The obligation to deliver the
Forward Contracts and Forward Rates
Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16
Solutions to Practice Questions (Bonds)
Fuqua Business School Duke University FIN 350 Global Financial Management Solutions to Practice Questions (Bonds). These practice questions are a suplement to the problem sets, and are intended for those
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
Determination of Forward and Futures Prices
Determination of Forward and Futures Prices Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 Short selling A popular trading (arbitrage) strategy is the shortselling or
Introduction to Real Estate Investment Appraisal
Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has
Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material. i = 0.75 1 for six months.
Solutions to Supplementary Questions for HP Chapter 5 and Sections 1 and 2 of the Supplementary Material 1. a) Let P be the recommended retail price of the toy. Then the retailer may purchase the toy at
Bond Price Arithmetic
1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously
Introduction to Futures Contracts
Introduction to Futures Contracts September 2010 PREPARED BY Eric Przybylinski Research Analyst Gregory J. Leonberger, FSA Director of Research Abstract Futures contracts are widely utilized throughout
CHAPTER 1. Compound Interest
CHAPTER 1 Compound Interest 1. Compound Interest The simplest example of interest is a loan agreement two children might make: I will lend you a dollar, but every day you keep it, you owe me one more penny.
Chapter 20 Understanding Options
Chapter 20 Understanding Options Multiple Choice Questions 1. Firms regularly use the following to reduce risk: (I) Currency options (II) Interest-rate options (III) Commodity options D) I, II, and III
Fina4500 Spring 2015 Extra Practice Problems Instructions
Extra Practice Problems Instructions: The problems are similar to the ones on your previous problem sets. All interest rates and rates of inflation given in the problems are annualized (i.e., stated as
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
a. What is the sum of the prices of all the shares in the index before the stock split? The equation for computing the index is: N P i i 1
7 Stock Index Futures: Introduction 44 Answers to Questions and Problems 1. Assume that the DJIA stands at 8340.00 and the current divisor is 0.25. One of the stocks in the index is priced at $100.00 and
PowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment
Notes for Lecture 2 (February 7)
CONTINUOUS COMPOUNDING Invest $1 for one year at interest rate r. Annual compounding: you get $(1+r). Semi-annual compounding: you get $(1 + (r/2)) 2. Continuous compounding: you get $e r. Invest $1 for
CHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS 1. a. The closing price for the spot index was 1329.78. The dollar value of stocks is thus $250 1329.78 = $332,445. The closing futures price for the March contract was 1364.00,
Chapter 6. Time Value of Money Concepts. Simple Interest 6-1. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years.
6-1 Chapter 6 Time Value of Money Concepts 6-2 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in
Trading the Yield Curve. Copyright 1999-2006 Investment Analytics
Trading the Yield Curve Copyright 1999-2006 Investment Analytics 1 Trading the Yield Curve Repos Riding the Curve Yield Spread Trades Coupon Rolls Yield Curve Steepeners & Flatteners Butterfly Trading
CHAPTER 5. Interest Rates. Chapter Synopsis
CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)
Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter - The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
Forwards, Swaps and Futures
IEOR E4706: Financial Engineering: Discrete-Time Models c 2010 by Martin Haugh Forwards, Swaps and Futures These notes 1 introduce forwards, swaps and futures, and the basic mechanics of their associated
Pricing of Financial Instruments
CHAPTER 2 Pricing of Financial Instruments 1. Introduction In this chapter, we will introduce and explain the use of financial instruments involved in investing, lending, and borrowing money. In particular,
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT
CHAPTER 23: FUTURES, SWAPS, AND RISK MANAGEMENT PROBLEM SETS 1. In formulating a hedge position, a stock s beta and a bond s duration are used similarly to determine the expected percentage gain or loss
CHAPTER 9 SUGGESTED ANSWERS TO CHAPTER 9 QUESTIONS
INSTRUCTOR S MANUAL MULTINATIONAL FINANCIAL MANAGEMENT, 9 TH ED. CHAPTER 9 SUGGESTED ANSWERS TO CHAPTER 9 QUESTIONS 1. What is an interest rate swap? What is the difference between a basis swap and a coupon
Financial-Institutions Management. Solutions 4. 8. The following are the foreign currency positions of an FI, expressed in the foreign currency.
Solutions 4 Chapter 14: oreign Exchange Risk 8. The following are the foreign currency positions of an I, expressed in the foreign currency. Currency Assets Liabilities X Bought X Sold Swiss franc (S)
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given
Options/1. Prof. Ian Giddy
Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2
Review of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
Mathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
Figure S9.1 Profit from long position in Problem 9.9
Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances
1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
Chapter The Time Value of Money
Chapter The Time Value of Money PPT 9-2 Chapter 9 - Outline Time Value of Money Future Value and Present Value Annuities Time-Value-of-Money Formulas Adjusting for Non-Annual Compounding Compound Interest
Hedging Foreign Exchange Rate Risk with CME FX Futures Canadian Dollar vs. U.S. Dollar
Hedging Foreign Exchange Rate Risk with CME FX Futures Canadian Dollar vs. U.S. Dollar CME FX futures provide agricultural producers with the liquid, efficient tools to hedge against exchange rate risk
DERIVATIVES Presented by Sade Odunaiya Partner, Risk Management Alliance Consulting DERIVATIVES Introduction Forward Rate Agreements FRA Swaps Futures Options Summary INTRODUCTION Financial Market Participants
FIXED-INCOME SECURITIES. Chapter 11. Forwards and Futures
FIXED-INCOME SECURITIES Chapter 11 Forwards and Futures Outline Futures and Forwards Types of Contracts Trading Mechanics Trading Strategies Futures Pricing Uses of Futures Futures and Forwards Forward
CHAPTER 5 HOW TO VALUE STOCKS AND BONDS
CHAPTER 5 HOW TO VALUE STOCKS AND BONDS Answers to Concepts Review and Critical Thinking Questions 1. Bond issuers look at outstanding bonds of similar maturity and risk. The yields on such bonds are used
Chapter 3: Commodity Forwards and Futures
Chapter 3: Commodity Forwards and Futures In the previous chapter we study financial forward and futures contracts and we concluded that are all alike. Each commodity forward, however, has some unique
Manual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall
SLVO Silver Shares Covered Call ETN
Filed pursuant to Rule 433 Registration Statement No. 333-180300-03 April 15, 2014 SLVO Silver Shares Covered Call ETN Credit Suisse AG, Investor Solutions April 2014 Executive Summary Credit Suisse Silver
Advanced forms of currency swaps
Advanced forms of currency swaps Basis swaps Basis swaps involve swapping one floating index rate for another. Banks may need to use basis swaps to arrange a currency swap for the customers. Example A
Lecture 12/13 Bond Pricing and the Term Structure of Interest Rates
1 Lecture 1/13 Bond Pricing and the Term Structure of Interest Rates Alexander K. Koch Department of Economics, Royal Holloway, University of London January 14 and 1, 008 In addition to learning the material
Two-State Options. John Norstad. [email protected] http://www.norstad.org. January 12, 1999 Updated: November 3, 2011.
Two-State Options John Norstad [email protected] http://www.norstad.org January 12, 1999 Updated: November 3, 2011 Abstract How options are priced when the underlying asset has only two possible
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
U.S. Treasury Securities
U.S. Treasury Securities U.S. Treasury Securities 4.6 Nonmarketable To help finance its operations, the U.S. government from time to time borrows money by selling investors a variety of debt securities
5.1 Simple and Compound Interest
5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?
EURODOLLAR FUTURES PRICING. Robert T. Daigler. Florida International University. and. Visiting Scholar. Graduate School of Business
EURODOLLAR FUTURES PRICING Robert T. Daigler Florida International University and Visiting Scholar Graduate School of Business Stanford University 1990-91 Jumiaty Nurawan Jakarta, Indonesia The Financial
Answers to Review Questions
Answers to Review Questions 1. The real rate of interest is the rate that creates an equilibrium between the supply of savings and demand for investment funds. The nominal rate of interest is the actual
Global Financial Management
Global Financial Management Bond Valuation Copyright 999 by Alon Brav, Campbell R. Harvey, Stephen Gray and Ernst Maug. All rights reserved. No part of this lecture may be reproduced without the permission
Chapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
Chapter Five: Risk Management and Commodity Markets
Chapter Five: Risk Management and Commodity Markets All business firms face risk; agricultural businesses more than most. Temperature and precipitation are largely beyond anyone s control, yet these factors
Finance 197. Simple One-time Interest
Finance 197 Finance We have to work with money every day. While balancing your checkbook or calculating your monthly expenditures on espresso requires only arithmetic, when we start saving, planning for
Present Value (PV) Tutorial
EYK 15-1 Present Value (PV) Tutorial The concepts of present value are described and applied in Chapter 15. This supplement provides added explanations, illustrations, calculations, present value tables,
FIN 472 Fixed-Income Securities Forward Rates
FIN 472 Fixed-Income Securities Forward Rates Professor Robert B.H. Hauswald Kogod School of Business, AU Interest-Rate Forwards Review of yield curve analysis Forwards yet another use of yield curve forward
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
2. How is a fund manager motivated to behave with this type of renumeration package?
MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff
Equity-index-linked swaps
Equity-index-linked swaps Equivalent to portfolios of forward contracts calling for the exchange of cash flows based on two different investment rates: a variable debt rate (e.g. 3-month LIBOR) and the
MAT116 Project 2 Chapters 8 & 9
MAT116 Project 2 Chapters 8 & 9 1 8-1: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the
CHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Answers to Concept Questions 1. No. As interest rates fluctuate, the value of a Treasury security will fluctuate. Long-term Treasury securities have substantial
