# Discounted Cash Flow Valuation

Size: px
Start display at page:

Transcription

2 Chapter Outline Future and Present Values of Multiple Cash Flows Valuing Level Cash Flows: Annuities and Perpetuities Comparing Rates: The Effect of Compounding Loan Types and Loan Amortization 6 (Formulas)-1

3 Multiple Cash Flows Future Value Example 6.1 You will deposit \$4,000 at the end of each of the next 3 years in a bank account paying 8% interest. You currently have \$7,000 in the account. How much will you have in your account at the end of 3 years? 4 years? 6 (Formulas)-2

4 Multiple Cash Flows Future Value Example 6.1 Find the value at year 3 of each cash flow and add them together. Today (year 0): FV = 7000(1.08) 3 = 8, Year 1: FV = 4,000(1.08) 2 = 4, Year 2: FV = 4,000(1.08) = 4,320 Year 3: value = 4,000 Total value in 3 years = 8, , , ,000 = 21, Value at year 4 = 21,803.58(1.08) = 23, (Formulas)-3

5 Multiple Cash Flows FV Example 2 Suppose you invest \$500 in a mutual fund today and \$600 in one year. If the fund pays 9% annually, how much will you have in two years? FV = 500(1.09) (1.09) = 1, (Formulas)-4

6 Multiple Cash Flows Example 2 Continued How much will you have in 5 years if you make no further deposits? First way: FV = 500(1.09) (1.09) 4 = 1, Second way use value at year 2: FV = 1,248.05(1.09) 3 = 1, (Formulas)-5

7 Multiple Cash Flows FV Example 3 Suppose you plan to deposit \$100 into an account in one year and \$300 into the account in three years. How much will be in the account in five years if the interest rate is 8%? FV = 100(1.08) (1.08) 2 = = (Formulas)-6

8 Multiple Cash Flows Present Value Example 6.3 You are offered an investment that will pay you \$200 in one year, \$400 the next year, \$600 the next year, and \$800 at the end of fourth year. You can earn 12% on similar investments. What is the most you should pay for this investment? 6 (Formulas)-7

9 Multiple Cash Flows Present Value Example 6.3 Find the PV of each cash flows and add them Year 1 CF: 200 / (1.12) 1 = Year 2 CF: 400 / (1.12) 2 = Year 3 CF: 600 / (1.12) 3 = Year 4 CF: 800 / (1.12) 4 = Total PV = = 1, (Formulas)-8

10 Example 6.3 Timeline , (Formulas)-9

11 Multiple Cash Flows PV Another Example You are considering an investment that will pay you \$1,000 in one year, \$2,000 in two year and \$3000 in three year. If you want to earn 10% on your money, how much would you be willing to pay? PV = 1000 / (1.1) 1 = PV = 2000 / (1.1) 2 = 1, PV = 3000 / (1.1) 3 = 2, PV = , , = 4, (Formulas)-10

12 Quick Quiz Part I Suppose you are looking at the following possible cash flows: Year 1 CF = \$100; Years 2 and 3 CFs = \$200; Years 4 and 5 CFs = \$300. The required discount rate is 7% What is the value of the cash flows at year 5? What is the value of the cash flows today? What is the value of the cash flows at year 3? 6 (Formulas)-11

13 Annuities and Perpetuities Defined Annuity finite series of equal payments that occur at regular intervals If the first payment occurs at the end of the period, it is called an ordinary annuity If the first payment occurs at the beginning of the period, it is called an annuity due Perpetuity infinite series of equal payments 6 (Formulas)-12

14 Annuities and Perpetuities Basic Formulas Perpetuity: PV = C / r Annuities: PV = C 1 1 (1 + r r ) t FV = C (1 + r r ) t 1 6 (Formulas)-13

15 Annuity Sweepstakes Example Suppose you win the Publishers Clearinghouse \$10 million sweepstakes. The money is paid in equal annual installments of \$333, over 30 years. If the appropriate discount rate is 5%, how much is the sweepstakes actually worth today? PV = 333,333.33[1 1/ ] /.05 = 5,124, (Formulas)-14

16 Buying a House You are ready to buy a house and you have \$20,000 for a down payment and closing costs. Closing costs are estimated to be 4% of the loan value. You have an annual salary of \$36,000 and the bank is willing to allow your monthly mortgage payment to be equal to 28% of your monthly income. The interest rate on the loan is 6% per year with monthly compounding (.5% per month) for a 30-year fixed rate loan. How much money will the bank loan you? How much can you offer for the house? 6 (Formulas)-15

17 Buying a House - Continued Bank loan Monthly income = 36,000 / 12 = 3,000 Maximum payment =.28(3,000) = 840 PV = 840[1 1/ ] /.005 = 140,105 Total Price Closing costs =.04(140,105) = 5,604 Down payment = 20, = 14,396 Total Price = 140, ,396 = 154,501 6 (Formulas)-16

18 Quick Quiz Part II You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive 5,000 per month in retirement. If you can earn.75% per month and you expect to need the income for 25 years, how much do you need to have in your account at retirement? 6 (Formulas)-17

19 Finding the Payment Suppose you want to borrow \$20,000 for a new car. You can borrow at 8% per year, compounded monthly (8/12 =.66667% per month). If you take a 4 year loan, what is your monthly payment? 20,000 = C[1 1 / ] / C = (Formulas)-18

20 Finding the Number of Payments Example 6.6 You ran a little short on your spring break vacation, so you put \$1,000 on your credit card. You can only afford to make the minimum payment of \$20 per month. The interest rate on the credit card is 1.5 percent per month. How long will you need to pay off the \$1,000? 6 (Formulas)-19

21 Finding the Number of Payments Example 6.6 Start with the equation and remember your logs. 1,000 = 20(1 1/1.015 t ) / = 1 1 / t 1 / t =.25 1 /.25 = t t = ln(1/.25) / ln(1.015) = months = 7.76 years And this is only if you don t charge anything more on the card! 6 (Formulas)-20

22 Finding the Number of Payments Another Example Suppose you borrow \$2,000 at 5% and you are going to make annual payments of \$ How long before you pay off the loan? 2,000 = (1 1/1.05 t ) / = 1 1/1.05 t 1/1.05 t = = 1.05 t t = ln( ) / ln(1.05) = 3 years 6 (Formulas)-21

23 Finding the Rate Suppose you borrow \$10,000 from your parents to buy a car. You agree to pay \$ per month for 60 months. What is the monthly interest rate? Sign convention matters!!! 60 N 10,000 PV PMT CPT I/Y =.75% 6 (Formulas)-22

24 Quick Quiz Part III You want to receive \$5,000 per month for the next 5 years. How much would you need to deposit today if you can earn.75% per month? What monthly rate would you need to earn if you only have \$200,000 to deposit? Suppose you have \$200,000 to deposit and can earn.75% per month. How many months could you receive the \$5,000 payment? How much could you receive every month for 5 years? 6 (Formulas)-23

25 Trial & Error 0.75% , % 43966? ,000 X % ,901 X = (3099/43966)0.75% = X = = (Formulas)-24

26 Future Values for Annuities Suppose you begin saving for your retirement by depositing \$2,000 per year in an IRA. If the interest rate is 7.5%, how much will you have in 40 years? FV = 2,000( )/.075 = 454, (Formulas)-25

27 Annuity Due You are saving for a new house and you put \$10,000 per year in an account paying 8%. The first payment is made today. How much will you have at the end of 3 years? FV = 10,000[( ) /.08](1.08) = 35, (Formulas)-26

28 Annuity Due Timeline ,464 35, (Formulas)-27

29 Perpetuity Example 6.7 Suppose the Fellini Co. wants to sell preferred stock at \$100 per share. A very similar issue of preferred stock already outstanding has a price of \$40 per share and offers a dividend of \$1 every quarter. What dividend will Fellini have to offer if the preferred stock is going to sell? 6 (Formulas)-28

30 Perpetuity Example 6.7 Perpetuity formula: PV = C / r Current required return: 40 = 1 / r r =.025 or 2.5% per quarter Dividend for new preferred: 100 = C /.025 C = 2.50 per quarter 6 (Formulas)-29

31 Quick Quiz Part IV You want to have \$1 million to use for retirement in 35 years. If you can earn 1% per month, how much do you need to deposit on a monthly basis if the first payment is made in one month? What if the first payment is made today? You are considering preferred stock that pays a quarterly dividend of \$1.50. If your desired return is 3% per quarter, how much would you be willing to pay? 6 (Formulas)-30

32 Effective Annual Rate (EAR) This is the actual rate paid (or received) after accounting for compounding that occurs during the year If you want to compare two alternative investments with different compounding periods you need to compute the EAR and use that for comparison. 6 (Formulas)-31

33 Annual Percentage Rate By definition APR = period rate X the number of periods per year Consequently, to get the period rate we rearrange the APR equation: Period rate = APR / number of periods per year You should NEVER divide the effective rate by the number of periods per year it will NOT give you the period rate 6 (Formulas)-32

34 Computing APRs What is the APR if the monthly rate is.5%?.5(12) = 6% What is the APR if the semiannual rate is.5%?.5(2) = 1% What is the monthly rate if the APR is 12% with monthly compounding? 12 / 12 = 1% 6 (Formulas)-33

35 Things to Remember You ALWAYS need to make sure that the interest rate and the time period match. If you are looking at annual periods, you need an annual rate. If you are looking at monthly periods, you need a monthly rate. If you have an APR based on monthly compounding, you have to use monthly periods for lump sums, or adjust the interest rate appropriately if you have payments other than monthly 6 (Formulas)-34

36 Computing EARs - Example Suppose you can earn 1% per month on \$1 invested today. What is the APR? 1(12) = 12% How much are you effectively earning? FV = 1(1.01) 12 = Rate = ( ) / 1 =.1268 = 12.68% Suppose if you put it in another account, you earn 3% per quarter. What is the APR? 3(4) = 12% How much are you effectively earning? FV = 1(1.03) 4 = Rate = ( ) / 1 =.1255 = 12.55% 6 (Formulas)-35

37 EAR - Formula EAR = 1 + APR m m 1 Remember that the APR is the quoted rate m is the number of compounding periods per year 6 (Formulas)-36

38 Decisions, Decisions II You are looking at two savings accounts. One pays 5.25%, with daily compounding. The other pays 5.3% with semiannual compounding. Which account should you use? First account: EAR = ( /365) = 5.39% Second account: EAR = ( /2) 2 1 = 5.37% Which account should you choose and why? 6 (Formulas)-37

39 Decisions, Decisions II Continued Let s verify the choice. Suppose you invest \$100 in each account. How much will you have in each account in one year? First Account: Daily rate =.0525 / 365 = FV = 100( ) 365 = Second Account: Semiannual rate =.0539 / 2 =.0265 FV = 100(1.0265) 2 = You have more money in the first account. 6 (Formulas)-38

40 Computing APRs from EARs If you have an effective rate, how can you compute the APR? Rearrange the EAR equation and you get: APR = m (1 + EAR) m (Formulas)-39

41 APR - Example Suppose you want to earn an effective rate of 12% and you are looking at an account that compounds on a monthly basis. What APR must they pay? APR = 12 (1 or 11.39% [ ] +.12) 1/12 1 = (Formulas)-40

42 Computing Payments with APRs Suppose you want to buy a new computer system and the store is willing to sell it to allow you to make monthly payments. The entire computer system costs \$3,500. The loan period is for 2 years and the interest rate is 16.9% with monthly compounding. What is your monthly payment? Monthly rate =.169 / 12 = Number of months = 2(12) = 24 3,500 = C[1 (1 / ) 24 ] / C = (Formulas)-41

43 Future Values with Monthly Compounding Suppose you deposit \$50 a month into an account that has an APR of 9%, based on monthly compounding. How much will you have in the account in 35 years? Monthly rate =.09 / 12 =.0075 Number of months = 35(12) = 420 FV = 50[ ] /.0075 = 147, (Formulas)-42

44 Present Value with Daily Compounding You need \$15,000 in 3 years for a new car. If you can deposit money into an account that pays an APR of 5.5% based on daily compounding, how much would you need to deposit? Daily rate =.055 / 365 = Number of days = 3(365) = 1,095 FV = 15,000 / ( ) 1095 = 12, (Formulas)-43

45 Continuous Compounding Sometimes investments or loans are figured based on continuous compounding EAR = e q 1 The e is a special function on the calculator normally denoted by e x Example: What is the effective annual rate of 7% compounded continuously? EAR = e.07 1 =.0725 or 7.25% 6 (Formulas)-44

46 Interest-Only Loan - Example Consider a 5-year, interest-only loan with a 7% interest rate. The principal amount is \$10,000. Interest is paid annually. What would the stream of cash flows be? Years 1 4: Interest payments of.07(10,000) = 700 Year 5: Interest + principal = 10,700 This cash flow stream is similar to the cash flows on corporate bonds and we will talk about them in greater detail later. 6 (Formulas)-45

47 Amortized Loan with Fixed Principal Payment - Example Consider a \$50,000, 10 year loan at 8% interest. The loan agreement requires the firm to pay \$5,000 in principal each year plus interest for that year. Click on the Excel icon to see the amortization table 6 (Formulas)-46

48 Amortized Loan with Fixed Payment - Example Each payment covers the interest expense plus reduces principal Consider a 4 year loan with annual payments. The interest rate is 8% and the principal amount is \$5,000. What is the annual payment? 4 N 8 I/Y 5,000 PV CPT PMT = -1, Click on the Excel icon to see the amortization table 6 (Formulas)-47

49 Comprehensive Problem An investment will provide you with \$100 at the end of each year for the next 10 years. What is the present value of that annuity if the discount rate is 8% annually? What is the present value of the above if the payments are received at the beginning of each year? If you deposit those payments into an account earning 8%, what will the future value be in 10 years? What will the future value be if you opening the account with \$1,000 today, and then make the \$100 deposits at the end of each year? 6 (Formulas)-48

### Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued

6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute

### Finding the Payment \$20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = \$488.26

Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive \$5,000 per month in retirement.

### Discounted Cash Flow Valuation

Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute

### Chapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1

Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation

### DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS

Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need \$500 one

### Key Concepts and Skills

McGraw-Hill/Irwin Copyright 2014 by the McGraw-Hill Companies, Inc. All rights reserved. Key Concepts and Skills Be able to compute: The future value of an investment made today The present value of cash

### Chapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows

1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter

### FinQuiz Notes 2 0 1 4

Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.

### Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams

Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present

### Future Value. Basic TVM Concepts. Chapter 2 Time Value of Money. \$500 cash flow. On a time line for 3 years: \$100. FV 15%, 10 yr.

Chapter Time Value of Money Future Value Present Value Annuities Effective Annual Rate Uneven Cash Flows Growing Annuities Loan Amortization Summary and Conclusions Basic TVM Concepts Interest rate: abbreviated

### Chapter 5 Discounted Cash Flow Valuation

Chapter Discounted Cash Flow Valuation Compounding Periods Other Than Annual Let s examine monthly compounding problems. Future Value Suppose you invest \$9,000 today and get an interest rate of 9 percent

### Business 2019. Fundamentals of Finance, Chapter 6 Solution to Selected Problems

Business 209 Fundamentals of Finance, Chapter 6 Solution to Selected Problems 8. Calculating Annuity Values You want to have \$50,000 in your savings account five years from now, and you re prepared to

### HOW TO CALCULATE PRESENT VALUES

Chapter 2 HOW TO CALCULATE PRESENT VALUES Brealey, Myers, and Allen Principles of Corporate Finance 11th Edition McGraw-Hill/Irwin Copyright 2014 by The McGraw-Hill Companies, Inc. All rights reserved.

### Ch. Ch. 5 Discounted Cash Flows & Valuation In Chapter 5,

Ch. 5 Discounted Cash Flows & Valuation In Chapter 5, we found the PV & FV of single cash flows--either payments or receipts. In this chapter, we will do the same for multiple cash flows. 2 Multiple Cash

### Chapter 4. The Time Value of Money

Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return

### Chapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.

Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values

### 5. Time value of money

1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned

### Key Concepts and Skills. Chapter Outline. Basic Definitions. Future Values. Future Values: General Formula 1-1. Chapter 4

Key Concepts and Skills Chapter 4 Introduction to Valuation: The Time Value of Money Be able to compute the future value of an investment made today Be able to compute the present value of cash to be received

### FinQuiz Notes 2 0 1 5

Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.

### The Time Value of Money

The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future

### 1. If you wish to accumulate \$140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?

Chapter 2 - Sample Problems 1. If you wish to accumulate \$140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will \$247,000 grow to be in

### International Financial Strategies Time Value of Money

International Financial Strategies 1 Future Value and Compounding Future value = cash value of the investment at some point in the future Investing for single period: FV. Future Value PV. Present Value

### Problem Set: Annuities and Perpetuities (Solutions Below)

Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save \$300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years

### Chapter 2 Present Value

Chapter 2 Present Value Road Map Part A Introduction to finance. Financial decisions and financial markets. Present value. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted

### CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY

CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: \$5,000.08 = \$400 So after 10 years you will have: \$400 10 = \$4,000 in interest. The total balance will be

### Topics. Chapter 5. Future Value. Future Value - Compounding. Time Value of Money. 0 r = 5% 1

Chapter 5 Time Value of Money Topics 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series

### Chapter 4: Time Value of Money

FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. \$100 (1.10)

### Key Concepts and Skills

Chapters 5 and 6 Calculators Time Value of Money and Discounted Cash Flow Valuation McGraw-Hill/Irwin Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved. Key Concepts and Skills Be able

### FIN 3000. Chapter 6. Annuities. Liuren Wu

FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate

### PowerPoint. to accompany. Chapter 5. Interest Rates

PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When

### CHAPTER 6 DISCOUNTED CASH FLOW VALUATION

CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and

### Oklahoma State University Spears School of Business. Time Value of Money

Oklahoma State University Spears School of Business Time Value of Money Slide 2 Time Value of Money Which would you rather receive as a sign-in bonus for your new job? 1. \$15,000 cash upon signing the

### CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value

### 3. Time value of money. We will review some tools for discounting cash flows.

1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned

### PRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.

PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values

### Discounted Cash Flow Valuation

BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?

### NPV calculation. Academic Resource Center

NPV calculation Academic Resource Center 1 NPV calculation PV calculation a. Constant Annuity b. Growth Annuity c. Constant Perpetuity d. Growth Perpetuity NPV calculation a. Cash flow happens at year

### How To Read The Book \"Financial Planning\"

Time Value of Money Reading 5 IFT Notes for the 2015 Level 1 CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The Future Value

### CHAPTER 2. Time Value of Money 2-1

CHAPTER 2 Time Value of Money 2-1 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 2-2 Time lines 0 1 2 3

### TIME VALUE OF MONEY (TVM)

TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate

### Chapter 3. Understanding The Time Value of Money. Prentice-Hall, Inc. 1

Chapter 3 Understanding The Time Value of Money Prentice-Hall, Inc. 1 Time Value of Money A dollar received today is worth more than a dollar received in the future. The sooner your money can earn interest,

### CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Solutions to Questions and Problems NOTE: All-end-of chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability

### Chapter 4 Time Value of Money ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 4 Time Value of Money ANSWERS TO END-OF-CHAPTER QUESTIONS 4-1 a. PV (present value) is the value today of a future payment, or stream of payments, discounted at the appropriate rate of interest.

### CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY

CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount

### Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The

### Time Value Conepts & Applications. Prof. Raad Jassim

Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on

### Finance 331 Corporate Financial Management Week 1 Week 3 Note: For formulas, a Texas Instruments BAII Plus calculator was used.

Chapter 1 Finance 331 What is finance? - Finance has to do with decisions about money and/or cash flows. These decisions have to do with money being raised or used. General parts of finance include: -

### The time value of money: Part II

The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods

### Exercise 1 for Time Value of Money

Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing

### Chapter The Time Value of Money

Chapter The Time Value of Money PPT 9-2 Chapter 9 - Outline Time Value of Money Future Value and Present Value Annuities Time-Value-of-Money Formulas Adjusting for Non-Annual Compounding Compound Interest

### How to calculate present values

How to calculate present values Back to the future Chapter 3 Discounted Cash Flow Analysis (Time Value of Money) Discounted Cash Flow (DCF) analysis is the foundation of valuation in corporate finance

### Appendix C- 1. Time Value of Money. Appendix C- 2. Financial Accounting, Fifth Edition

C- 1 Time Value of Money C- 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future

### Time Value of Money. Background

Time Value of Money (Text reference: Chapter 4) Topics Background One period case - single cash flow Multi-period case - single cash flow Multi-period case - compounding periods Multi-period case - multiple

### Time Value of Money. If you deposit \$100 in an account that pays 6% annual interest, what amount will you expect to have in

Time Value of Money Future value Present value Rates of return 1 If you deposit \$100 in an account that pays 6% annual interest, what amount will you expect to have in the account at the end of the year.

### TIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!

TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest \$1,000 it becomes \$1,050 \$1,000 return of \$50 return on Factors to consider when assessing Return on

### Check off these skills when you feel that you have mastered them.

Chapter Objectives Check off these skills when you feel that you have mastered them. Know the basic loan terms principal and interest. Be able to solve the simple interest formula to find the amount of

### How To Value Cash Flow

Lecture: II 1 Time Value of Money (TVM) A dollar today is more valuable than a dollar sometime in the future...! The intuitive basis for present value what determines the effect of timing on the value

### CHAPTER 9 Time Value Analysis

Copyright 2008 by the Foundation of the American College of Healthcare Executives 6/11/07 Version 9-1 CHAPTER 9 Time Value Analysis Future and present values Lump sums Annuities Uneven cash flow streams

### Solutions Manual. Corporate Finance. Ross, Westerfield, and Jaffe 9 th edition

Solutions Manual Corporate Finance Ross, Westerfield, and Jaffe 9 th edition 1 CHAPTER 1 INTRODUCTION TO CORPORATE FINANCE Answers to Concept Questions 1. In the corporate form of ownership, the shareholders

### Topics Covered. Compounding and Discounting Single Sums. Ch. 4 - The Time Value of Money. The Time Value of Money

Ch. 4 - The Time Value of Money Topics Covered Future Values Present Values Multiple Cash Flows Perpetuities and Annuities Effective Annual Interest Rate Inflation & Time Value The Time Value of Money

### Financial Management Spring 2012

3-1 Financial Management Spring 2012 Week 4 How to Calculate Present Values III 4-1 3-2 Topics Covered More Shortcuts Growing Perpetuities and Annuities How Interest Is Paid and Quoted 4-2 Example 3-3

### Goals. The Time Value of Money. First example. Compounding. Economics 71a Spring 2007 Mayo, Chapter 7 Lecture notes 3.1

Goals The Time Value of Money Economics 7a Spring 2007 Mayo, Chapter 7 Lecture notes 3. More applications Compounding PV = present or starting value FV = future value R = interest rate n = number of periods

### Integrated Case. 5-42 First National Bank Time Value of Money Analysis

Integrated Case 5-42 First National Bank Time Value of Money Analysis You have applied for a job with a local bank. As part of its evaluation process, you must take an examination on time value of money

### You just paid \$350,000 for a policy that will pay you and your heirs \$12,000 a year forever. What rate of return are you earning on this policy?

1 You estimate that you will have \$24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each

### THE TIME VALUE OF MONEY

QUANTITATIVE METHODS THE TIME VALUE OF MONEY Reading 5 http://proschool.imsindia.com/ 1 Learning Objective Statements (LOS) a. Interest Rates as Required rate of return, Discount Rate and Opportunity Cost

### CHAPTER 4. The Time Value of Money. Chapter Synopsis

CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money

### 1.2-1.3 Time Value of Money and Discounted Cash Flows

1.-1.3 ime Value of Money and Discounted ash Flows ime Value of Money (VM) - the Intuition A cash flow today is worth more than a cash flow in the future since: Individuals prefer present consumption to

### This is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1).

This is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Chapter 6. Time Value of Money Concepts. Simple Interest 6-1. Interest amount = P i n. Assume you invest \$1,000 at 6% simple interest for 3 years.

6-1 Chapter 6 Time Value of Money Concepts 6-2 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in

### Chapter 4. The Time Value of Money

Chapter 4 The Time Value of Money 4-2 Topics Covered Future Values and Compound Interest Present Values Multiple Cash Flows Perpetuities and Annuities Inflation and Time Value Effective Annual Interest

### CHAPTER 5. Interest Rates. Chapter Synopsis

CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)

### Using Financial Calculators

Chapter 4 Discounted Cash Flow Valuation 4B-1 Appendix 4B Using Financial Calculators This appendix is intended to help you use your Hewlett-Packard or Texas Instruments BA II Plus financial calculator

### 2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?

CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equal-sized

### Solutions to Time value of money practice problems

Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if \$2,500 is deposited today and the account earns 4% interest,

### Chapter 3 Present Value

Chapter 3 Present Value MULTIPLE CHOICE 1. Which of the following cannot be calculated? a. Present value of an annuity. b. Future value of an annuity. c. Present value of a perpetuity. d. Future value

### PV Tutorial Using Calculator (Sharp EL-738)

EYK 15-2 PV Tutorial Using Calculator (Sharp EL-738) TABLE OF CONTENTS Calculator Configuration and Abbreviations Exercise 1: Exercise 2: Exercise 3: Exercise 4: Exercise 5: Exercise 6: Exercise 7: Exercise

### Appendix. Time Value of Money. Financial Accounting, IFRS Edition Weygandt Kimmel Kieso. Appendix C- 1

C Time Value of Money C- 1 Financial Accounting, IFRS Edition Weygandt Kimmel Kieso C- 2 Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount.

### Chapter 8. Present Value Mathematics for Real Estate

Chapter 8 Present Value Mathematics for Real Estate Real estate deals almost always involve cash amounts at different points in time. Examples: Buy a property now, sell it later. Sign a lease now, pay

### CALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time

CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses

### Present Value and Annuities. Chapter 3 Cont d

Present Value and Annuities Chapter 3 Cont d Present Value Helps us answer the question: What s the value in today s dollars of a sum of money to be received in the future? It lets us strip away the effects

### EXAM 2 OVERVIEW. Binay Adhikari

EXAM 2 OVERVIEW Binay Adhikari FEDERAL RESERVE & MARKET ACTIVITY (BS38) Definition 4.1 Discount Rate The discount rate is the periodic percentage return subtracted from the future cash flow for computing

### F V P V = F V = P (1 + r) n. n 1. FV n = C (1 + r) i. i=0. = C 1 r. (1 + r) n 1 ]

1 Week 2 1.1 Recap Week 1 P V = F V (1 + r) n F V = P (1 + r) n 1.2 FV of Annuity: oncept 1.2.1 Multiple Payments: Annuities Multiple payments over time. A special case of multiple payments: annuities

### LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs.

LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs. 1. The minimum rate of return that an investor must receive in order to invest in a project is most likely

### Chapter F: Finance. Section F.1-F.4

Chapter F: Finance Section F.1-F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given

### Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction...2 2. Interest Rates: Interpretation...2 3. The Future Value of a Single Cash Flow...4 4. The

### Ing. Tomáš Rábek, PhD Department of finance

Ing. Tomáš Rábek, PhD Department of finance For financial managers to have a clear understanding of the time value of money and its impact on stock prices. These concepts are discussed in this lesson,

### Main TVM functions of a BAII Plus Financial Calculator

Main TVM functions of a BAII Plus Financial Calculator The BAII Plus calculator can be used to perform calculations for problems involving compound interest and different types of annuities. (Note: there

### Ehrhardt Chapter 8 Page 1

Chapter 2 Time Value of Money 1 Time Value Topics Future value Present value Rates of return Amortization 2 Time lines show timing of cash flows. 0 1 2 3 I% CF 0 CF 1 CF 2 CF 3 Tick marks at ends of periods,

### 1.3.2015 г. D. Dimov. Year Cash flow 1 \$3,000 2 \$5,000 3 \$4,000 4 \$3,000 5 \$2,000

D. Dimov Most financial decisions involve costs and benefits that are spread out over time Time value of money allows comparison of cash flows from different periods Question: You have to choose one of

Review for Exam 1 Instructions: Please read carefully The exam will have 20 multiple choice questions and 4 work problems. Questions in the multiple choice section will be either concept or calculation

### Section 8.1. I. Percent per hundred

1 Section 8.1 I. Percent per hundred a. Fractions to Percents: 1. Write the fraction as an improper fraction 2. Divide the numerator by the denominator 3. Multiply by 100 (Move the decimal two times Right)

### 1. Annuity a sequence of payments, each made at equally spaced time intervals.

Ordinary Annuities (Young: 6.2) In this Lecture: 1. More Terminology 2. Future Value of an Ordinary Annuity 3. The Ordinary Annuity Formula (Optional) 4. Present Value of an Ordinary Annuity More Terminology

### Solutions to Problems: Chapter 5

Solutions to Problems: Chapter 5 P5-1. Using a time line LG 1; Basic a, b, and c d. Financial managers rely more on present value than future value because they typically make decisions before the start

### The Time Value of Money C H A P T E R N I N E

The Time Value of Money C H A P T E R N I N E Figure 9-1 Relationship of present value and future value PPT 9-1 \$1,000 present value \$ 10% interest \$1,464.10 future value 0 1 2 3 4 Number of periods Figure

### The Time Value of Money

The following is a review of the Quantitative Methods: Basic Concepts principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: The Time

### TIME VALUE OF MONEY. In following we will introduce one of the most important and powerful concepts you will learn in your study of finance;

In following we will introduce one of the most important and powerful concepts you will learn in your study of finance; the time value of money. It is generally acknowledged that money has a time value.