Numeraire-invariant option pricing

Size: px
Start display at page:

Download "Numeraire-invariant option pricing"

Transcription

1 Numeraire-invariant option pricing Farshid Jamshidian NIB Capital Bank N.V. FELAB, University of Twente Nov-04 Numeraire-invariant option pricing p.1/20

2 A conceptual definition of an option An Option can be viewed as a pair O = (T,O) consisting of an Expiry T and a Payoff O (in base currency) paid at T. For a European option, the expiry T is deterministic. In general, T is a stopping time bounded by some m > 0. American and Bermudan options: T is the optimal exercise time. Barrier options with rebate: T is the first passage time to the barrier. Credit derivatives with recovery : T is the default time. The payoff O is known at time T : random variable O is measurable w.r. to σ-algebra F T of events at or before T : F T := {Λ F : Λ {T t} F t }. p.2/20

3 A conceptual definition of an option The definition so far depends only on the underlying filtration (F t ). To talk about the option price, a probability measure P and an integrability condition are required. Think of a Numeraire β as a claim which pays no dividend and has a positive price β t > 0 at all times t m, e.g., a zero-dividend stock, or the m-maturity zero-coupon bond. To each numeraire β, there is associated a Numeraire Measure P β, characterized by the property that if B is any other numeraire, then the relative price process (B t /β t ) is a (right-continuous) P β -martingale. The required integrability condition on option O = (T,O) is this: O/β T is P β -integrable for some numeraire β. p.3/20

4 Numeraire invariance of the option definition The important aspect of this integrability condition is that if it holds for some numeraire, then it holds for all numeraires: B 0 β 0 E B [ O B T ] = E β [ O B T B m β m ] (change of numeraire) = E β [E β [ O B T B m β m F T ]] (iterating expectation) = E β [ O B T E β [ B m β m F T ]] (by F T measurability of O B T ) = E β [ O B T B T β T ] (optional sampling theorem) = E β [O/β T ] <. p.4/20

5 Price process O t of an option Consider investing the option payoff O at expiry T in a numeraire β and holding this position until the terminal date m. We end up with a claim that pays β m O/β T at time m. At a time and state before expiry (i.e., t < T(ω)), the option has not yet been invested in the numeraire, so this claim is identical with the option itself. We are thus forced to define the option price O t to be the price of this claim, i.e., β t E β [O/β T F t ]. After expiry, the option has ceased to exist and has no price. In this case it is convenient to define the option price to be zero. We thus arrive at the following definition of an option price: O t := 1 t T β t E β [ O β T F t ]. As before, this definition is independent of choice of numeraire. p.5/20

6 Price Transitivity Law Using the optional sampling theorem, the option price at any stopping time τ (bounded by m) is given by O τ = 1 τ T β τ E β [ O β T F τ ] a.s. The pair (τ, O τ ) is a τ-expiry option with payoff O τ. Let S be another stopping time. What can we say about the time S price (τ, O τ ) S of this option? When S τ T, we simply have (τ, O τ ) S = O S. That is, pricing to time τ and then pricing to time S is the same as pricing directly to time S. This follows from the fact that if (M t ) is a martingale, then optional sampling theorem and the law of iterated expectations combine to yield M S = E[M T F τ F S ]. p.6/20

7 Practical operations on options Let O 1 = (T 1,O 1 ) and O 2 = (T 2,O 2 ) be two options. Define Sum: O 1 + O 2 := (T 1 T 2, OT 1 1 T 2 + OT 2 1 T 2 ). By price transitivity law, the sum operator is associative and the price operator is linear: if T T 1 T 2, then (O 1 + O 2 ) T = OT 1 + O2 T. Rollover: O 1 O 2 := (T 2,O 1 O 2 /OT 2 1 ). Rolling O 1 over O 2, i.e., investing at T 1 the first option payoff O 1 in the second option O 2, assuming here T 1 T 2, O 2 > 0. T -expiry swaption: (T, (OT 1 O2 T )+ ), T T 1 T 2. Option to swap, i.e., exchange, O 2 with O 1 at T. p.7/20

8 Indistinguishable options Let O 1 = (T 1,O 1 ) and O 2 = (T 2,O 2 ) be two options. O 1 and O 2 are Equivalent if T 1 = T 2 a.s. and O 1 = O 2 a.s. O 1 and O 2 are Indistinguishable if price processes (Ot 1 ) and (Ot 2 ) are indistinguishable, i.e., a.s. Ot 1 = Ot 2 all t. Easy to see two equivalent options are indistinguishable. Converse is not true, e.g., O 2 is obtained from O 1 by postponing zero payments of O 1. Theorem: Options O 1 and O 2 are indistinguishable if and only if O 1 = O 2 a.s. and {T 1 T 2 } {O 1 = 0} a.s. So, T 1 and T 2 need not be the same, but they differ only at zero payments. p.8/20

9 Nonnegative options and nonnegative arbitrage Assume option O = (T, O) is Nonnegative, i.e., O 0 a.s. Then (In practice, most options are nonnegative, but are not positive either, for they can have zero payoff in some states (i.e., P[O = 0] > 0), e.g., call and put options and swaptions.) Obviously, O t 0 a.s. all t, and O 0 > 0 if P[O > 0] > 0. Right continuity implies: a.s. O t 0 all t. Nonnegative Arbitrage: Once the option price becomes zero, it stays zero thereafter. More precisely, for almost all paths ω, if O t (ω) = 0, then O s (ω) = 0 for all s t. In particular, for almost all paths ω, if O(ω) > 0, then O t (ω) > 0 for all t T(ω). In particular, if β is a numeraire, then a.s. β t > 0 all t. p.9/20

10 Semipositive options A nonnegative option O is Semipositive if its price is positive before expiry T, i.e., at each time t, O t > 0 a.s. on {t < T }. Theorem: If O is a semipositive, then a.s. O t > 0 on {t < T } all t, i.e., for almost all paths ω, O t (ω) > 0 at all times t < T(ω). A basic result on nonnegative options: Let O = (T,O) be a nonnegative option. Then, there exists up to equivalence a unique semipositive option that is indistinguishable from O, namely the option (T 0,O), where T 0 := inf{t > 0 : O t = 0}. (It turns out that O is automatically F T 0-measurable - in fact, O = O T 0.) p.10/20

11 Trigger options A progressively measurable process (Z t ) is a Payoff Process if a.s. Z t β t all t for some numeraire β. Example: Z t = (β t K) +, K > 0. Proposition: Let (Z t ) be a payoff process. Then for any numeraire β, the β-deflated process (Z t /β t ) is P β -class D. In particular, for any stopping time T, the pair (T,Z T ) is an option. If (Z t ) is a payoff process and T a stopping time, we refer to the T -expiry option (T,Z T ) as a Z -Trigger Option. Examples: American and Bermudan options, barrier options, credit derivatives with recovery. p.11/20

12 Trigger option convergence theorem Right-continuous version: Let (Z t ) be a right continuous payoff process and (T n ) n=1 be a decreasing sequence of stopping times converging to a stopping time T, i.e., T n T. Then, a.s., (T n,z Tn ) t (T,Z T ) t, all t. Continuous version: Let (Z t ) be a continuous adapted process that is dominated by a continuous numeraire, and (T n ) n=1 be a sequence of stopping times converging to a stopping time T. Then, a.s., (T n,z Tn ) t (T,Z T ) t, all t. These follow from a similar statement about convergence of prices of a sequence of options, which in turn is a simple consequence of the dominated convergence theorem. p.12/20

13 The Snell envelope The Snell Envelope process of a right continuous payoff process (Z t ) is defined by V t := sup T t (T,Z T ) t, where supremum is taken over the set all stopping times T satisfying t T m. Theorem: (V t ) is a right continuous payoff process, and for all t s, (s,v s ) t = sup T s (T,Z T ) t. Corollary: (V t ) is a superclaim, i.e., for t s, we have V t := sup(t,z T ) t sup(t,z T ) t = (s,v s ) t. T t T s p.13/20

14 Definition of American option Fix t [0, m]. In the definition of Snell envelop, the supremum sup T t (T, Z T ) t is not necessarily attained at any stopping time T. If not, the American option is not defined. However, if the supreme is attained at some stopping time, the first stopping time at which it is attained is the post t-optimal stopping time T t, defined as the first time s t such that Z s reaches V s. A payoff process (Z t ) is American if for each t, the supremum sup T t (T,Z T ) t is attained at some stopping time. The supremum will then actually be attained T t, i.e., V t = (T t,z Tt ) t, where T t := inf{s [t,m] : Z s = V s }. For each s, we then refer to the trigger option A s := (T s,z Ts ) as the Post-s American Option. Note, A t t = V t. The American option A s can be exercised only at or after s. So, A 0 := (T 0, Z T0 ) is the American option that can be exercised at any time. If A 0 is not exercised by time s, then it becomes the same as A s. The American Stream (A s ) is regenerative" in this sense. p.14/20

15 American option stream pricing formula Theorem: Let (Z t ) be an American payoff process. Then for t s, we have a.s. A s t = sup(t, Z T ) t, t s; T s while for s t, we have a.s. A s t = 1 t Ts V t, s t. In particular, A 0 t = 1 t T0 V t, all t. The first formula follows from the formula (s, V s ) t = sup T s (T, Z T ) t valid for t s. The second formula follows from the easily verified fact that 1 t Ts = 1 t Ts =T t for s t. p.15/20

16 Doob-Meyer decomposition of superclaims A Superclaim is a right-continuous payoff process (V t ) such that V t (s,v s ) t a.s. for all t s. A Supernumeraire is a positive superclaim. As we saw, the Snell envelope is a superclaim. Proposition: A right-continuous payoff process (V t ) is a superclaim if and only if the process (V t /β t ) is a right-continuous P β -supermartingale for some (hence all) numeraire β. Theorem: Let (V t ) be a supernumeraire and β be a numeraire. Then there exist a unique numeraire B with B 0 = V 0 and a decreasing predictable process (A t ) such that a.s. V t = β t A t + B t all t. p.16/20

17 Multiplicative minimax duality Let (Z t ) be a positive right-continuous payoff process. We know the Snell envelope (V t ) is then a supernumeraire. We call a numeraire B a Domineering Numeraire if B 0 = V 0 and B t V t for all t. The Doob-Meyer decomposition above implies that there are many domineering numeraires. Lemma: Let B be a domineering numeraire. Then Theorem: We have a.s. all t, sup( Z t ) = 1. t 0 B t V t = inf β te β [sup( Z s ) F t ]. β C + β s s t p.17/20

18 Multiplicative minimax duality In particular, V 0 = inf β β 0 E β [sup t 0 (Z t /β t )]. The infimum is attained at any domineering numeraire. So, β 0 E β [sup t 0 (Z t /β t )] is an upper bound for the American option price V 0, for any numeraire β. Such an upper bound can be computed by Monte-Carlo simulation. An suitable numeraire must first be chosen. These results extend to nonnegative payoff processes (Z t ). An additive version of minimax duality was previously derived by Rogers (2001) and Haugh & Kogan (2001), and further studied in Andersen & Broadie (2001), Joshi & Theis (2002), and Kolodko & Schoenmakers (2003). p.18/20

19 Multiplicative Doob-Meyer decomposition A Local Numeraire is an adapted, right continuous, positive process (B t ) such that (B t /β t ) is a P β -local martingale for some (hence all) numeraire β. Theorem: Let (V t ) be a supernumeraire. Then there exists a unique decomposition V t = D t B t, where (D t ) is a decreasing predictable process and (B t ) is a local numeraire with B 0 = V 0. A supernumeraire (V t ) Multiplicative, if the local numeraire (B t ) in the multiplicative decomposition V t = D t B t is actually the price process of a numeraire B. We then refer to this numeraire B as the Rollover Numeraire associated to (V t ). It is clearly a domineering numeraire, and as such relevant to minimax duality. p.19/20

20 An application of multiplicative decomposition Corollary: Assume that discount factors satisfy (s, 1) t 1 for all t s. Then there exists a unique increasing, predictable, local numeraire (B t ) with B 0 = 1. The assumption is equivalent to the identically one process being a supernumeraire. Applying the multiplicative Doob-Meyer decomposition, we obtain a decomposition 1 = D t B t. The resulting local numeraire (B t ) is increasing, as it equals (1/D t ). This increasing local numeraire (B t ) can be interpreted as the continuous money market account. If it is further assumed to be absolutely continuous, then, taking its logarithmic derivative, we obtain the instantaneous interest-rate process r t, which is nonnegative and satisfies B t = exp( t 0 r sds). p.20/20

Invariant Option Pricing & Minimax Duality of American and Bermudan Options

Invariant Option Pricing & Minimax Duality of American and Bermudan Options Invariant Option Pricing & Minimax Duality of American and Bermudan Options Farshid Jamshidian NIB Capital Bank N.V. FELAB, Applied Math Dept., Univ. of Twente April 2005, version 1.0 Invariant Option

More information

Numeraire-invariant option pricing & american, bermudan, and trigger stream rollover 1

Numeraire-invariant option pricing & american, bermudan, and trigger stream rollover 1 Numeraire-invariant option pricing & american, bermudan, and trigger stream rollover FARSHID JAMSHIDIAN Version.6, 9-July-2004 NIB Capital Bank, farshid.jamshidian@nibcapital.com FELAB, Dept. of Applied

More information

Chapter 1: Financial Markets and Financial Derivatives

Chapter 1: Financial Markets and Financial Derivatives Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic

More information

Martingale Pricing Applied to Options, Forwards and Futures

Martingale Pricing Applied to Options, Forwards and Futures IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

More information

Chapter 7. BANDIT PROBLEMS.

Chapter 7. BANDIT PROBLEMS. Chapter 7. BANDIT PROBLEMS. Bandit problems are problems in the area of sequential selection of experiments, and they are related to stopping rule problems through the theorem of Gittins and Jones (974).

More information

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Proceedings of Symposia in Applied Mathematics Volume 00, 1997 Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Freddy Delbaen and Walter Schachermayer Abstract. The

More information

From Binomial Trees to the Black-Scholes Option Pricing Formulas

From Binomial Trees to the Black-Scholes Option Pricing Formulas Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

No-arbitrage conditions for cash-settled swaptions

No-arbitrage conditions for cash-settled swaptions No-arbitrage conditions for cash-settled swaptions Fabio Mercurio Financial Engineering Banca IMI, Milan Abstract In this note, we derive no-arbitrage conditions that must be satisfied by the pricing function

More information

Simple Arbitrage. Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila. Christian Bender. Saarland University

Simple Arbitrage. Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila. Christian Bender. Saarland University Simple Arbitrage Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila Saarland University December, 8, 2011 Problem Setting Financial market with two assets (for simplicity) on

More information

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling

More information

Bubbles and futures contracts in markets with short-selling constraints

Bubbles and futures contracts in markets with short-selling constraints Bubbles and futures contracts in markets with short-selling constraints Sergio Pulido, Cornell University PhD committee: Philip Protter, Robert Jarrow 3 rd WCMF, Santa Barbara, California November 13 th,

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Option Properties. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets. (Hull chapter: 9)

Option Properties. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets. (Hull chapter: 9) Option Properties Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 9) Liuren Wu (Baruch) Option Properties Options Markets 1 / 17 Notation c: European call option price.

More information

Computational Finance Options

Computational Finance Options 1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to

More information

A short note on American option prices

A short note on American option prices A short note on American option Filip Lindskog April 27, 2012 1 The set-up An American call option with strike price K written on some stock gives the holder the right to buy a share of the stock (exercise

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Introduction to Mathematical Finance

Introduction to Mathematical Finance Introduction to Mathematical Finance Martin Baxter Barcelona 11 December 2007 1 Contents Financial markets and derivatives Basic derivative pricing and hedging Advanced derivatives 2 Banking Retail banking

More information

Stocks paying discrete dividends: modelling and option pricing

Stocks paying discrete dividends: modelling and option pricing Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends

More information

Robust pricing and hedging of double no-touch options

Robust pricing and hedging of double no-touch options Robust pricing and hedging of double no-touch options Alexander M. G. Cox Dept. of Mathematical Sciences, University of Bath Bath BA2 7AY, UK Jan Ob lój Oxford-Man Institute of Quantitative Finance and

More information

On the Snell envelope approach to optimal switching and pricing Bermudan options

On the Snell envelope approach to optimal switching and pricing Bermudan options On the Snell envelope approach to optimal switching and pricing Bermudan options Ali Hamdi September 22, 2011 Abstract This thesis consists of two papers related to systems of Snell envelopes. The rst

More information

Option Valuation. Chapter 21

Option Valuation. Chapter 21 Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

Cash-settled swaptions How wrong are we?

Cash-settled swaptions How wrong are we? Cash-settled swaptions How wrong are we? Marc Henrard Quantitative Research - OpenGamma 7th Fixed Income Conference, Berlin, 7 October 2011 ... Based on: Cash-settled swaptions: How wrong are we? Available

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Infinitely Repeated Games with Discounting Ù

Infinitely Repeated Games with Discounting Ù Infinitely Repeated Games with Discounting Page 1 Infinitely Repeated Games with Discounting Ù Introduction 1 Discounting the future 2 Interpreting the discount factor 3 The average discounted payoff 4

More information

Pricing American Options: A Duality Approach

Pricing American Options: A Duality Approach Pricing American Options: A Duality Approach Martin B. Haugh and Leonid Kogan December 2001 Abstract We develop a new method for pricing American options. The main practical contribution of this paper

More information

A Martingale System Theorem for Stock Investments

A Martingale System Theorem for Stock Investments A Martingale System Theorem for Stock Investments Robert J. Vanderbei April 26, 1999 DIMACS New Market Models Workshop 1 Beginning Middle End Controversial Remarks Outline DIMACS New Market Models Workshop

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Finance 400 A. Penati - G. Pennacchi. Option Pricing

Finance 400 A. Penati - G. Pennacchi. Option Pricing Finance 400 A. Penati - G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary

More information

American Capped Call Options on Dividend-Paying Assets

American Capped Call Options on Dividend-Paying Assets American Capped Call Options on Dividend-Paying Assets Mark Broadie Columbia University Jerome Detemple McGill University and CIRANO This article addresses the problem of valuing American call options

More information

Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.

Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero

More information

Bond Options, Caps and the Black Model

Bond Options, Caps and the Black Model Bond Options, Caps and the Black Model Black formula Recall the Black formula for pricing options on futures: C(F, K, σ, r, T, r) = Fe rt N(d 1 ) Ke rt N(d 2 ) where d 1 = 1 [ σ ln( F T K ) + 1 ] 2 σ2

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

Caps and Floors. John Crosby

Caps and Floors. John Crosby Caps and Floors John Crosby Glasgow University My website is: http://www.john-crosby.co.uk If you spot any typos or errors, please email me. My email address is on my website Lecture given 19th February

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

EC372 Bond and Derivatives Markets Topic #5: Options Markets I: fundamentals

EC372 Bond and Derivatives Markets Topic #5: Options Markets I: fundamentals EC372 Bond and Derivatives Markets Topic #5: Options Markets I: fundamentals R. E. Bailey Department of Economics University of Essex Outline Contents 1 Call options and put options 1 2 Payoffs on options

More information

Valuation of the Surrender Option in Life Insurance Policies

Valuation of the Surrender Option in Life Insurance Policies Valuation of the Surrender Option in Life Insurance Policies Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2010 Valuing Surrender Options Contents A. Motivation and

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

Optimal exercise of executive stock options 1

Optimal exercise of executive stock options 1 Optimal exercise of executive stock options 1 L.C.G. Rogers & José Scheinkman University of Cambridge & Princeton University 1 Introduction. In the absence of frictions if a portfolio strategy replicates

More information

In which Financial Markets do Mutual Fund Theorems hold true?

In which Financial Markets do Mutual Fund Theorems hold true? In which Financial Markets do Mutual Fund Theorems hold true? W. Schachermayer M. Sîrbu E. Taflin Abstract The Mutual Fund Theorem (MFT) is considered in a general semimartingale financial market S with

More information

Master s Thesis. Pricing Constant Maturity Swap Derivatives

Master s Thesis. Pricing Constant Maturity Swap Derivatives Master s Thesis Pricing Constant Maturity Swap Derivatives Thesis submitted in partial fulfilment of the requirements for the Master of Science degree in Stochastics and Financial Mathematics by Noemi

More information

Rational Bounds on the Prices of Exotic Options

Rational Bounds on the Prices of Exotic Options Rational Bounds on the Prices of Exotic Options Anthony Neuberger and Stewart Hodges London Business School and University of Warwick August 1998 corresponding author: Anthony Neuberger London Business

More information

Math 774 - Interest Rate and Credit Risk Modeling

Math 774 - Interest Rate and Credit Risk Modeling Math 774 - Interest Rate and Credit Risk Modeling M. R. Grasselli and T. R. Hurd Department of Mathematics and Statistics McMaster University Hamilton, ON, L8S 4K1 January 5, 2015 2 Contents 1 Introduction

More information

7: The CRR Market Model

7: The CRR Market Model Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

More information

Embedded Value in Life Insurance

Embedded Value in Life Insurance Embedded Value in Life Insurance Gilberto Castellani Università di Roma La Sapienza Massimo De Felice Università di Roma La Sapienza Franco Moriconi Università di Perugia Claudio Pacati Università di Siena

More information

The Discrete Binomial Model for Option Pricing

The Discrete Binomial Model for Option Pricing The Discrete Binomial Model for Option Pricing Rebecca Stockbridge Program in Applied Mathematics University of Arizona May 4, 2008 Abstract This paper introduces the notion of option pricing in the context

More information

Hedging bounded claims with bounded outcomes

Hedging bounded claims with bounded outcomes Hedging bounded claims with bounded outcomes Freddy Delbaen ETH Zürich, Department of Mathematics, CH-892 Zurich, Switzerland Abstract. We consider a financial market with two or more separate components

More information

Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25

Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25 Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

More information

CDS Market Formulas and Models

CDS Market Formulas and Models CDS Market Formulas and Models Damiano Brigo Credit Models Banca IMI Corso Matteotti 6 20121 Milano, Italy damiano.brigo@bancaimi.it Massimo Morini Università di Milano Bicocca Piazza dell Ateneo Nuovo

More information

Essays in Financial Mathematics

Essays in Financial Mathematics Essays in Financial Mathematics Essays in Financial Mathematics Kristoffer Lindensjö Dissertation for the Degree of Doctor of Philosophy, Ph.D. Stockholm School of Economics, 2013. Dissertation title:

More information

The fundamental definition of the Solvency Capital Requirement in Solvency II

The fundamental definition of the Solvency Capital Requirement in Solvency II The fundamental definition of the Solvency Capital Requirement in Solvency II Marcus Christiansen und Andreas Niemeyer Preprint Series: 2012-02 Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

Disability insurance: estimation and risk aggregation

Disability insurance: estimation and risk aggregation Disability insurance: estimation and risk aggregation B. Löfdahl Department of Mathematics KTH, Royal Institute of Technology May 2015 Introduction New upcoming regulation for insurance industry: Solvency

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Barrier Options. Peter Carr

Barrier Options. Peter Carr Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?

More information

WACC and a Generalized Tax Code

WACC and a Generalized Tax Code WACC and a Generalized Tax Code Sven Husmann, Lutz Kruschwitz and Andreas Löffler version from 10/06/2001 ISSN 0949 9962 Abstract We extend the WACC approach to a tax system having a firm income tax and

More information

The Two-Factor Hull-White Model : Pricing and Calibration of Interest Rates Derivatives

The Two-Factor Hull-White Model : Pricing and Calibration of Interest Rates Derivatives The Two-Factor Hull-White Model : Pricing and Calibration of Interest Rates Derivatives Arnaud Blanchard Under the supervision of Filip Lindskog 2 Abstract In this paper, we study interest rate models

More information

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

Miscellaneous. Simone Freschi freschi.simone@gmail.com Tommaso Gabriellini tommaso.gabriellini@mpscs.it. Università di Siena

Miscellaneous. Simone Freschi freschi.simone@gmail.com Tommaso Gabriellini tommaso.gabriellini@mpscs.it. Università di Siena Miscellaneous Simone Freschi freschi.simone@gmail.com Tommaso Gabriellini tommaso.gabriellini@mpscs.it Head of Global MPS Capital Services SpA - MPS Group Università di Siena ini A.A. 2014-2015 1 / 1 A

More information

Market Value of Insurance Contracts with Profit Sharing 1

Market Value of Insurance Contracts with Profit Sharing 1 Market Value of Insurance Contracts with Profit Sharing 1 Pieter Bouwknegt Nationale-Nederlanden Actuarial Dept PO Box 796 3000 AT Rotterdam The Netherlands Tel: (31)10-513 1326 Fax: (31)10-513 0120 E-mail:

More information

Lecture 6 Black-Scholes PDE

Lecture 6 Black-Scholes PDE Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent

More information

LECTURE 10.1 Default risk in Merton s model

LECTURE 10.1 Default risk in Merton s model LECTURE 10.1 Default risk in Merton s model Adriana Breccia March 12, 2012 1 1 MERTON S MODEL 1.1 Introduction Credit risk is the risk of suffering a financial loss due to the decline in the creditworthiness

More information

Guaranteed Annuity Options

Guaranteed Annuity Options Guaranteed Annuity Options Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Guaranteed Annuity Options Contents A. Guaranteed Annuity Options B. Valuation and Risk

More information

C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity will then be the y that solves

C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity will then be the y that solves Economics 7344, Spring 2013 Bent E. Sørensen INTEREST RATE THEORY We will cover fixed income securities. The major categories of long-term fixed income securities are federal government bonds, corporate

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Session IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics

Session IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

An exact formula for default swaptions pricing in the SSRJD stochastic intensity model

An exact formula for default swaptions pricing in the SSRJD stochastic intensity model An exact formula for default swaptions pricing in the SSRJD stochastic intensity model Naoufel El-Bachir (joint work with D. Brigo, Banca IMI) Radon Institute, Linz May 31, 2007 ICMA Centre, University

More information

Forwards, Swaps and Futures

Forwards, Swaps and Futures IEOR E4706: Financial Engineering: Discrete-Time Models c 2010 by Martin Haugh Forwards, Swaps and Futures These notes 1 introduce forwards, swaps and futures, and the basic mechanics of their associated

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids

On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids Oliver Caps oliver.caps@dkib.com RMT Model Validation Rates Dresdner Bank Examples of Hybrid Products Pricing of Hybrid Products using a

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Optimal Investment with Derivative Securities

Optimal Investment with Derivative Securities Noname manuscript No. (will be inserted by the editor) Optimal Investment with Derivative Securities Aytaç İlhan 1, Mattias Jonsson 2, Ronnie Sircar 3 1 Mathematical Institute, University of Oxford, Oxford,

More information

Linear Programming: Chapter 11 Game Theory

Linear Programming: Chapter 11 Game Theory Linear Programming: Chapter 11 Game Theory Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Rock-Paper-Scissors

More information

K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.

K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options. Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

The Trip Scheduling Problem

The Trip Scheduling Problem The Trip Scheduling Problem Claudia Archetti Department of Quantitative Methods, University of Brescia Contrada Santa Chiara 50, 25122 Brescia, Italy Martin Savelsbergh School of Industrial and Systems

More information

Optimal Auctions. Jonathan Levin 1. Winter 2009. Economics 285 Market Design. 1 These slides are based on Paul Milgrom s.

Optimal Auctions. Jonathan Levin 1. Winter 2009. Economics 285 Market Design. 1 These slides are based on Paul Milgrom s. Optimal Auctions Jonathan Levin 1 Economics 285 Market Design Winter 29 1 These slides are based on Paul Milgrom s. onathan Levin Optimal Auctions Winter 29 1 / 25 Optimal Auctions What auction rules lead

More information

LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction

LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY M. S. JOSHI Abstract. It is shown that the properties of convexity of call prices with respect to spot price and homogeneity of call prices as

More information

STOCK LOANS. XUN YU ZHOU Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong 1.

STOCK LOANS. XUN YU ZHOU Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong 1. Mathematical Finance, Vol. 17, No. 2 April 2007), 307 317 STOCK LOANS JIANMING XIA Center for Financial Engineering and Risk Management, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

More information

Forward Contracts and Forward Rates

Forward Contracts and Forward Rates Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16

More information

Pricing Forwards and Swaps

Pricing Forwards and Swaps Chapter 7 Pricing Forwards and Swaps 7. Forwards Throughout this chapter, we will repeatedly use the following property of no-arbitrage: P 0 (αx T +βy T ) = αp 0 (x T )+βp 0 (y T ). Here, P 0 (w T ) is

More information

The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees

The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees Torsten Kleinow Heriot-Watt University, Edinburgh (joint work with Mark Willder) Market-consistent

More information

2. How is a fund manager motivated to behave with this type of renumeration package?

2. How is a fund manager motivated to behave with this type of renumeration package? MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

Lecture. S t = S t δ[s t ].

Lecture. S t = S t δ[s t ]. Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

More information

Derivatives: Principles and Practice

Derivatives: Principles and Practice Derivatives: Principles and Practice Rangarajan K. Sundaram Stern School of Business New York University New York, NY 10012 Sanjiv R. Das Leavey School of Business Santa Clara University Santa Clara, CA

More information

Risk-Free Assets. Case 2. 2.1 Time Value of Money

Risk-Free Assets. Case 2. 2.1 Time Value of Money 2 Risk-Free Assets Case 2 Consider a do-it-yourself pension fund based on regular savings invested in a bank account attracting interest at 5% per annum. When you retire after 40 years, you want to receive

More information

Jung-Soon Hyun and Young-Hee Kim

Jung-Soon Hyun and Young-Hee Kim J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

More information

17.3.1 Follow the Perturbed Leader

17.3.1 Follow the Perturbed Leader CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

More information

A SNOWBALL CURRENCY OPTION

A SNOWBALL CURRENCY OPTION J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA E-mail address: gshim@ajou.ac.kr ABSTRACT. I introduce

More information