Public Auditing Based on Homomorphic Hash Function in

Size: px
Start display at page:

Download "Public Auditing Based on Homomorphic Hash Function in"

Transcription

1 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, 3 Xo DU, College of Comuter Scece d Egeerg, Northwest Norml Uversty, Lzhou, Gsu , Ch, E-ml:{sfu76,dux}@wueduc *, Corresodg Author College of Comuter Scece d Egeerg, Northwest Norml Uversty,Lzhou, Gsu , Ch, E-ml:wgcf@wueduc 3, College of Comuter Scece d Egeerg, Northwest Norml Uversty, Lzhou, Gsu , Ch Abstrct Publc verfcto ebles thrd rty udtor (TPA), o the behlf of the dt ower, to verfy the tegrty of cloud storge wth the dt ower s ublc key I ths er, by utlzg homomorhc vector hsh fucto, we roose secure cloud storge scheme suortg rvcy-reservg ublc udtg for multle fles wth dfferet detfer To cheve rvcy reservg ublc udtg, we roose to tegrte the homomorhc ler uthetctor wth rdom vector mskg to hde ler combto of the dt fles Mewhle, the tme t tkes to udt re ot ffected by the umber of fles The securty of ublc udtg scheme reles o the hrdess of the comuttol Dffe- Hellm d dscrete logrthm roblems uder the rdom orcle model Furthermore, through theoretcl lyss d exermetl results, the roosed scheme s demostrted to hve effcet erformce Keywords: Dt Storge, Prvcy-Preservg, Publc Audtblty, Cloud Comutg, Homomorhc Hshg Fucto Itroducto Storg dt the cloud hs become tred Icresg the umber of clets store ther mortt dt remote servers the cloud, wthout levg coy ther locl comuters Sometmes the dt stored the cloud s so mortt tht the clets must esure t s ot lost or corruted For the clets, the tsks of udtg the dt correctess cloud evromet c be formdble d exesve So the clets my resort to deedet thrd rty udtor (TPA) to udt the outsourced dt Becuse TPA c ot retreve the etre storge fle, trdtol crytogrhc rmtves for the urose of dt securty rotecto cot be drectly doted [],[],[3] Ateese et l [] frst roosed rovble dt ossesso (PDP), whch llows clet to verfy the tegrty of her dt stored utrusted server wthout retrevg the etre fle Wg et l [4] costructed ublc udtg mechsm for cloud dt I the scheme, the cotet of rvte dt belogg to ersol clet s ot dsclosed to the thrd rty udtor Wg et l [6] frst roosed mechsm for ublc udtg shred dt the cloud for grou of clets Wth rg sgture-bsed homomorhc uthetctors, the TPA c verfy the tegrty of shred dt but s ot ble to revel the detty of the sger o ech block Che et l [7] troduced mechsm for udtg the correctess of dt wth the mult-server scero, where these dt re ecoded wth etwork codg More recetly, Co et l [8] costructed LT code-bsed secure cloud storge mechsm To overcome ths drwbck, roer roch s to combe the homomorhc uthetctor wth rdom mskg [4][0] Wth rdom mskg, the TPA o loger hs ll the ecessry formto to buld u correct grou of ler equtos d therefore cot derve the ower s dt cotet I ths er, we roose ew rvcy-reservg ublc udtg mechsm for dt storge utrusted cloud I our roch, we utlze homomorhc vector hshg fucto [] to costruct homomorhc uthetctors [],[9],[] so tht the thrd rty udtor s ble to verfy the tegrty of dt wthout retrevg the etre dt To cheve rvcy reservg ublc udtg, we roose to uquely tegrte the homomorhc ler uthetctor wth rdom vector mskg to hde ler combto of the dt fles We hve the followg m cotrbutos: Itertol Jourl of Dgtl Cotet Techology d ts Alctos(JDCTA) Volume7,Number,Jury 03 do:0456/dctvol7ssue87 7

2 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU )We cosder m fles wth m dfferet detfers By exlotg homomorhc hsh fucto, uthetctor for fle F ( m, m,, m)(,,, m) s comuted, ot for fles block m Thus for fle F, we roduce oe uthetctor, ot uthetctors,,,, Mewhle, the mout of formto used for verfcto, s well s the comutto cost t the verfcto rocess s deedet from the umber of fles Ths rocesses c sgfctly reduce the commucto, comutto d storge costs )To cheve rvcy-reservg ublc udtg, we roose to uquely tegrte the homomorhc ler uthetctor wth rdom vector mskg w ( w, w,, w ) to hde ler combto of the dt fles 3)The effcecy of the roosed lgorthm wll be ssessed throughtheoretcl lyss d exermetl smulto The rest of ths er s orgzed s follows: I Secto, deftos d relmres re reseted The roosed rvcy-reservg ublc udtg bsed o homomorhc hshg scheme s reseted secto 3 I Secto 4, securty lyss of the roosed scheme s dscussed I Secto 5,the scheme s comlexty s lyzed the sects of comutto costs, furthermore, exermetl results re reseted for the effcecy of the roch ths secto Flly, coclusos d ossble reserch drectos re reseted Secto 6 Deftos d Prelmres We cosder cloud dt storge servce volvg three dfferet ettes, s llustrted Fg : the cloud user, who hs lrge mout of dt fles to be stored the cloud; the cloud server, whch s mged by the cloud servce rovder to rovde dt storge servce d hs sgfct storge sce d comutto resources; the thrd rty udtor (TPA), who hs exertse d cbltes tht cloud users do ot hve d s trusted to ssess the cloud storge servce relblty o behlf of the user uo request Audtg Model We follow smlr defto of revously roosed schemes the cotext of [], [], d dt the frmework for our rvcy-reservg ublc udtg system Defto A ublc udtg scheme bsed o homomorhc hshg cossts of the followg fve lgorthms: SetU, SgGe, Chllege, GeProof d CheckProof k SetU ( ) ( k, sk) : Gve the securty rmeter k, ths fucto geertes the ublc key k d the secret key sk k s ublc to everyoe, whle sk s ket secret by the user SgGe ( k, sk, F) F : Gve k, sk d F, ths fucto comutes verfcto sgture F d mkes t ublcly kow to everyoe Ths sgture wll be used for ublc verfcto of dt tegrty Chllege ( k, F ) chl : Usg ths fucto, the TPA geertes chllege chl to request for the tegrty roof of fles F The TPA seds chl to the server GeProof ( k,, F, chl) P : Usg ths fucto, the server comutes resose P to the F chllege chl The server seds P bck to the TPA CheckProof ( k, F, chl, P) ( success, flure) : The TPA checks the vldty of the resose P If t s vld, the fucto oututs success, otherwse the fucto oututs flure The secret key sk s ot eeded the CheckProof fucto 7

3 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU Securty Requremets There re two securty requremets for the rvcy-reservg ublc udtg bsed o homomorhc hshg scheme: securty gst the server wth ublc verfblty, d rvcyreservg gst thrd rty udtor We frst gve the defto of securty gst the server wth ublc verfblty I ths defto, we hve two ettes: chlleger tht stds for ether the clet or thrd rty udtor, d dversry tht stds for the utrusted server Defto (Securty gst the Server wth Publc Verfblty) We cosder gme betwee chlleger d dversry tht hs four hses: Setu, Query, Chllege d Forge Setu: The chlleger rus the SetU fucto, d gets the ( k, sk ) The chlleger seds k to the dversry d kees sk secret Query: A dversry dtvely selects some fles F (,,, m) d queres the verfcto sgtures from the chlleger The chlleger comutes verfcto sgture for ech of fles d seds to the dversry Chllege: The chlleger geertes the chl for the fle F (,,, m) d seds ts to the dversry Forge: The dversry comutes resose P to rove the tegrty of the requested fles If CheckProof ( k,, chl, P) success the the dversry hs wo the gme Followg we defe the rvcy-reservg gst TPA udtg, whch s gve Defto 3 I ths defto, we lso hve two ettes: chlleger tht stds for ether the clet or the server, d dversry tht stds for the TPA Defto 3 (Prvcy-Preservg gst Thrd Prty Audtor) We sy rvcy-reservg ublc udtg bsed o homomorhc hshg scheme s rvcy-reservg f there exsts extrcto lgorthm such tht, for every dversry, wheever dversry lyg the gme, oututs dmssble chetg rover P 0 for smled fles F, the extrcto lgorthm recovers F from P 0 3 Prelmres I ths subsecto, we frst troduce bler ms d severl comlexty ssumtos The, we brefly descrbe severl crytogrhc rmtves used ths er Defto 4 Bler M LetG, G T be multlctve cyclc grous of rme order, let g, g be geertors of G A bler m s m e: G G GT wth the followg roertes: ) Comutblty: there exsts effcetly comutble lgorthm for comutg m e b b ) Blerty: for ll uv, G, d b, Z, eu (, v) euv (, ) 3) No-degeercy: eg (, g) Defto 5 Dscrete Logrthm(DL) Problem For Z, gve g, h g G, outut The DL roblem ssumto holds G f o t tme lgorthm hs dvtge t lest solvg the dscrete logrthm roblem G, whch mes t s comuttol fesble to solve the dscrete logrthm roblem G Defto 6 Comuttol Dffe-Hellm(CDH) Problem For Z, gve g, g G, d h G comute h G The co-cdh roblem ssumto holds G d G f o t tme lgorthm hs dvtge t lest solvg the co-cdh roblem G dg 73

4 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU Defto 7 Homomorhc hsh fucto [] Let G be cyclc grou of rme order whch the dscrete logrthm roblem s hrd, where s securty rmeter d the ublc rmeters cot descrto of G d rdom geertors g, g,, g G/ The homomorhc hshg o messge v( v, v,, v) Z c be costructed by: v H ( v) def g It s esy to verfy tht the vector hshg fuctos stsfyg followg roertes: )Homomorhsm: For y two messges m,m, d sclrs w, w, t holds tht H( wm w m ) H( m ) H( m ) w w )Collso Resstce: There s o robblstc olyoml-tme dversry cble of forgg ( m, m, m3, w, w) stsfyg both m3 wm wm d w w ( m ) ( m ) ( m ) H H H 3 Theorem [] The homomorhc hshg fuctos s secure ssumg the dscrete logrthm roblem G s hrd 3 The Proosed Scheme I ths secto, we descrbe the roosed udtg scheme Just s metoed Secto, the roosed scheme hs fve fuctos: SetU, SgGe, Chllege, GeProof d CheckProof I our scheme, ech fle vector F (,,, m) s dvded to blocks of equl legths: F ( m, m,, m) To cheve rvcy-reservg ublc udtg, we roose to uquely tegrte the homomorhc ler uthetctor wth rdom vector mskg w ( w, w,, w ) to hde ler combto of the dt fles Let G d G T be multlctve cyclc grous of rme order, d e: GG GT be bler m s troduced relmres Let g be geertor of G, H () s secure hsh fucto: Z Z Our scheme s s follows: SetU ( ) : The cloud user chooses rdom sgg key r ( sk, ssk ), rdom x Z x rdom elemet u G, d comutes v g g, g,, g G/ The secret rmeter s sk ( x; u; ssk) d the ublc rmeters re k ( skvgg ; ; ;, g,, g ) SgGe ( k, skf, ): Gve dt fles F ( m, m,, m) Z, d detfer d of fle F (,,, m), the user comutes: ) H ( d d,, d m ), here d re chose by the user uformly t rdom from Z s the detfer of fle F m d x ) ( F ) ( g u ) for ech F Deote the set of uthetctors by { } m I order to esure the tegrty of fles detfer Oe smle wy to do ths s to comute t d d d u ssg ( d d d u) For smlcty, we ssume the TPA kows the umber of blocks m ssk m The user the seds F log wth the verfcto {, t} to the server d deletes them from locl storge Chllege ( k, F ): The TPA, rdomly chooses, 74

5 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU )wth resect to the mechsm we descrbe the TgGe hse, the TPA verfes the sgture ( ) ssg d d d u v sk, d quts f the verfcto fls Otherwse, the TPA ssk m recovers d, d,, d m, u ) to geerte the chllege messge for the udt chl, the TPA cks rdom c -elemet subset I { s, s,, s c } of set [, ] For ech elemet I, the TPA lso chooses rdom vlue v The messge chl secfes the ostos of the fles requred to be checked 3)The TPA seds chl {(, v)} I to the server GeProof ( k, F, F, chl) : Uo recevg chllege chl {(, v)} I,the server w )chooses rdom vector w ( w, w,, w ), d clcultes R e( g, v) )comutes the ler combto of smled fles secfed chl : T sc μ (,,, ) v F w s 3) clcultes ggregted uthetctor = ( c vm w, c vm w,, c vm w ) s s s T s s s s c v G The seds P = (μ, σ,r) s the resose roof of storge correctess to the TPA CheckProof ( k,, chl, u, R) : Wth the resose P ( μ,, R), the TPA comutes ) H ( d d,, d m ) s ) ID c s vd the checkg the verfcto equto: s u ID Re (, g)? e( g u, v) () The correctess of the bove verfcto equto s elborted s follows: 4 Securty Alyss s w c d v s s c sc w svm svd s c sc svm w svd x ID m x R e(, g) = e( g, v) e( ( g u ) ), g) x e( g, v) e( g u, g ) e( g g u, g ) = e( g u, v) We evlute the securty of the roosed scheme by lyzg ts fulfllmet of the securty requremets descrbed Secto Theorem : Uder the CDH ssumto, the roosed scheme s secure gst the utrusted server Proof We ssume there exsts dversry (Now, the server s treted s dversry) tht ws the chllege cked by d show tht wll be ble to forge determed by the chllege If c brek the ublc udtg scheme, we show how to costruct dversry tht uses order to 75

6 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU brek CDH A smultes the ublc udtg evromet for s follows: s gve s uts vlues g, g G, h G, ts gol s to outut h Setu: A geertes rdom geertor of G Deote the geertor by g seds mes tht does ot kow the corresodg secret key Hsh Query: Whe receves hsh query for vlue d u v g to Ths, rdom vlues, Z d d m sets u g h, retur to, sce g G, so rdom choose Z m d g ( ) g u m ID, ( ) ( ) g u g Chllege: A geertes chl (, s, s,, s c ) seds t to Forge: comutes resose to rove the tegrty of the requested fle outut u ID (, ) (, ) R e g e g u v w w From the vew of, g g G, g u t g G, where wt, Z By (), c outut w t s c sc s s d comute h ( v ) Theorem 3: Uder the DL ssumtos, from the server s resose P ( μ,, R) TPA cot get y formto bout the clet s dt P ( μ,, R) from the scheme executo Hece, the scheme s rvte gst thrd rty Proof We ssume there exsts dversry (Now, the TPA s treted s dversry) tht ws sc the chllege cked by d show tht wll be ble to recover u vm determed by the s chllege From the vew of TPA, f TPA c recover u, t mes c comute tht: R such ID R e(, g) e( g u, v) () u u ID R e g e g u v (, ) (, ) (3) From (), (3), w w (, ) (, ) e g g e g g We hve w g g w Accordg to Theorem, sce dscrete logrthm roblem G s hrd, dversry c ot sc comute vector w ( w, w,, w ), so c ot recover u vm s 76

7 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU 5 Performce Alyss I ths secto, we frst evlute the roosed scheme terms of comutto overheds dfferet hses After tht, we reset the exermetl results 5 Comrso lyss We ssume hve m fles wth dfferet detfers our system, ech fle F(,,, m) re dvded to blocks of equl legths Due to TPA sde hs dfferet udtg gols: our scheme, TPA sde c choose c smled fles hvg dfferet detfers for udtg, but [4], TPA sde udt c smled fles, so we wll rmrly ssess the erformce of the roosed udtg schemes o both clet sde d cloud server sde I order to smle our comrso, we covert the exoetto oertos to multlcto oertos, t s ExG Mult G I followg Fgures d Tbles, m deotes the umber of the fles; deotes the umber of fle blocks; c deotes the umber of smled fles; Hsh deotes the hsh oertos; Add deotes the ddto oertos Mult deotes the multlcto oertos; Pr deotes the rg oertos; Tble Clet Sde Our Scheme m( ) Mult Hsh [4] Scheme m ( ) Multm Hsh Tble Server Sde Our Scheme ( c) ( mc) Mult m( c ) Add Pr [4] Scheme mc ( mc ( )) MultmcAddmHshm Pr From Tble d Tble, we c see our lgorthm hve lttle comutto overheds comrg wth Wg s [4] o both clet sde d cloud server sde Furthermore, s show verfcto equto (), the comutto cost t TPA s deedet from the umber of fles O the cotrry, the verfcto sze of [4] s lerly cresg wth the sze of the fles 5 Exermetl Results I the exermet, we frstly mesure the totl comutto tme of our scheme for dfferet choces of rg rmeters Furthermore, we demostrte the effectveess d effcecy of our roosed mechsm the sgture hse, the udtg hse d the geroof hse, resectvely Our mlemetto ws wrtte C usg the Prg-Bsed Crytogrhy Lbrry (lbbc)[3] The m roertes of dfferet tested rmeters re summrzed Tble 3 Tble 3M roertes of tested rg Tye Bse feld(bts) Dlog securty(bts) degree of curve 5 04 e

8 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU The comuttos re ru o PC wth 9 GHz CPU frequecy d 4 GB of RAM, usg Lux oertg system We utlze two elltc curve, oe s Tye wth bse feld sze of 5 bts d the embeddg degree, the other s Tye wth bse feld sze of 04 bts d the embeddg degree The securty level s chose to be 5 d 04, resectvely Tble 4 shows the totl comutto tme of our scheme for dfferet choces of rg rmeters We c see tht the comutto cost hevly deeds o the selected Tye of rg, d for ech rg rmeters, the comutto cost creses wth the cresg umber of udtg fles Tble 4The totl comutto tme (s) of the roosed scheme uder dfferet rg rmeters m=600 c=00 c=300 c=400 c=500 c=600 Tye Tye e Furthermore, we demostrte the effectveess d effcecy of our roosed mechsm sgture hse, udtg d the geroof hses, resectvely 5 Performce of the Sgture hse For ech sesor odes, comutto costs for the sgture mly rely o the messge sze I ths exermet, we set the umber of fles m 50, the dmeso of messges set to 5,0,50,00, wheres the rg rmeter s fxed t Tye d Tye e As show Fgure, f lrger messge sze s used, the totl comutto cost wll crese becuse of the cresg umber of exoetto oertos Sgture tme (ms) Tye Tye e The umber of fle blocks Fgure Comutto costs of the clet s sgture wth m = 50 d = 5, 0, 50, 00 5 Performce of the Geroof hse For the Geroof hse, the effcecy of comutto mly deeds o both the umber of fles d the messge sze Thus, ths exermet, we set the legth of messge t 300 bytes, wheres, the umber of fles m s set to 50, 00, 00 As llustrted Fgure 3, the comutto cost t the cloud server hevly deeds o the selected Tye of rg, d for ech rg rmeters, the comutto cost creses wth the cresg umber of fles 78

9 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU 500 Geroof tme(ms) Tye Tye e The umber of udtg fles Fgure 3Comutto costs of the server s geroof wth m = 50, 00, Audtg tme(ms) Tye Tye e The umber of fles Fgure 4 Comutto costs of the TPA s udtg wth m = 00, 00, 300, 400, Performce of the Checkroof hse From Fgure 4, we c see tht comutto cost t the Checkroof hse s deedet from the umber of fles Our exermetl results ths secto show tht our scheme hs better erformce whe udtg lrge umber of fles 6 Summry I ths er,we roose ew ublc udtg scheme bsed o homomorhc hshg secure cloud storge The roch s roved to be secure gst utrusted server It s lso rvte gst thrd rty Both theoretcl lyss d exermetl results demostrte tht the roosed scheme hs very good effcecy the sects of comutto costs Curretly we re stll workg o extedg the scheme to suort dt dymcs 7 Ackowledgemets The uthors wsh to thk the oymous referees for ther tece redg ths muscrt d ther vluble commets d suggestos The work ws suorted by the Ntol Nturl Scece Foudto of Ch uder grt 60395, Refereces [] A Juels d Jr B S Klsk,"Pors: roofs of retrevblty for lrge fles", ACM cof o Comuter d Commuctos Securty, , 007 [] G Ateese, R Burs, R Curtmol, J Herrg, L Ksser, Z Peterso, d D Sog, "Provble dt ossesso t utrusted stores", ACM cof o Comuter d Commuctos Securty, ,

10 Publc Audtg Bsed o Homomorhc Hsh Fucto Secure Cloud Storge Shufe NIU, Cfe Wg, Xo DU [3] K D Bowers, A Juels, d A Ore, "Hl: A Hgh-Avlblty d Itegrty Lyer for Cloud Storge", Proc of ACM CCS 09, 87-98, 009 [4] C Wg, Q Wg, K Re, d W Lou, "Prvcy-Preservg Publc Audtg for Dt Storge Securty Cloud Comutg" Proc of IEEE INFOCOM 00, , 00 [5] G Ateese, R D Petro, L V Mc, d G Tsudk",Sclble d effcet rovble dt ossesso", Proc of SecureComm 08, -0, 008 [6] B Wg, B L, d H L, "Orut: Prvcy-Preservg Publc Audtg for Shred Dt the Cloud", Proc of IEEE Cloud 0, 0 [7] B Che, R Curtmol, G Ateese, d R Burs," Remote Dt Checkg for Network Codgbsed Dstrbuted Stroge Systems", Proc of ACM CCSW 00, 3-4, 00 [8] N Co, S Yu, Z Yg, W Lou, d Y T Hou, "LT Codes-bsed Secure d Relble Cloud Storge Servce", Proc of IEEE INFOCOM 0, , 0 [9] Cho Lv, Hu L, Jfeg M, Be Nu, Hyg Jg, "Securty Alyss of Prvcyreservg ECC-bsed Groug-roof Protocol", JCIT: Jourl of Covergece Iformto Techology, Vol 6, No 3, 3-9, 0 [0] Ateese, R D Petro, L V Mc, d G Tsudk, "clble d effcet rovble dt ossesso", Proc of SecureComm 08, -0, 008 [] M Kroh, M Freedm, D Mzeres, " O the-fly verfcto of rteless ersure codes for effcet cotet dstrbuto", Proc of IEEE Symosum o Securty d Prvcy, 6-40, 004 [] C Erwy, A Kucu, C Pmthou, d R Tmss," Dymc Provble Dt Possesso", Proc of ACM CCS 009, 3-, 009 [3] Zhe J, Le Pg, Shoush Luo, Yg X, Mo Zhg, "Reserch o Dstrbuted Prvcy- Preservg Dt Mg", JCIT: Jourl of Covergece Iformto Techology, Vol 7, No, , 0 70

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines

Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines (ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters

Redundant Virtual Machine Placement for Fault-tolerant Consolidated Server Clusters Redudt Vrtul Mche Plceet for Fult-tolert Cosoldted Server Clusters Fuo Mchd, Mshro Kwto d Yoshhru Meo Servce Pltfors Reserch Lbortores, NEC Cororto 753, Shoube, Nkhr-ku, Kwsk, Kgw 2-8666, J {h-chd@b, -kwto@,

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment 31 Itertol Jourl of Cotrol, Yog-Shk Automto, Km d Keum-Shk d Systems, Hog vol. 2, o. 3, pp. 31-318, September 24 A IMM Algorthm for Trckg Meuverg Vehcles Adptve Cruse Cotrol Evromet Yog-Shk Km d Keum-Shk

More information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

MDM 4U PRACTICE EXAMINATION

MDM 4U PRACTICE EXAMINATION MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths

More information

THE well established 80/20 rule for client-server versus

THE well established 80/20 rule for client-server versus IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1 Optml Fuctolty Plcemet for Multply Servce Provder Archtectures Ios Pppgotou, Studet Member, IEEE, Mtths Fler, Member, IEEE,

More information

A Parallel Transmission Remote Backup System

A Parallel Transmission Remote Backup System 2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

Web Services Wind Tunnel: On Performance Testing Large-scale Stateful Web Services

Web Services Wind Tunnel: On Performance Testing Large-scale Stateful Web Services Web Servces Wd Tuel: O Performace Testg Large-scale Stateful Web Servces Marcelo De Barros, Jg Shau, Che Shag, Keto Gdewall, Hu Sh, Joe Forsma Mcrosoft Cororato {marcelod,shau,cshag,ketog,hush,osehfo}@mcrosoft.com

More information

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET

OPTIMAL KNOWLEDGE FLOW ON THE INTERNET İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal

More information

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li

Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal

More information

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of

A. Description: A simple queueing system is shown in Fig. 16-1. Customers arrive randomly at an average rate of Queueig Theory INTRODUCTION Queueig theory dels with the study of queues (witig lies). Queues boud i rcticl situtios. The erliest use of queueig theory ws i the desig of telehoe system. Alictios of queueig

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring

A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z L Zhahu, Fa Ka, 3L Hu, Zheg Ya Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z 1 L Zhahu, Fa Ka, 3 L Hu, 4 Zheg Ya 1State Key Laboratory

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices

Software Size Estimation in Incremental Software Development Based On Improved Pairwise Comparison Matrices Computer Scece Systems Bology Reserch Artcle Artcle Ocheg d Mwg, 204, 7:3 http://d.do.org/0.472/csb.0004 Ope Ope Access Softwre Sze Estmto Icremetl Softwre Developmet Bsed O Improved Prwse Comprso Mtrces

More information

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS

Fast, Secure Encryption for Indexing in a Column-Oriented DBMS Fast, Secure Ecrypto for Idexg a Colum-Oreted DBMS Tgja Ge, Sta Zdok Brow Uversty {tge, sbz}@cs.brow.edu Abstract Networked formato systems requre strog securty guaratees because of the ew threats that

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom. UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING

IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEXICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Itertol Jourl of Advces Egeerg & Techolog, J., 05. IJAET ISSN: 96 IMPLEMENTATION IN PUBLIC ADMINISTRATION OF MEICO GOVERNMENT USING GAMES THEORY AND SOLVING WITH LINEAR PROGRAMMING Frcsco Zrgoz Huert.

More information

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.

ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. yayli@science.ankara.edu.tr. evrenziplar@yahoo. ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs

More information

THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ

THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ SAÜ e Blmler Dergs, 5 Clt, 2 Sayı, THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES Vedat ŞİAP* *Departmet of Mathematcs, aculty of Scece ad Art, Sakarya Uversty, 5487, Serdva, Sakarya-TURKEY vedatsap@gmalcom

More information

Load and Resistance Factor Design (LRFD)

Load and Resistance Factor Design (LRFD) 53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo

More information

Stock Index Modeling using EDA based Local Linear Wavelet Neural Network

Stock Index Modeling using EDA based Local Linear Wavelet Neural Network Stoc Idex odelg usg EDA bsed Locl Ler Wvelet Neurl Networ Yuehu Che School of Iformto Scece d Egeerg J Uversty Jwe rod 06, J 250022, P.R.Ch E-ml: [email protected] Xohu Dog School of Iformto Scece d Egeerg

More information

Proceeding of the 32nd International Conference on Computers & Industrial Engineering

Proceeding of the 32nd International Conference on Computers & Industrial Engineering Proceeg of the 2 Itertol Coferece o Computers & Iustrl Egeerg 44 A GAP ANALYSIS FOR GREEN SUPPLY CHAIN BENCHMARKING Slem Y. Lkhl * Sou H M 2 Assocte professor of Opertos Mgemet; 2 Assstt professor of Mrketg

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

CSSE463: Image Recognition Day 27

CSSE463: Image Recognition Day 27 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

More information

On Error Detection with Block Codes

On Error Detection with Block Codes BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,

More information

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

Common p-belief: The General Case

Common p-belief: The General Case GAMES AND ECONOMIC BEHAVIOR 8, 738 997 ARTICLE NO. GA97053 Commo p-belef: The Geeral Case Atsush Kaj* ad Stephe Morrs Departmet of Ecoomcs, Uersty of Pesylaa Receved February, 995 We develop belef operators

More information

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

The impact of service-oriented architecture on the scheduling algorithm in cloud computing

The impact of service-oriented architecture on the scheduling algorithm in cloud computing Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg

More information

An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level

An Integrated Honeypot Framework for Proactive Detection, Characterization and Redirection of DDoS Attacks at ISP level Jourl of Iformto Assurce Securty 1 (28) 1-15 A Itegrte Hoeypot Frmework for Proctve Detecto, Chrcterzto Rerecto of DDoS Attcks t ISP level Ajl Sr R. C. Josh 1 1 I Isttute of Techology Roorkee, Roorkee,

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

Constrained Cubic Spline Interpolation for Chemical Engineering Applications Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel

More information

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0 Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

More information

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are : Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of

More information

TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC APPLICATIONS REENGINEERING VIA SOFTWARE EVOLUTION

TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC APPLICATIONS REENGINEERING VIA SOFTWARE EVOLUTION TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC APPLICATIONS REENGINEERING VIA SOFTWARE EVOLUTION Cosm TOMOZEI 1 Assstat-Lecturer, PhD C. Vasle Alecsadr Uversty of Bacău, Romaa Departmet of Mathematcs

More information

Automated Event Registration System in Corporation

Automated Event Registration System in Corporation teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

VIDEO REPLICA PLACEMENT STRATEGY FOR STORAGE CLOUD-BASED CDN

VIDEO REPLICA PLACEMENT STRATEGY FOR STORAGE CLOUD-BASED CDN Joural of Theoretcal ad Appled Iformato Techology 31 st Jauary 214. Vol. 59 No.3 25-214 JATIT & S. All rghts reserved. ISSN: 1992-8645 www.att.org E-ISSN: 1817-3195 VIDEO REPICA PACEMENT STRATEGY FOR STORAGE

More information

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring

Compressive Sensing over Strongly Connected Digraph and Its Application in Traffic Monitoring Compressve Sesg over Strogly Coected Dgraph ad Its Applcato Traffc Motorg Xao Q, Yogca Wag, Yuexua Wag, Lwe Xu Isttute for Iterdscplary Iformato Sceces, Tsghua Uversty, Bejg, Cha {qxao3, kyo.c}@gmal.com,

More information

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks

Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]

More information

How To Balance Load On A Weght-Based Metadata Server Cluster

How To Balance Load On A Weght-Based Metadata Server Cluster WLBS: A Weght-based Metadata Server Cluster Load Balacg Strategy J-L Zhag, We Qa, Xag-Hua Xu *, Ja Wa, Yu-Yu Y, Yog-Ja Re School of Computer Scece ad Techology Hagzhou Daz Uversty, Cha * Correspodg author:[email protected]

More information

Efficient Traceback of DoS Attacks using Small Worlds in MANET

Efficient Traceback of DoS Attacks using Small Worlds in MANET Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

Bayesian Network Representation

Bayesian Network Representation Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING

A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING A MODEL FOR AIRLINE PASSENGER AND CARGO FLIGHT SCHEDULING Shgyo YAN Yu-Hsu CHEN Professor Mster Deprtet of Cvl Egeerg Deprtet of Cvl Egeerg Ntol Cetrl Uversty Ntol Cetrl Uversty No300, Jhogd Rd, Jhogl

More information

How To Value An Annuity

How To Value An Annuity Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%

More information

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat

More information

Curve Fitting and Solution of Equation

Curve Fitting and Solution of Equation UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

More information

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

Load Balancing Algorithm based Virtual Machine Dynamic Migration Scheme for Datacenter Application with Optical Networks

Load Balancing Algorithm based Virtual Machine Dynamic Migration Scheme for Datacenter Application with Optical Networks 0 7th Iteratoal ICST Coferece o Commucatos ad Networkg Cha (CHINACOM) Load Balacg Algorthm based Vrtual Mache Dyamc Mgrato Scheme for Dataceter Applcato wth Optcal Networks Xyu Zhag, Yogl Zhao, X Su, Ruyg

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information

Session 4: Descriptive statistics and exporting Stata results

Session 4: Descriptive statistics and exporting Stata results Itrduct t Stata Jrd Muñz (UAB) Sess 4: Descrptve statstcs ad exprtg Stata results I ths sess we are gg t wrk wth descrptve statstcs Stata. Frst, we preset a shrt trduct t the very basc statstcal ctets

More information

Geometric Motion Planning and Formation Optimization for a Fleet of Nonholonomic Wheeled Mobile Robots

Geometric Motion Planning and Formation Optimization for a Fleet of Nonholonomic Wheeled Mobile Robots Proceedgs of the 4 IEEE Iteratoal Coferece o Robotcs & Automato New Orleas, LA Arl 4 Geometrc oto Plag ad Formato Otmzato for a Fleet of Noholoomc Wheeled oble Robots Rajakumar Bhatt echacal & Aerosace

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL - INDICES, LOGARITHMS AND FUNCTION This is the oe of series of bsic tutorils i mthemtics imed t begiers or yoe wtig to refresh themselves o fudmetls.

More information

Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business

Present and Future Value Formulae for Uneven Cash Flows Based on Performance of a Business Itertol Jourl of Bkg d Fce Volue 8 Issue Artcle 0--0 reset d Future Vlue Forule for Ueve Csh Flows Bsed o erforce of Busess Aeh Tefer Tesse Costructo d Busess Bk, Etho, [email protected] Follow ths d ddtol

More information

Performance Attribution. Methodology Overview

Performance Attribution. Methodology Overview erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace

More information

Integrating Production Scheduling and Maintenance: Practical Implications

Integrating Production Scheduling and Maintenance: Practical Implications Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

Numerical Comparisons of Quality Control Charts for Variables

Numerical Comparisons of Quality Control Charts for Variables Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

More information

Study on prediction of network security situation based on fuzzy neutral network

Study on prediction of network security situation based on fuzzy neutral network Avalable ole www.ocpr.com Joural of Chemcal ad Pharmaceutcal Research, 04, 6(6):00-06 Research Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Study o predcto of etwork securty stuato based o fuzzy eutral etwork

More information

Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm

Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm JOURNAL OF NETWORKS, VOL. 8, NO. 9, SEPTEMBER 2013 2143 Web Servce Composto Optmzato Based o Improved Artfcal Bee Coloy Algorthm Ju He The key laboratory, The Academy of Equpmet, Beg, Cha Emal: [email protected]

More information

Measuring the Quality of Credit Scoring Models

Measuring the Quality of Credit Scoring Models Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

More information

The Popularity Parameter in Unstructured P2P File Sharing Networks

The Popularity Parameter in Unstructured P2P File Sharing Networks The Popularty Parameter Ustructured P2P Fle Sharg Networks JAIME LLORET, JUAN R. DIAZ, JOSE M. JIMÉNEZ, MANUEL ESTEVE Departmet of Commucatos Polytechc Uversty of Valeca Camo de Vera s/, 4622 Valeca SPAIN

More information

Multi-file proofs of retrievability for cloud storage auditing

Multi-file proofs of retrievability for cloud storage auditing Mut-fe roofs of retrevabty for coud storage audtg B Wag a ad Xaojg Hog b a No96 West HuaYag Road, Iformato Egeerg Coege of Yagzhou Uversty, Yagzhou Cty, Jagsu Provce, 22527 PRCha b No5 South YagZJag Road,

More information

The simple linear Regression Model

The simple linear Regression Model The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

More information