Package TSprediction
|
|
|
- Stephanie Gray
- 10 years ago
- Views:
Transcription
1 Title Time-series forecasting package Package TSprediction September 23, 2010 TSprediction is a simple package that implements prediction methods to forecast the time-series. Version 1.56 Date Author Tomasz Bartlomowicz <[email protected]> Maintainer Tomasz Bartlomowicz <[email protected]> License GPL (>= 2) URL Repository CRAN R topics documented: addratio addwinters allnaive alltrend chart epsmoothing Holt MAE MAPE ME movaverage MPE MSE mulratio mulwinters RMSE Inde 15 1
2 2 addwinters addratio Function addratio calculates forecasts using additive ratio method Function addratio calculates forecasts using additive ratio method. Function returns vector of forecasts. addratio(, r=4, horizon=4) r horizon length of sezon number of forecasts mulratio addratio=addratio(w, 4, 8) print(addratio) addwinters Function addwinters calculates forecasts using additive Winters model Function addwinters calculates forecasts using additive Winters model. Function returns vector of forecasts. addwinters(, r=4, alfa=0, beta=0, gamma=0, typef="first", types="difference", t
3 allnaive 3 r alfa beta gamma typef types typec length of sezon (number of forecasts) alfa parameter beta parameter gamma parameter kind of F argument. typef should be one of two values: first or mean kind of S argument. types should be one of two values: difference or zero kind of C argument. typec should be one of two values: ratio or one Holt addwinters=addwinters(w, 4, 0.5, 0.95, 0.2) print(addwinters) allnaive Function allnaive calculates forecasts using naive methods Function allnaive calculates forecasts using naive methods. Functions returns vector of forecasts. allnaive(, model=1, c=0) model c kind of naive method c parameter
4 4 alltrend Holt naive1=allnaive() print(naive1) alltrend Function alltrend calculates forecasts using trend models Function alltrend calculates forecasts using trend models. Functions returns vector of forecasts. alltrend(, model=1, horizon=3) horizon model forecast s time lead (number of forecasts) kind of analytical model Holt
5 chart 5 trend1=alltrend() print(trend1) chart Function chart draws data and forecasts on the same plot Function chart draws data and forecasts on the same plot chart(, yy, typec="o", lwd1=2, lwd2=2, col1="dark red", col2="dark blue") yy typec lwd1 lwd2 col1 col2 vector of data vector of forecasts kind of chart forecast s time lead kind of F argument. typef should be one of two values: first or mean kind of S argument. types should be one of two values: difference or zero kind of S argument. types should be one of two values: difference or zero allnaive y=allnaive(, 1) chart(, y)
6 6 Holt epsmoothing Function epsmoothing calculates forecasts using eponential smoothing model Function epsmoothing calculates forecasts using eponential smoothing model. Function returns vector of forecasts. epsmoothing(, alfa=0) alfa alfa parameter Holt epsmoothing=epsmoothing(, 0.75) print(epsmoothing) Holt Function Holt calculates forecasts using Holt s model Function Holt calculates forecasts using Holt s model. Function returns vector of forecasts. Holt(, alfa=0, beta=0, horizon=3, typef="first", types="difference")
7 MAE 7 alfa beta horizon typef types alfa parameter beta parameter forecast s time lead kind of F argument. typef should be one of two values: first or mean kind of S argument. types should be one of two values: difference or zero allnaive holt=holt(, 0.3, 0.7, 4) print(holt) MAE Function MAE calculates mean absolute error (MAE) Function MAE calculates mean absolute error (MAE). Function returns vector of errors and value of MAE. MAE(, y) y vector of empirical data vector of forecasts
8 8 MAPE ME mae=mae(, y) print(mae) MAPE Function MAPE calculates mean absolute percentage error (MAPE) Function MAPE calculates mean absolute percentage error (MAPE). Function returns vector of errors and value of MAPE. MAPE(, y) y vector of empirical data vector of forecasts MPE mape=mape(, y) print(mape)
9 ME 9 ME Function ME calculates mean error (ME) Function ME calculates mean error (ME). Function returns vector of errors and value of ME. ME(, y) y vector of empirical data vector of forecasts MAE me=me(, y) print(me) movaverage Function movaverage calculates forecasts using moving average method Function movaverage calculates forecasts using moving average method. Function returns vector of forecasts. movaverage(, k=0)
10 10 MPE k parameter of smoothing Holt movaverage=movaverage(, 3) print(movaverage) MPE Function MPE calculates mean percentage error (MPE) Function MPE calculates mean percentage error (MPE). Function returns vector of errors and value of MPE. MPE(, y) y vector of empirical data vector of forecasts
11 MSE 11 MAPE mpe=mpe(, y) print(mpe) MSE Function MSE calculates mean squared error (MSE) Function MSE calculates mean squared error (MSE). Function returns vector of errors and value of MSE. MSE(, y) y vector of empirical data vector of forecasts MPE mse=mse(, y) print(mse)
12 12 mulratio mulratio Function mulratio calculates forecasts using multiplicative ratio method Function mulratio calculates forecasts using multiplicative ratio method. Function returns vector of forecasts. mulratio(, r=4, horizon=4) r horizon length of sezon number of forecasts addratio mulratio=mulratio(w, 4, 8) print(mulratio)
13 mulwinters 13 mulwinters Function mulwinters calculates forecasts using multiplicative Winters model Function mulwinters calculates forecasts using multiplicative Winters model. Function returns vector of forecasts. mulwinters(, r=4, alfa=0, beta=0, gamma=0, typef="first", types="difference", t r alfa beta gamma typef types typec length of sezon (number of forecasts) alfa parameter beta parameter gamma parameter kind of F argument. typef should be one of two values: first or mean kind of S argument. types should be one of two values: difference or zero kind of C argument. typec should be one of two values: ratio or one Holt mulwinters=mulwinters(w, 4, 0.5, 0.95, 0.2) print(mulwinters)
14 14 RMSE RMSE Function RMSE calculates root mean squared error (RMSE) Function RMSE calculates root mean squared error (RMSE). Function returns vector of errors and value of RMSE. RMSE(, y) y vector of empirical data vector of forecasts MSE rmse=rmse(, y) print(rmse)
15 Inde Topic multivariate addratio, 1 addwinters, 2 allnaive, 3 alltrend, 4 chart, 4 epsmoothing, 5 Holt, 6 MAE, 7 MAPE, 8 ME, 8 movaverage, 9 MPE, 10 MSE, 11 mulratio, 11 mulwinters, 12 RMSE, 13 addratio, 1, 12 addwinters, 2 allnaive, 3, 5, 7 alltrend, 4 chart, 4 epsmoothing, 5 Holt, 3, 4, 6, 6, 10, 13 MAE, 7, 9 MAPE, 8, 10 ME, 7, 8 movaverage, 9 MPE, 8, 10, 11 MSE, 11, 13 mulratio, 2, 11 mulwinters, 12 RMSE, 13 15
Time series Forecasting using Holt-Winters Exponential Smoothing
Time series Forecasting using Holt-Winters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
Indian School of Business Forecasting Sales for Dairy Products
Indian School of Business Forecasting Sales for Dairy Products Contents EXECUTIVE SUMMARY... 3 Data Analysis... 3 Forecast Horizon:... 4 Forecasting Models:... 4 Fresh milk - AmulTaaza (500 ml)... 4 Dahi/
Forecasting Analytics. Group members: - Arpita - Kapil - Kaushik - Ridhima - Ushhan
Forecasting Analytics Group members: - Arpita - Kapil - Kaushik - Ridhima - Ushhan Business Problem Forecast daily sales of dairy products (excluding milk) to make a good prediction of future demand, and
Demand Forecasting LEARNING OBJECTIVES IEEM 517. 1. Understand commonly used forecasting techniques. 2. Learn to evaluate forecasts
IEEM 57 Demand Forecasting LEARNING OBJECTIVES. Understand commonly used forecasting techniques. Learn to evaluate forecasts 3. Learn to choose appropriate forecasting techniques CONTENTS Motivation Forecast
Cross Validation. Dr. Thomas Jensen Expedia.com
Cross Validation Dr. Thomas Jensen Expedia.com About Me PhD from ETH Used to be a statistician at Link, now Senior Business Analyst at Expedia Manage a database with 720,000 Hotels that are not on contract
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data
A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt
Forecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
Causal Leading Indicators Detection for Demand Forecasting
Causal Leading Indicators Detection for Demand Forecasting Yves R. Sagaert, El-Houssaine Aghezzaf, Nikolaos Kourentzes, Bram Desmet Department of Industrial Management, Ghent University 13/07/2015 EURO
Package empiricalfdr.deseq2
Type Package Package empiricalfdr.deseq2 May 27, 2015 Title Simulation-Based False Discovery Rate in RNA-Seq Version 1.0.3 Date 2015-05-26 Author Mikhail V. Matz Maintainer Mikhail V. Matz
Promotional Forecast Demonstration
Exhibit 2: Promotional Forecast Demonstration Consider the problem of forecasting for a proposed promotion that will start in December 1997 and continues beyond the forecast horizon. Assume that the promotion
FOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA
www.sjm06.com Serbian Journal of Management 10 (1) (2015) 3-17 Serbian Journal of Management FOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA Abstract Zoran
Module 6: Introduction to Time Series Forecasting
Using Statistical Data to Make Decisions Module 6: Introduction to Time Series Forecasting Titus Awokuse and Tom Ilvento, University of Delaware, College of Agriculture and Natural Resources, Food and
Forecasting sales and intervention analysis of durable products in the Greek market. Empirical evidence from the new car retail sector.
Forecasting sales and intervention analysis of durable products in the Greek market. Empirical evidence from the new car retail sector. Maria K. Voulgaraki Department of Economics, University of Crete,
Objectives of Chapters 7,8
Objectives of Chapters 7,8 Planning Demand and Supply in a SC: (Ch7, 8, 9) Ch7 Describes methodologies that can be used to forecast future demand based on historical data. Ch8 Describes the aggregate planning
IBM SPSS Forecasting 22
IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification
Demand Forecasting to Increase Profits on Perishable Items
Demand Forecasting to Increase Profits on Perishable Items Ankur Pandey Arun Chaubey Sanchit Garg Shahid Siddiqui Sharath Srinivas Forecasting Analytics, ISB Over stock Wastage Ordering/ Inventory of Perishable
A Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries
A Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries Aida Mustapha *1, Farhana M. Fadzil #2 * Faculty of Computer Science and Information Technology, Universiti Tun Hussein
2) The three categories of forecasting models are time series, quantitative, and qualitative. 2)
Exam Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Regression is always a superior forecasting method to exponential smoothing, so regression should be used
Product Documentation SAP Business ByDesign 1302. Supply Chain Planning and Control
Product Documentation PUBLIC Supply Chain Planning and Control Table Of Contents 1 Supply Chain Planning and Control.... 6 2 Business Background... 8 2.1 Demand Planning... 8 2.2 Forecasting... 10 2.3
MICROSOFT EXCEL 2007-2010 FORECASTING AND DATA ANALYSIS
MICROSOFT EXCEL 2007-2010 FORECASTING AND DATA ANALYSIS Contents NOTE Unless otherwise stated, screenshots in this book were taken using Excel 2007 with a blue colour scheme and running on Windows Vista.
Package CoImp. February 19, 2015
Title Copula based imputation method Date 2014-03-01 Version 0.2-3 Package CoImp February 19, 2015 Author Francesca Marta Lilja Di Lascio, Simone Giannerini Depends R (>= 2.15.2), methods, copula Imports
CHAPTER 11 FORECASTING AND DEMAND PLANNING
OM CHAPTER 11 FORECASTING AND DEMAND PLANNING DAVID A. COLLIER AND JAMES R. EVANS 1 Chapter 11 Learning Outcomes l e a r n i n g o u t c o m e s LO1 Describe the importance of forecasting to the value
Sales and operations planning (SOP) Demand forecasting
ing, introduction Sales and operations planning (SOP) forecasting To balance supply with demand and synchronize all operational plans Capture demand data forecasting Balancing of supply, demand, and budgets.
4. Forecasting Trends: Exponential Smoothing
4. Forecasting Trends: Exponential Smoothing Introduction...2 4.1 Method or Model?...4 4.2 Extrapolation Methods...6 4.2.1 Extrapolation of the mean value...8 4.2.2 Use of moving averages... 10 4.3 Simple
Forecast the monthly demand on automobiles to increase sales for automotive company
Forecast the monthly demand on automobiles to increase sales for automotive company BAFT Group 5 Members: Fang-I Liao, Tzu Yi Lin, Po-Wei Huang, Louie Lu Executive Summary Our client is an automotive corporation
Not Your Dad s Magic Eight Ball
Not Your Dad s Magic Eight Ball Prepared for the NCSL Fiscal Analysts Seminar, October 21, 2014 Jim Landers, Office of Fiscal and Management Analysis, Indiana Legislative Services Agency Actual Forecast
Outline. Role of Forecasting. Characteristics of Forecasts. Logistics and Supply Chain Management. Demand Forecasting
Logistics and Supply Chain Management Demand Forecasting 1 Outline The role of forecasting in a supply chain Characteristics ti of forecasts Components of forecasts and forecasting methods Basic approach
CB Predictor 1.6. User Manual
CB Predictor 1.6 User Manual This manual, and the software described in it, are furnished under license and may only be used or copied in accordance with the terms of the license agreement. Information
Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480
1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500
Baseline Forecasting With Exponential Smoothing Models
Baseline Forecasting With Exponential Smoothing Models By Hans Levenbach, PhD., Executive Director CPDF Training and Certification Program, URL: www.cpdftraining.org Prediction is very difficult, especially
Outline: Demand Forecasting
Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of
The Operational Value of Social Media Information. Social Media and Customer Interaction
The Operational Value of Social Media Information Dennis J. Zhang (Kellogg School of Management) Ruomeng Cui (Kelley School of Business) Santiago Gallino (Tuck School of Business) Antonio Moreno-Garcia
Performance Measures in Data Mining
Performance Measures in Data Mining Common Performance Measures used in Data Mining and Machine Learning Approaches L. Richter J.M. Cejuela Department of Computer Science Technische Universität München
Package EstCRM. July 13, 2015
Version 1.4 Date 2015-7-11 Package EstCRM July 13, 2015 Title Calibrating Parameters for the Samejima's Continuous IRT Model Author Cengiz Zopluoglu Maintainer Cengiz Zopluoglu
ISSUES IN UNIVARIATE FORECASTING
ISSUES IN UNIVARIATE FORECASTING By Rohaiza Zakaria 1, T. Zalizam T. Muda 2 and Suzilah Ismail 3 UUM College of Arts and Sciences, Universiti Utara Malaysia 1 [email protected], 2 [email protected] and 3
2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or
Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus
Studying Material Inventory Management for Sock Production Factory
Studying Inventory Management for Sock Production Factory Pattanapong Ariyasit*, Nattaphon Supawatcharaphorn** Industrial Engineering Department, Faculty of Engineering, Sripatum University E-mail: [email protected]*,
Problem 5: Forecasting the demand for bread. 2011 21st June Fernando Baladrón Laura Barrigón Ángeles Garrido Alejandro González Verónica Hernández
Problem 5: Forecasting the demand for bread 2011 21st June Fernando Baladrón Laura Barrigón Ángeles Garrido Alejandro González Verónica Hernández 0. Summary 1. Introduction 2. Descriptive analysis 3. Classification
Forecasting Geographic Data Michael Leonard and Renee Samy, SAS Institute Inc. Cary, NC, USA
Forecasting Geographic Data Michael Leonard and Renee Samy, SAS Institute Inc. Cary, NC, USA Abstract Virtually all businesses collect and use data that are associated with geographic locations, whether
Flexible Neural Trees Ensemble for Stock Index Modeling
Flexible Neural Trees Ensemble for Stock Index Modeling Yuehui Chen 1, Ju Yang 1, Bo Yang 1 and Ajith Abraham 2 1 School of Information Science and Engineering Jinan University, Jinan 250022, P.R.China
A Study on the Comparison of Electricity Forecasting Models: Korea and China
Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 675 683 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.675 Print ISSN 2287-7843 / Online ISSN 2383-4757 A Study on the Comparison
Forecasting DISCUSSION QUESTIONS
4 C H A P T E R Forecasting DISCUSSION QUESTIONS 1. Qualitative models incorporate subjective factors into the forecasting model. Qualitative models are useful when subjective factors are important. When
A COMPARISON OF REGRESSION MODELS FOR FORECASTING A CUMULATIVE VARIABLE
A COMPARISON OF REGRESSION MODELS FOR FORECASTING A CUMULATIVE VARIABLE Joanne S. Utley, School of Business and Economics, North Carolina A&T State University, Greensboro, NC 27411, (336)-334-7656 (ext.
How To Predict Web Site Visits
Web Site Visit Forecasting Using Data Mining Techniques Chandana Napagoda Abstract: Data mining is a technique which is used for identifying relationships between various large amounts of data in many
Package bigdata. R topics documented: February 19, 2015
Type Package Title Big Data Analytics Version 0.1 Date 2011-02-12 Author Han Liu, Tuo Zhao Maintainer Han Liu Depends glmnet, Matrix, lattice, Package bigdata February 19, 2015 The
Theory at a Glance (For IES, GATE, PSU)
1. Forecasting Theory at a Glance (For IES, GATE, PSU) Forecasting means estimation of type, quantity and quality of future works e.g. sales etc. It is a calculated economic analysis. 1. Basic elements
Intermittent Demand Forecasts with Neural Networks
Intermittent Demand Forecasts with Neural Networks Nikolaos Kourentzes Lancaster University Management School, Lancaster, LA1 4YX, UK Abstract Intermittent demand appears when demand events occur only
The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network
, pp.67-76 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and
ER Volatility Forecasting using GARCH models in R
Exchange Rate Volatility Forecasting Using GARCH models in R Roger Roth Martin Kammlander Markus Mayer June 9, 2009 Agenda Preliminaries 1 Preliminaries Importance of ER Forecasting Predicability of ERs
Implementation of Inventory Management System in a Furniture Company: A Real Case study
International Journal of Engineering and Technology Volume 2 No. 8, August, 2012 Implementation of Inventory Management System in a Furniture Company: A Real Case study 1 Syed Adeel Haneed Zaidi, 2 Sharfuddin
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
Forecasting areas and production of rice in India using ARIMA model
International Journal of Farm Sciences 4(1) :99-106, 2014 Forecasting areas and production of rice in India using ARIMA model K PRABAKARAN and C SIVAPRAGASAM* Agricultural College and Research Institute,
Chapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
M1 in Economics and Economics and Statistics Applied multivariate Analysis - Big data analytics Worksheet 1 - Bootstrap
Nathalie Villa-Vialanei Année 2015/2016 M1 in Economics and Economics and Statistics Applied multivariate Analsis - Big data analtics Worksheet 1 - Bootstrap This worksheet illustrates the use of nonparametric
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND K. Adjenughwure, Delft University of Technology, Transport Institute, Ph.D. candidate V. Balopoulos, Democritus
Planning Workforce Management for Bank Operation Centers with Neural Networks
Plaing Workforce Management for Bank Operation Centers with Neural Networks SEFIK ILKIN SERENGIL Research and Development Center SoftTech A.S. Tuzla Teknoloji ve Operasyon Merkezi, Tuzla 34947, Istanbul
Forecasting in STATA: Tools and Tricks
Forecasting in STATA: Tools and Tricks Introduction This manual is intended to be a reference guide for time series forecasting in STATA. It will be updated periodically during the semester, and will be
Time Series Analysis and Forecasting
Time Series Analysis and Forecasting Math 667 Al Nosedal Department of Mathematics Indiana University of Pennsylvania Time Series Analysis and Forecasting p. 1/11 Introduction Many decision-making applications
Corresponding Author Duke University Department of Electrical and Computer Engineering Durham, North Carolina 27708-0291, U.S.A.
ForecastingUncertainHotelRoomDemand MihirRajopadhye,MounirBenGhaliayandPaulP.Wang DepartmentofElectricalandComputerEngineering Durham,NorthCarolina27708-0291 DukeUniversity TimothyBakerandCraigV.Eister
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
QUANTITATIVE METHODS FOR MANAGEMENT
3rd Term MBA-2016 QUANTITATIVE METHODS FOR MANAGEMENT COURSE OUTLINE 1. Introduction The main task of a manager is to make decisions. To make decisions managers need information. Information is spread
Time-Series Forecasting and Index Numbers
CHAPTER 15 Time-Series Forecasting and Index Numbers LEARNING OBJECTIVES This chapter discusses the general use of forecasting in business, several tools that are available for making business forecasts,
CASH DEMAND FORECASTING FOR ATMS
Report of summer project Institute for development and research in banking technology 13 May -13 July, 2013 CASH DEMAND FORECASTING FOR ATMS Guided By Dr. Mahil Carr Associate Professor IDRBT, Hyderabad
Demand Management Where Practice Meets Theory
Demand Management Where Practice Meets Theory Elliott S. Mandelman 1 Agenda What is Demand Management? Components of Demand Management (Not just statistics) Best Practices Demand Management Performance
Forecasting methods applied to engineering management
Forecasting methods applied to engineering management Áron Szász-Gábor Abstract. This paper presents arguments for the usefulness of a simple forecasting application package for sustaining operational
Simple Methods and Procedures Used in Forecasting
Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria Jadamus-Hacura What Is Forecasting? Prediction of future events
INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT
58 INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT Sudipa Sarker 1 * and Mahbub Hossain 2 1 Department of Industrial and Production Engineering Bangladesh
Package SHELF. February 5, 2016
Type Package Package SHELF February 5, 2016 Title Tools to Support the Sheffield Elicitation Framework (SHELF) Version 1.1.0 Date 2016-01-29 Author Jeremy Oakley Maintainer Jeremy Oakley
Probability Calculator
Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless the volume of the demand known. The success of the business
BUSINESS FORECASTING
BUSINESS FORECASTING January-May 2011 Professors Rogerio Domenge, Ph.D. [email protected] Aurora Monroy, MD [email protected] Julieta María Sarralde, MD: [email protected] (Coordinator) Rubina Verma, Ph.D. [email protected];
Package benford.analysis
Type Package Package benford.analysis November 17, 2015 Title Benford Analysis for Data Validation and Forensic Analytics Version 0.1.3 Author Carlos Cinelli Maintainer Carlos Cinelli
Package MBA. February 19, 2015. Index 7. Canopy LIDAR data
Version 0.0-8 Date 2014-4-28 Title Multilevel B-spline Approximation Package MBA February 19, 2015 Author Andrew O. Finley , Sudipto Banerjee Maintainer Andrew
Package survpresmooth
Package survpresmooth February 20, 2015 Type Package Title Presmoothed Estimation in Survival Analysis Version 1.1-8 Date 2013-08-30 Author Ignacio Lopez de Ullibarri and Maria Amalia Jacome Maintainer
A Wavelet Based Prediction Method for Time Series
A Wavelet Based Prediction Method for Time Series Cristina Stolojescu 1,2 Ion Railean 1,3 Sorin Moga 1 Philippe Lenca 1 and Alexandru Isar 2 1 Institut TELECOM; TELECOM Bretagne, UMR CNRS 3192 Lab-STICC;
The SAS Time Series Forecasting System
The SAS Time Series Forecasting System An Overview for Public Health Researchers Charles DiMaggio, PhD College of Physicians and Surgeons Departments of Anesthesiology and Epidemiology Columbia University
2014 Forecasting Benchmark Survey. Itron, Inc. 12348 High Bluff Drive, Suite 210 San Diego, CA 92130-2650 858-724-2620
Itron, Inc. 12348 High Bluff Drive, Suite 210 San Diego, CA 92130-2650 858-724-2620 September 16, 2014 For the third year, Itron surveyed energy forecasters across North America with the goal of obtaining
RF-Microwaves formulas - 1-port systems
RF-Microwaves formulas - -port systems s-parameters: Considering a voltage source feeding into the DUT with a source impedance of. E i E r DUT The voltage into the DUT is composed of 2 parts, an incident
An online dashboard in a snap
An online dashboard in a snap Create a WEB dashboard in minutes for your Key Performance Indicars using a simple & free ol and no programming expertise Component Based Solutions Ltd. When... You need a
Package SCperf. February 19, 2015
Package SCperf February 19, 2015 Type Package Title Supply Chain Perform Version 1.0 Date 2012-01-22 Author Marlene Silva Marchena Maintainer The package implements different inventory models, the bullwhip
Time Series Analysis with R - Part I. Walter Zucchini, Oleg Nenadić
Time Series Analysis with R - Part I Walter Zucchini, Oleg Nenadić Contents 1 Getting started 2 1.1 Downloading and Installing R.................... 2 1.2 Data Preparation and Import in R.................
Package tagcloud. R topics documented: July 3, 2015
Package tagcloud July 3, 2015 Type Package Title Tag Clouds Version 0.6 Date 2015-07-02 Author January Weiner Maintainer January Weiner Description Generating Tag and Word Clouds.
Package TRADER. February 10, 2016
Type Package Package TRADER February 10, 2016 Title Tree Ring Analysis of Disturbance Events in R Version 1.2-1 Date 2016-02-10 Author Pavel Fibich , Jan Altman ,
> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1)) > plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2)) quantile diff (error)
> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1)) > plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2)) 0.4 0.2 0.0 0.2 0.4 treed GP LLM, mean treed GP LLM, 0.00 0.05 0.10 0.15 0.20 x1 x1 0.4
Environment Protection Engineering APPROXIMATION OF IMISSION LEVEL AT AIR MONITORING STATIONS BY MEANS OF AUTONOMOUS NEURAL MODELS
Environment Protection Engineering Vol. 3 No. DOI: 1.577/epe1 SZYMON HOFFMAN* APPROXIMATION OF IMISSION LEVEL AT AIR MONITORING STATIONS BY MEANS OF AUTONOMOUS NEURAL MODELS Long-term collection of data,
OSKAR 2.4.0 Example Revision: 8
OSKAR Example Version history: Revision Date Modification 1 2012-04-24 Creation 2 2012-05-15 Updated figures and text for correct polarisation order. 3 2012-06-13 Updated figures and text to reflect changes
An Evaluation of Chinese Economic Forecasts
An Evaluation of Chinese Economic Forecasts H.O. Stekler 1 Huixia Zhang 2 Department of Economics 2115 G St. NW George Washington University Washington DC 20052 1 Corresponding author, [email protected],
Package MDM. February 19, 2015
Type Package Title Multinomial Diversity Model Version 1.3 Date 2013-06-28 Package MDM February 19, 2015 Author Glenn De'ath ; Code for mdm was adapted from multinom in the nnet package
Package png. February 20, 2015
Version 0.1-7 Title Read and write PNG images Package png February 20, 2015 Author Simon Urbanek Maintainer Simon Urbanek Depends R (>= 2.9.0)
Package sendmailr. February 20, 2015
Version 1.2-1 Title send email using R Package sendmailr February 20, 2015 Package contains a simple SMTP client which provides a portable solution for sending email, including attachment, from within
Implementation of demand forecasting models for fuel oil - The case of the Companhia Logística de Combustíveis, S.A. -
1 Implementation of demand forecasting models for fuel oil - The case of the Companhia Logística de Combustíveis, S.A. - Rosália Maria Gairifo Manuel Dias 1 1 DEG, IST, Universidade Técnica de Lisboa,
RapidResponse. Demand Planning. Application
This document outlines the RapidResponse Demand Application Kinaxis RapidResponse allows companies to concurrently and continuously plan, monitor, and respond in a single environment and across business
