BUSINESS FORECASTING
|
|
|
- Ami Williams
- 10 years ago
- Views:
Transcription
1 BUSINESS FORECASTING January-May 2011
2 Professors Rogerio Domenge, Ph.D. Aurora Monroy, MD Julieta María Sarralde, MD: (Coordinator) Rubina Verma, Ph.D. Office: ITAM Santa Teresa (near room 402) Objectives By the end of the course, students will be able to: Explain the importance and usefulness of forecasting models in the context of decision-making and planning in an organization. Formulate, construct, evaluate and select the most appropriate model to develop the right forecast, applying the essential characteristics required by the situation and selecting and using relevant variables. Construct databases suitable for the appropriate forecast. Specify a model using a computer, develop the appropriate forecast and interpret results. Evaluation Weight of activities as a percentage of final grade: Participation in class, homework (individual) and quizzes: 20% Mid-term exam I: 25% Mid-term exam II: 25% Final cumulative exam: 30% Important notes In order to pass the course, the student should obtain an average grade of six or higher on all three exams and also an average course grade of six and higher. Also, the student must attend atleast 80%of the total classes during the course. In addition to theoretical classes, the course will include several computer sessions, where students will learn how to use EXCEL and SPSS to apply the different tools covered in class (consult Nota Técnica MER-NT Manual de SPSS for Business Forecasting, May 2009). The statistical tables used for the course are those of the Department of Statistics for the Econometrics course at ITAM available in the bookstore. If you have any comments or need further information, contact the coordinator of the course (Julieta Sarralde) at the Department of Business Administration. Students role in the course Students are expected to have an active participation in class. Completing assignments is one of the most efficient forms of learning in this subject. Assignments must be completed by students individually. Assignments turned in after the corresponding deadlines will not receive credits. Students are strongly encouraged to start working on the course assignments and laboratory assignments as early as possible. The contents and scope of each assignment will be explained by the professor during the early weeks of classes. 2
3 Academic honor principle Students are expected and encouraged to discuss the different reading materials and concepts covered in class. Active participation in each and every aspect of the course is essential for its success. Students must bear in mind the classroom is not the only place where learning takes place. Therefore, reading the material covered everyday and turning in assignments on time is highly important. While external support can be useful, students must rely on their own effort to learn the contents covered throughout the course and solve the problems involved in the assignment. Any violation of the rules established in ITAM s internal regulations will be strictly resolved in accordance with strict regulations. 3
4 CONTENTS 1. INTRODUCTION TO FORECASTING (2 sessions, Hanke et. al. Ch. 1, Wilson et. al., Ch.1) The importance of forecasts in the organization: planning for the short and long-term future, decision-making. Applications to distinct areas of a firm. Historical Aspects of Forecasts. Forecasting as an art and science: myths and reality, limitations. Types of forecasts and approaches to study the future - Quantitative: General characteristics. Induction, external validity and types of data required. Extrapolation models for time series and structural models (regression). - Qualitative: General characteristics. Case study. Brainstorming. Experts panel. Delphi. Qualitative scenarios, Prospective planning. The different stages in developing a forecast. The data: - Data types: data and information, time-series and cross-section data. - Scaling: ratio, interval, ordinal and nominal, table encoding. - Data sources: Primary and Secondary. - Create a time series using a secondary data source. - Translate the series into a line graph using EXCEL and SPSS. - Reading: Sarbeleche A and Sarralde J.(Dec Feb. 2008) Cómo predecir el futuro, Dirección estratégica no. 24, 6th year, page STATISTICAL CONCEPTS REVIEW (2 sessions, Gujarati, Appendix A; Hanke Ch. 2, Wilson Ch. 2, Nota Técnica: MER-NT) Scatter plots and histograms. Measures of central tendency. Scatter and order. Sample, population and central limit theorem. Degrees of freedom. Random variables and normal distribution, t, χ 2, F. Statistical inference: hypothesis tests, confidence interval, observed p significance and assigned α significance. Third (asymmetry) and fourth (kurtosis) moments of the probability density function. Jarque-Bera statistic for normality tests. Introduction to the SPSS software package: basic statistics and graphs. - Generate the series basic descriptive statistics using SPSS and interpret them. - Apply the Central Limit Theorem to time series. - Conduct hypothesis tests: how to set up hypotheses, understanding test statistic, significance level, rejection region and conclusion. - Using the software Gretl ( for normality tests. 3. DATA BEHAVIOR PATTERNS (2 sessions, Hanke et. al., Ch.3) Time Series Components: trend, cyclical, seasonal, irregular and stationary series. 4
5 Data patterns, correlation, autocorrelation and correlogram. Confidence intervals and hypothesis tests. Obtain and interpret a Pearson s correlation coefficient both manually and using EXCEL and SPSS. Obtain and interpret a correlogram of levels and first differences using SPSS and EXCEL. Form and interpret hypothesis tests and confidence intervals for different statistics. Use of statistics tables. 4. FORECAST TECHNIQUES SELECTION CRITERIA (1 session, Hanke et. al., Ch.3) The forecast error concept. Error measurements: ME, MPE, MAE; MAPE, MSE and RMSE. Test period, characteristics and selection criteria. Forecast confidence interval in time series. Hypothesis testing about the mean error. Application of all the above concepts. 5. TIME SERIES EXTRAPOLATION TECHNIQUES (6 sessions, Hanke et. al. Ch 4, Nota Técnica: EST-NT, Wilson et. al., Ch. 3,6 & 10) Naïve models (basic, trend, rate of change, seasonal, trend and seasonal). Average methods: simple and moving averages. Methods of smoothings: Simple exponential smoothing and Winters multiplicative. Note: To apply these techniques use the Solver function in Excel. Time series decomposition: multiplicative model. Apply the different techniques to obtain forecasts, error measurements and graphs. 6. SIMPLE REGRESSION ANALYSIS (9 sessions, Gujarati Chapters. 1-5) The causality concept. Simple Linear Regression Model: sample and population regression line, error and residue. Ordinary Least Squares (OLS). Linear estimation. Concept of R 2 : Coefficient of determination. Estimator significance tests: standard error and t test. Standard error of estimate and standard error of point forecast. ANOVA Table: Determination coefficient. Point and interval forecasts for each particular case. Calculation of simple regression estimators both manually and using softwares. Interpretation of these estimators. 5
6 Analysis of the significance of the independent variable and the coefficients. Calculation of ANOVA table both manually and using EXCEL. Interpretation. Calculation of forecast and its confidence interval. 7. FUNCTIONAL FORMS (2 sessions, Gujarati Chapter 6) Linear model in variables and parameters. Transformation of variables. Functional forms: Constant elasticity model (Log linear model), Saturation model (Lin-Log model), Growth model (Log-Lin model), Experience curve model (reciprocal model) and Life cycle model (log reciprocal model). Application and interpretation of these distinct models. 8. MULTIPLE REGRESSION ANALYSIS (8 sessions, Gujarati Chapters 8-12, 15 and Appendix B &C) Prediction of variables and correlation matrix. Multiple Regression Model: matrix form of a regression model, coefficients interpretation and inference. ANOVA table: adjusted R 2 and F test. Relative importance of variables and standardized betas. Regression on standardized variables. Non-metric or dummy variables (ANOVA models and ANCOVA). Regression with dichotomous dependent variable: Linear Probability Model. Regression model assumptions: nature and consequences of their violation. Jarque-Bera normality test of residues and variables. Multicollinearity: nature, detection (R 2, sign and significances of β, correlations) remedial measurements and consequences (specification bias, transformations). Heteroscedasticity: nature, detection (Park test and White s complete test), remedial measures and consequences (transformations). Autocorrelation: nature, detection (graphs, correlogram and Durbin-Watson), remedial measures and consequences (first differences). Calculation of regression estimators both manually and using software packages. Interpretation. Calculation of ANOVA table both manually and using software packages. Interpretation. Calculation of forecast and its confidence interval. Exercises to detect violation of assumptions. BIBLIOGRAPHY Textbooks: * * * DEPARTMENTAL CUMULATIVE FINAL EXAM * * * 6
7 Gujarati, Damodar N. (2003). Basic Econometrics. Fourth Edition. New York, USA: McGraw-Hill Higher Education. In Spanish:. Econometría. Cuarta edición (2004). México: McGraw-Hill. Hanke, Jonh E; Wichern, Dean W. & Reitsch, Arthur G. (2009). Business Forecasting. Ninth Edition. USA, New Jersey: Prentice Hall. Nota Técnica MER-NT Manual de SPSS for Business Forecasting, May Nota Técnica EST-NT Descomposición de series de Tiempo for Business Forecasting, May Supplementary books and papers: Sarbeleche A and Sarralde J.(December February 2008) Cómo predecir el futuro, Dirección estratégica no. 24, 6th year page Armstrong, J. Scott. (2001). Principles of forecasting: a handbook for researchers and practitioners. Boston, Mass. USA: Kluwer Academic.(003.2/P957) Berk, Kenneth N. & Carey, Patrick. (2001). Análisis de datos con Microsoft Excel. México: Thomson Learning. Ferrán Aranaz, Magdalena. (2002). Curso de SPSS. Madrid, España: McGraw-Hill. Hanke, John E.; Wichern, Dean W. & Reitsch, Arthur G. (2001). Business Forecasting. Seventh Edition. USA, New Jersey: Prentice Hall. Johnston, Johnston y DiNardo, John. (1997). Econometric Methods. Fourth Edition. Singapore: McGraw-Hill International Editions. Makridakis, Spyros G. (1997). Forecasting: Methods and Applications. 3rd. Ed. New York, USA: John Wiley & Sons, Inc. (338,5442 M235F) Makridakis, Spyros. (1993). Pronósticos. Estrategia y Planificación para el siglo XXI. Madrid, España: Ediciones Diaz de Santos, S. A. Miklos, Tomás y Tello, Ma. Elena. (1991). Planeación Prospectiva. México: Editorial Limusa, S.A. Montgomery, D., Johnson, l.& Gardiner, J. (1990). Forecasting & Time Series Analysis. 2d ed. McGraw-Hill International Editions. Montgomery, D.&, Peck, E. (1992). Introduction to Linear Regression Analysis, 2d ed. Wiley Inter-Science. Newbold P. & Bos T. (1995). Introductory Business and Economic Forecasting. Second Edition. USA: South Western. Pérez, César. (2001). Técnicas Estadísticas con SPSS. España: Prentice-Hall. Pindyck, Robert & Rubinfeld, D. (2001). Econometría: modelos y pronósticos. Cuarta edición. México: McGraw-Hill, Inc. Sachs, Wladimir M. (1978). Diseño de un futuro para el futuro. México: Fundación Javier Barros Sierra, A.C. Wilson, J. Holton; Keating, Barry & Galt, John. (2007). Business Forecasting. Fifth Edition New York, USA: McGrawHill. 7
Teaching model: C1 a. General background: 50% b. Theory-into-practice/developmental 50% knowledge-building: c. Guided academic activities:
1. COURSE DESCRIPTION Degree: Double Degree: Derecho y Finanzas y Contabilidad (English teaching) Course: STATISTICAL AND ECONOMETRIC METHODS FOR FINANCE (Métodos Estadísticos y Econométricos en Finanzas
Teaching guide ECONOMETRICS
Teaching guide ECONOMETRICS INDEX CARD Subject Data Código Titulación Nombre Carácter Ciclo 1313.- Grado en Administración y Dirección de Empresas, Mención Creación y Dirección de Empresas, Itinerario
Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480
1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500
PROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
ECON 523 Applied Econometrics I /Masters Level American University, Spring 2008. Description of the course
ECON 523 Applied Econometrics I /Masters Level American University, Spring 2008 Instructor: Maria Heracleous Lectures: M 8:10-10:40 p.m. WARD 202 Office: 221 Roper Phone: 202-885-3758 Office Hours: M W
Description. Textbook. Grading. Objective
EC151.02 Statistics for Business and Economics (MWF 8:00-8:50) Instructor: Chiu Yu Ko Office: 462D, 21 Campenalla Way Phone: 2-6093 Email: [email protected] Office Hours: by appointment Description This course
Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
Forecasting Methods / Métodos de Previsão Week 1
Forecasting Methods / Métodos de Previsão Week 1 ISCTE - IUL, Gestão, Econ, Fin, Contab. Diana Aldea Mendes [email protected] February 3, 2011 DMQ, ISCTE-IUL ([email protected]) Forecasting Methods
A Primer on Forecasting Business Performance
A Primer on Forecasting Business Performance There are two common approaches to forecasting: qualitative and quantitative. Qualitative forecasting methods are important when historical data is not available.
STATISTICS APPLIED TO BUSINESS ADMINISTRATION
BASIC PROGRAM FOR THE COURSE STATISTICS APPLIED TO BUSINESS ADMINISTRATION Degree: BA (ADE) Course: 2nd Semester: second Credits: 6 Type: Core Code: 25837 Department of Applied Economics III (Econometrics
COURSES: 1. Short Course in Econometrics for the Practitioner (P000500) 2. Short Course in Econometric Analysis of Cointegration (P000537)
Get the latest knowledge from leading global experts. Financial Science Economics Economics Short Courses Presented by the Department of Economics, University of Pretoria WITH 2015 DATES www.ce.up.ac.za
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
Module 6: Introduction to Time Series Forecasting
Using Statistical Data to Make Decisions Module 6: Introduction to Time Series Forecasting Titus Awokuse and Tom Ilvento, University of Delaware, College of Agriculture and Natural Resources, Food and
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
MASTER COURSE SYLLABUS-PROTOTYPE PSYCHOLOGY 2317 STATISTICAL METHODS FOR THE BEHAVIORAL SCIENCES
MASTER COURSE SYLLABUS-PROTOTYPE THE PSYCHOLOGY DEPARTMENT VALUES ACADEMIC FREEDOM AND THUS OFFERS THIS MASTER SYLLABUS-PROTOTYPE ONLY AS A GUIDE. THE INSTRUCTORS ARE FREE TO ADAPT THEIR COURSE SYLLABI
RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS
RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS I. Basic Course Information A. Course Number and Title: MATH 111H Statistics II Honors B. New or Modified Course:
QUANTITATIVE METHODS. for Decision Makers. Mik Wisniewski. Fifth Edition. FT Prentice Hall
Fifth Edition QUANTITATIVE METHODS for Decision Makers Mik Wisniewski Senior Research Fellow, Department of Management Science, University of Strathclyde Business School FT Prentice Hall FINANCIAL TIMES
TIME SERIES ANALYSIS
TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-0 02 [email protected]. Introduction Time series (TS) data refers to observations
Simple Methods and Procedures Used in Forecasting
Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria Jadamus-Hacura What Is Forecasting? Prediction of future events
Module 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
Introduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
UNIVERSITY of MASSACHUSETTS DARTMOUTH Charlton College of Business Decision and Information Sciences Fall 2010
UNIVERSITY of MASSACHUSETTS DARTMOUTH Charlton College of Business Decision and Information Sciences Fall 2010 COURSE: POM 500 Statistical Analysis, ONLINE EDITION, Fall 2010 Prerequisite: Finite Math
Sales Forecasting System for Chemicals Supplying Enterprises
Sales Forecasting System for Chemicals Supplying Enterprises Ma. Del Rocio Castillo E. 1, Ma. Magdalena Chain Palavicini 1, Roberto Del Rio Soto 1 & M. Javier Cruz Gómez 2 1 Facultad de Contaduría y Administración,
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS Sushanta Sengupta 1, Ruma Datta 2 1 Tata Consultancy Services Limited, Kolkata 2 Netaji Subhash
2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
Brown University Department of Economics Spring 2015 ECON 1620-S01 Introduction to Econometrics Course Syllabus
Brown University Department of Economics Spring 2015 ECON 1620-S01 Introduction to Econometrics Course Syllabus Course Instructor: Dimitra Politi Office hour: Mondays 1-2pm (and by appointment) Office
A spreadsheet Approach to Business Quantitative Methods
A spreadsheet Approach to Business Quantitative Methods by John Flaherty Ric Lombardo Paul Morgan Basil desilva David Wilson with contributions by: William McCluskey Richard Borst Lloyd Williams Hugh Williams
Ch.3 Demand Forecasting.
Part 3 : Acquisition & Production Support. Ch.3 Demand Forecasting. Edited by Dr. Seung Hyun Lee (Ph.D., CPL) IEMS Research Center, E-mail : [email protected] Demand Forecasting. Definition. An estimate
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
QMB 3302 Business Analytics CRN 10251 Spring 2015 T R -- 11:00am - 12:15pm -- Lutgert Hall 2209
QMB 3302 Business Analytics CRN 10251 Spring 2015 T R -- 11:00am - 12:15pm -- Lutgert Hall 2209 Elias T. Kirche, Ph.D. Associate Professor Department of Information Systems and Operations Management Lutgert
Regression Analysis (Spring, 2000)
Regression Analysis (Spring, 2000) By Wonjae Purposes: a. Explaining the relationship between Y and X variables with a model (Explain a variable Y in terms of Xs) b. Estimating and testing the intensity
16 : Demand Forecasting
16 : Demand Forecasting 1 Session Outline Demand Forecasting Subjective methods can be used only when past data is not available. When past data is available, it is advisable that firms should use statistical
Introduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
Forecasting Tourism Demand: Methods and Strategies. By D. C. Frechtling Oxford, UK: Butterworth Heinemann 2001
Forecasting Tourism Demand: Methods and Strategies By D. C. Frechtling Oxford, UK: Butterworth Heinemann 2001 Table of Contents List of Tables List of Figures Preface Acknowledgments i 1 Introduction 1
Economic Statistics (ECON2006), Statistics and Research Design in Psychology (PSYC2010), Survey Design and Analysis (SOCI2007)
COURSE DESCRIPTION Title Code Level Semester Credits 3 Prerequisites Post requisites Introduction to Statistics ECON1005 (EC160) I I None Economic Statistics (ECON2006), Statistics and Research Design
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences
! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COS-MATH-252 Probability and Statistics II 1.0 Course designations and approvals:
Time series analysis in loan management information systems
Theoretical and Applied Economics Volume XXI (2014), No. 3(592), pp. 57-66 Time series analysis in loan management information systems Julian VASILEV Varna University of Economics, Bulgaria [email protected]
Theory at a Glance (For IES, GATE, PSU)
1. Forecasting Theory at a Glance (For IES, GATE, PSU) Forecasting means estimation of type, quantity and quality of future works e.g. sales etc. It is a calculated economic analysis. 1. Basic elements
Street Address: 1111 Franklin Street Oakland, CA 94607. Mailing Address: 1111 Franklin Street Oakland, CA 94607
Contacts University of California Curriculum Integration (UCCI) Institute Sarah Fidelibus, UCCI Program Manager Street Address: 1111 Franklin Street Oakland, CA 94607 1. Program Information Mailing Address:
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
STAT 360 Probability and Statistics. Fall 2012
STAT 360 Probability and Statistics Fall 2012 1) General information: Crosslisted course offered as STAT 360, MATH 360 Semester: Fall 2012, Aug 20--Dec 07 Course name: Probability and Statistics Number
Comparative Study of Demand Forecast Accuracy for Healthcare Products Using Linear and Non Linear Regression
International Journal of Business and Management Invention ISSN (Online): 2319 8028, ISSN (Print): 2319 801X Volume 3 Issue 5ǁ May. 2014 ǁ PP.01-10 Comparative Study of Demand Forecast Accuracy for Healthcare
TIME SERIES ANALYSIS
TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi- 110 012 [email protected] 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Truman College-Mathematics Department Math 125-CD: Introductory Statistics Course Syllabus Fall 2012
Instructor: Dr. Abdallah Shuaibi Office #: 3816 Email: [email protected] URL: http://faculty.ccc.edu/ashuaibi/ Phone #: (773)907-4085 Office Hours: Truman College-Mathematics Department Math 125-CD: Introductory
Economics 386 Introduction to Forecasting in Economics and Finance Spring 2016 Mondays and Wednesdays 01:10 PM-02:30 PM in PAC 125
Economics 386 Introduction to Forecasting in Economics and Finance Spring 2016 Mondays and Wednesdays 01:10 PM-02:30 PM in PAC 125 Professor: Nazire Ozkan Office: PAC 221 E-mail: [email protected] Phone:
Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Forecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod - Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
The effects of nonprofit organization-specific factors on governmental support to nonprofit organizations
Journal of Management and Marketing Research The effects of nonprofit organization-specific factors on governmental support to nonprofit organizations Nicholas Marudas Auburn Montgomery Fred Jacobs Auburn
RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY
RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY I. INTRODUCTION According to the Common Core Standards (2010), Decisions or predictions are often based on data numbers
Overview... 2. Accounting for Business (MCD1010)... 3. Introductory Mathematics for Business (MCD1550)... 4. Introductory Economics (MCD1690)...
Unit Guide Diploma of Business Contents Overview... 2 Accounting for Business (MCD1010)... 3 Introductory Mathematics for Business (MCD1550)... 4 Introductory Economics (MCD1690)... 5 Introduction to Management
Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA - Part I
Index Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1 EduPristine CMA - Part I Page 1 of 11 Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting
for an appointment, e-mail [email protected]
M.Sc. in Economics Department of Economics, University College London Econometric Theory and Methods (G023) 1 Autumn term 2007/2008: weeks 2-8 Jérôme Adda for an appointment, e-mail [email protected] Introduction
INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT
58 INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NON-LINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT Sudipa Sarker 1 * and Mahbub Hossain 2 1 Department of Industrial and Production Engineering Bangladesh
3818 - Introduction to Statistics (Online) Syllabus/Course Information
3818 - Introduction to Statistics (Online) Syllabus/Course Information Course Description Econ 3818 is a first course in probability and statistical methods, with an introduction to econometrics. This
STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
Calculating the Probability of Returning a Loan with Binary Probability Models
Calculating the Probability of Returning a Loan with Binary Probability Models Associate Professor PhD Julian VASILEV (e-mail: [email protected]) Varna University of Economics, Bulgaria ABSTRACT The
2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or
Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus
Name of the module: Multivariate biostatistics and SPSS Number of module: 471-8-4081
Name of the module: Multivariate biostatistics and SPSS Number of module: 471-8-4081 BGU Credits: 1.5 ECTS credits: Academic year: 4 th Semester: 15 days during fall semester Hours of instruction: 8:00-17:00
TABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (One-way χ 2 )... 1 Test of Independence (Two-way χ 2 )... 2 Hypothesis Testing
SPSS TUTORIAL & EXERCISE BOOK
UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS
(More Practice With Trend Forecasts)
Stats for Strategy HOMEWORK 11 (Topic 11 Part 2) (revised Jan. 2016) DIRECTIONS/SUGGESTIONS You may conveniently write answers to Problems A and B within these directions. Some exercises include special
Practical. I conometrics. data collection, analysis, and application. Christiana E. Hilmer. Michael J. Hilmer San Diego State University
Practical I conometrics data collection, analysis, and application Christiana E. Hilmer Michael J. Hilmer San Diego State University Mi Table of Contents PART ONE THE BASICS 1 Chapter 1 An Introduction
STAT 2300: BUSINESS STATISTICS Section 002, Summer Semester 2009
STAT 2300: BUSINESS STATISTICS Section 002, Summer Semester 2009 Instructor: Bill Welbourn Office: Lund 117 Email: [email protected] Lectures: MWF 7:30AM 9:40AM in ENGR 104 Office Hours:
Course outline. Code: BUS501 Title: Business Analytics and Statistics
Course outline Code: BUS501 Title: Business Analytics and Statistics Faculty of Arts and Business School of Business Teaching Session: Semester 2 Year: 2015 Course Coordinator: Professor Willem Selen Office:
Directions for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
BUS 655/655/455 Forecasting & Predictive Analytics How to Predict the Future with Confidence
BUS 655/655/455 Forecasting & Predictive Analytics How to Predict the Future with Confidence Spring 2015 Wednesday 6:30-9:15, Room 208 Prof. Stephen P. Stuk, Ph.D. Office GBS 409 Mobile: 678-468-3452 use
A FUZZY LOGIC APPROACH FOR SALES FORECASTING
A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for
MATH 140 HYBRID INTRODUCTORY STATISTICS COURSE SYLLABUS
MATH 140 HYBRID INTRODUCTORY STATISTICS COURSE SYLLABUS Instructor: Mark Schilling Email: [email protected] (Note: If your CSUN email address is not one you use regularly, be sure to set up automatic
MT120-ES: Topics in Applied College Math (4 credits; 100% online) Syllabus Fall 2013
Contact Information for Professor Wood MT120-ES: Topics in Applied College Math (4 credits; 100% online) Syllabus Fall 2013 Phone: (603) 271-6484 x4341 E-mail: [email protected] Office: Sweeney Hall, Room
Economic- Management. None. None
ANTIOQUIA SCHOOL OF ENGINEERING General Management ACADEMIC DOMAIN CURRICULUM FIELD (POSTGRADUATE AND MASTERS) PREREQUISITE(S) COREQUISITE(S) SUBJECT CREDITS - COLOMBIANS - ECTS (COLOM x1.8) DIRECT TEACHING
USING SEASONAL AND CYCLICAL COMPONENTS IN LEAST SQUARES FORECASTING MODELS
Using Seasonal and Cyclical Components in Least Squares Forecasting models USING SEASONAL AND CYCLICAL COMPONENTS IN LEAST SQUARES FORECASTING MODELS Frank G. Landram, West Texas A & M University Amjad
430 Statistics and Financial Mathematics for Business
Prescription: 430 Statistics and Financial Mathematics for Business Elective prescription Level 4 Credit 20 Version 2 Aim Students will be able to summarise, analyse, interpret and present data, make predictions
South Carolina College- and Career-Ready (SCCCR) Probability and Statistics
South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
Joseph Twagilimana, University of Louisville, Louisville, KY
ST14 Comparing Time series, Generalized Linear Models and Artificial Neural Network Models for Transactional Data analysis Joseph Twagilimana, University of Louisville, Louisville, KY ABSTRACT The aim
Premaster Statistics Tutorial 4 Full solutions
Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for
Cost implications of no-fault automobile insurance. By: Joseph E. Johnson, George B. Flanigan, and Daniel T. Winkler
Cost implications of no-fault automobile insurance By: Joseph E. Johnson, George B. Flanigan, and Daniel T. Winkler Johnson, J. E., G. B. Flanigan, and D. T. Winkler. "Cost Implications of No-Fault Automobile
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
Trust, Job Satisfaction, Organizational Commitment, and the Volunteer s Psychological Contract
Trust, Job Satisfaction, Commitment, and the Volunteer s Psychological Contract Becky J. Starnes, Ph.D. Austin Peay State University Clarksville, Tennessee, USA [email protected] Abstract Studies indicate
Sílabo del curso Global Supply Chain Management
Sílabo del curso Global Supply Chain Agosto diciembre 2013 VII Ciclo Lecturer Ing. Fernando Casafranca I. General data about the course Title: Global Supply Chain Code : 05635 Requisite Investigación de
Manual on Air Traffic Forecasting
Doc 8991 AT/722/3 Manual on Air Traffic Forecasting Approved by the Secretary General and published under his authority Third Edition 2006 International Civil Aviation Organization AMENDMENTS The issue
Note 2 to Computer class: Standard mis-specification tests
Note 2 to Computer class: Standard mis-specification tests Ragnar Nymoen September 2, 2013 1 Why mis-specification testing of econometric models? As econometricians we must relate to the fact that the
Course Syllabus. Purposes of Course:
Course Syllabus Eco 5385.701 Predictive Analytics for Economists Summer 2014 TTh 6:00 8:50 pm and Sat. 12:00 2:50 pm First Day of Class: Tuesday, June 3 Last Day of Class: Tuesday, July 1 251 Maguire Building
IBM SPSS Forecasting 22
IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
August 2012 EXAMINATIONS Solution Part I
August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
Econometrics and Data Analysis I
Econometrics and Data Analysis I Yale University ECON S131 (ONLINE) Summer Session A, 2014 June 2 July 4 Instructor: Doug McKee ([email protected]) Teaching Fellow: Yu Liu ([email protected]) Classroom:
KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KCOE-CQAS- 873 - Time Series Analysis
Diablo Valley College Catalog 2014-2015
Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,
