Package bigdata. R topics documented: February 19, 2015
|
|
|
- Rosanna Floyd
- 10 years ago
- Views:
Transcription
1 Type Package Title Big Data Analytics Version 0.1 Date Author Han Liu, Tuo Zhao Maintainer Han Liu Depends glmnet, Matrix, lattice, Package bigdata February 19, 2015 The big data package is a collection of scalable methods for large-scale data analysis. License GPL-2 Repository CRAN Date/Publication :55:53 NeedsCompilation no R topics documented: bigdata-package plot.stars print.stars Index 6 bigdata-package Big Data Analytics Details a collection of scalable methods for large-scale data analysis. 1
2 2 Package: bigdata Type: Package Version: 0.1 Date: License: GPL-2 LazyLoad: yes Han Liu, Tuo Zhao Maintainers: Han Liu References 1. Han Liu, Kathryn Roeder and Larry Wasserman. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Advances in Neural Information Processing Systems(NIPS), Stability Approach to Regularization Selection for Lasso Implements the Stability Approach to Regularization Selection (StARS) for Lasso Usage (x, y, rep.num = 20, lambda = NULL, nlambda = 100, lambda.min.ratio = 0.001, stars.thresh = 0.1, sample.ratio = NULL, alpha = 1, verbose = TRUE) Arguments x The n by d data matrix representing n observations in d dimensions y The n-dimensional response vector rep.num The number of subsampling for StARS. The default value is 20.
3 3 Details Value lambda A sequence of decresing positive numbers to control regularization. Typical usage is to leave the input lambda = NULL and have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Users can also specify a sequence to override this. Use with care - it is better to supply a decreasing sequence values than a single (small) value. nlambda The number of regularization paramters. The default value is 100. lambda.min.ratio The smallest value for lambda, as a fraction of the uppperbound (MAX) of the regularization parameter which makes all estimates equal to 0. The program can automatically generate lambda as a sequence of length = nlambda starting from MAX to lambda.min.ratio*max in log scale. The default value is stars.thresh sample.ratio The threshold of the variability in StARS. The default value is 0.1. The alternative value is Only applicable when criterion = "stars" The subsampling ratio. The default value is 10*sqrt(n)/n when n>144 and 0.8 when n<=144, where n is the sample size. alpha The tuning parameter for the elastic-net regression. The default value is 1 (lasso). verbose If verbose = FALSE, tracing information printing is disabled. The default value is TRUE. StARS selects the optimal regularization parameter based on the variability of the solution path. It chooses the least sparse graph among all solutions with the same variability. An alternative threshold 0.05 is chosen under the assumption that the model is correctly specified. In applications, the model is usually an approximation of the true model, 0.1 is a safer choice. The implementation is based on the popular package "glmnet". An object with S3 class "stars" is returned: path lambda opt.index opt.beta opt.lambda Variability The solution path of regression coefficients (in an d by nlambda matrix) The regularization parameters used in Lasso The index of the optimal regularization parameter. The optimal regression coefficients. The optimal regularization parameter. The variability along the solution path. Note This function can only work under the setting when d>1 Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman Maintainers: Tuo Zhao<[email protected]>; Han Liu <[email protected]>
4 4 plot.stars References 1.Han Liu, Kathryn Roeder and Larry Wasserman. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Advances in Neural Information Processing Systems, Jerome Friedman, Trevor Hastie and Rob Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol.33, No.1, bigdata-package Examples #generate data x = matrix(rnorm(50*80),50,80) beta = c(3,2,1.5,rep(0,77)) y = rnorm(50) + x%*%beta #StARS for Lasso z1 = (x,y) summary(z1) plot(z1) #StARS for Lasso z2 = (x,y, stars.thresh = 0.05) summary(z2) plot(z2) #StARS for Lasso z3 = (x,y,rep.num = 50) summary(z3) plot(z3) plot.stars Plot function for S3 class "stars" Usage Visualize the solution path and plot the optimal solution by model selection ## S3 method for class stars plot(x,...) Arguments x An object with S3 class "stars"... System reserved (No specific usage)
5 print.stars 5 Han Liu and Tuo Zhao Maintainers: Han Liu <[email protected]> print.stars Print function for S3 class "stars" Usage Print the information about the solution path length and the degree of freedom s along the solution path. ## S3 method for class stars print(x,...) Arguments x An object with S3 class "stars"... System reserved (No specific usage) Han Liu and Tuo Zhao Maintainers: Han Liu <[email protected]>
6 Index bigdata-package, 1, 2, 2, 5 plot.stars, 4 print.stars, 5 6
Package metafuse. November 7, 2015
Type Package Package metafuse November 7, 2015 Title Fused Lasso Approach in Regression Coefficient Clustering Version 1.0-1 Date 2015-11-06 Author Lu Tang, Peter X.K. Song Maintainer Lu Tang
Package empiricalfdr.deseq2
Type Package Package empiricalfdr.deseq2 May 27, 2015 Title Simulation-Based False Discovery Rate in RNA-Seq Version 1.0.3 Date 2015-05-26 Author Mikhail V. Matz Maintainer Mikhail V. Matz
Lasso on Categorical Data
Lasso on Categorical Data Yunjin Choi, Rina Park, Michael Seo December 14, 2012 1 Introduction In social science studies, the variables of interest are often categorical, such as race, gender, and nationality.
Machine Learning Big Data using Map Reduce
Machine Learning Big Data using Map Reduce By Michael Bowles, PhD Where Does Big Data Come From? -Web data (web logs, click histories) -e-commerce applications (purchase histories) -Retail purchase histories
Package tagcloud. R topics documented: July 3, 2015
Package tagcloud July 3, 2015 Type Package Title Tag Clouds Version 0.6 Date 2015-07-02 Author January Weiner Maintainer January Weiner Description Generating Tag and Word Clouds.
Package neuralnet. February 20, 2015
Type Package Title Training of neural networks Version 1.32 Date 2012-09-19 Package neuralnet February 20, 2015 Author Stefan Fritsch, Frauke Guenther , following earlier work
Package cpm. July 28, 2015
Package cpm July 28, 2015 Title Sequential and Batch Change Detection Using Parametric and Nonparametric Methods Version 2.2 Date 2015-07-09 Depends R (>= 2.15.0), methods Author Gordon J. Ross Maintainer
Regularized Logistic Regression for Mind Reading with Parallel Validation
Regularized Logistic Regression for Mind Reading with Parallel Validation Heikki Huttunen, Jukka-Pekka Kauppi, Jussi Tohka Tampere University of Technology Department of Signal Processing Tampere, Finland
Package hoarder. June 30, 2015
Type Package Title Information Retrieval for Genetic Datasets Version 0.1 Date 2015-06-29 Author [aut, cre], Anu Sironen [aut] Package hoarder June 30, 2015 Maintainer Depends
Package missforest. February 20, 2015
Type Package Package missforest February 20, 2015 Title Nonparametric Missing Value Imputation using Random Forest Version 1.4 Date 2013-12-31 Author Daniel J. Stekhoven Maintainer
Package smoothhr. November 9, 2015
Encoding UTF-8 Type Package Depends R (>= 2.12.0),survival,splines Package smoothhr November 9, 2015 Title Smooth Hazard Ratio Curves Taking a Reference Value Version 1.0.2 Date 2015-10-29 Author Artur
Model selection in R featuring the lasso. Chris Franck LISA Short Course March 26, 2013
Model selection in R featuring the lasso Chris Franck LISA Short Course March 26, 2013 Goals Overview of LISA Classic data example: prostate data (Stamey et. al) Brief review of regression and model selection.
Package MBA. February 19, 2015. Index 7. Canopy LIDAR data
Version 0.0-8 Date 2014-4-28 Title Multilevel B-spline Approximation Package MBA February 19, 2015 Author Andrew O. Finley , Sudipto Banerjee Maintainer Andrew
Package MDM. February 19, 2015
Type Package Title Multinomial Diversity Model Version 1.3 Date 2013-06-28 Package MDM February 19, 2015 Author Glenn De'ath ; Code for mdm was adapted from multinom in the nnet package
Package plan. R topics documented: February 20, 2015
Package plan February 20, 2015 Version 0.4-2 Date 2013-09-29 Title Tools for project planning Author Maintainer Depends R (>= 0.99) Supports the creation of burndown
Package RIGHT. March 30, 2015
Type Package Title R Interactive Graphics via HTML Version 0.2.0 Date 2015-03-30 Package RIGHT March 30, 2015 Author ChungHa Sung, TaeJoon Song, JongHyun Bae, SangGi Hong, Jae W. Lee, and Junghoon Lee
Package ATE. R topics documented: February 19, 2015. Type Package Title Inference for Average Treatment Effects using Covariate. balancing.
Package ATE February 19, 2015 Type Package Title Inference for Average Treatment Effects using Covariate Balancing Version 0.2.0 Date 2015-02-16 Author Asad Haris and Gary Chan
Package polynom. R topics documented: June 24, 2015. Version 1.3-8
Version 1.3-8 Package polynom June 24, 2015 Title A Collection of Functions to Implement a Class for Univariate Polynomial Manipulations A collection of functions to implement a class for univariate polynomial
Package EstCRM. July 13, 2015
Version 1.4 Date 2015-7-11 Package EstCRM July 13, 2015 Title Calibrating Parameters for the Samejima's Continuous IRT Model Author Cengiz Zopluoglu Maintainer Cengiz Zopluoglu
Penalized Logistic Regression and Classification of Microarray Data
Penalized Logistic Regression and Classification of Microarray Data Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France Penalized Logistic Regression andclassification
Package sendmailr. February 20, 2015
Version 1.2-1 Title send email using R Package sendmailr February 20, 2015 Package contains a simple SMTP client which provides a portable solution for sending email, including attachment, from within
Package AMORE. February 19, 2015
Encoding UTF-8 Version 0.2-15 Date 2014-04-10 Title A MORE flexible neural network package Package AMORE February 19, 2015 Author Manuel Castejon Limas, Joaquin B. Ordieres Mere, Ana Gonzalez Marcos, Francisco
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Package ChannelAttribution
Type Package Package ChannelAttribution October 10, 2015 Title Markov Model for the Online Multi-Channel Attribution Problem Version 1.2 Date 2015-10-09 Author Davide Altomare and David Loris Maintainer
Package acrm. R topics documented: February 19, 2015
Package acrm February 19, 2015 Type Package Title Convenience functions for analytical Customer Relationship Management Version 0.1.1 Date 2014-03-28 Imports dummies, randomforest, kernelfactory, ada Author
Machine Learning Logistic Regression
Machine Learning Logistic Regression Jeff Howbert Introduction to Machine Learning Winter 2012 1 Logistic regression Name is somewhat misleading. Really a technique for classification, not regression.
Package multivator. R topics documented: February 20, 2015. Type Package Title A multivariate emulator Version 1.1-4 Depends R(>= 2.10.
Type Package Title A multivariate emulator Version 1.1-4 Depends R(>= 2.10.0) Package multivator February 20, 2015 Imports utils, emulator (>= 1.2-13), mvtnorm, methods Suggests abind Date 2011-07-28 Author
Package TSfame. February 15, 2013
Package TSfame February 15, 2013 Version 2012.8-1 Title TSdbi extensions for fame Description TSfame provides a fame interface for TSdbi. Comprehensive examples of all the TS* packages is provided in the
Package PRISMA. February 15, 2013
Package PRISMA February 15, 2013 Type Package Title Protocol Inspection and State Machine Analysis Version 0.1-0 Date 2012-10-02 Depends R (>= 2.10), Matrix, gplots, ggplot2 Author Tammo Krueger, Nicole
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
CSCI-599 DATA MINING AND STATISTICAL INFERENCE
CSCI-599 DATA MINING AND STATISTICAL INFERENCE Course Information Course ID and title: CSCI-599 Data Mining and Statistical Inference Semester and day/time/location: Spring 2013/ Mon/Wed 3:30-4:50pm Instructor:
Package biganalytics
Package biganalytics February 19, 2015 Version 1.1.1 Date 2012-09-20 Title A library of utilities for big.matrix objects of package bigmemory. Author John W. Emerson and Michael
Package changepoint. R topics documented: November 9, 2015. Type Package Title Methods for Changepoint Detection Version 2.
Type Package Title Methods for Changepoint Detection Version 2.2 Date 2015-10-23 Package changepoint November 9, 2015 Maintainer Rebecca Killick Implements various mainstream and
Package png. February 20, 2015
Version 0.1-7 Title Read and write PNG images Package png February 20, 2015 Author Simon Urbanek Maintainer Simon Urbanek Depends R (>= 2.9.0)
Package treemap. February 15, 2013
Type Package Title Treemap visualization Version 1.1-1 Date 2012-07-10 Author Martijn Tennekes Package treemap February 15, 2013 Maintainer Martijn Tennekes A treemap is a space-filling
Package HHG. July 14, 2015
Type Package Package HHG July 14, 2015 Title Heller-Heller-Gorfine Tests of Independence and Equality of Distributions Version 1.5.1 Date 2015-07-13 Author Barak Brill & Shachar Kaufman, based in part
Package MixGHD. June 26, 2015
Type Package Package MixGHD June 26, 2015 Title Model Based Clustering, Classification and Discriminant Analysis Using the Mixture of Generalized Hyperbolic Distributions Version 1.7 Date 2015-6-15 Author
Package xtal. December 29, 2015
Type Package Title Crystallization Toolset Version 1.15 Date 2015-12-28 Author Maintainer Qingan Sun Package xtal December 29, 2015 This is the tool set for crystallographer to design
Package dunn.test. January 6, 2016
Version 1.3.2 Date 2016-01-06 Package dunn.test January 6, 2016 Title Dunn's Test of Multiple Comparisons Using Rank Sums Author Alexis Dinno Maintainer Alexis Dinno
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
Package fastghquad. R topics documented: February 19, 2015
Package fastghquad February 19, 2015 Type Package Title Fast Rcpp implementation of Gauss-Hermite quadrature Version 0.2 Date 2014-08-13 Author Alexander W Blocker Maintainer Fast, numerically-stable Gauss-Hermite
TOWARD BIG DATA ANALYSIS WORKSHOP
TOWARD BIG DATA ANALYSIS WORKSHOP 邁 向 巨 量 資 料 分 析 研 討 會 摘 要 集 2015.06.05-06 巨 量 資 料 之 矩 陣 視 覺 化 陳 君 厚 中 央 研 究 院 統 計 科 學 研 究 所 摘 要 視 覺 化 (Visualization) 與 探 索 式 資 料 分 析 (Exploratory Data Analysis, EDA)
Package GSA. R topics documented: February 19, 2015
Package GSA February 19, 2015 Title Gene set analysis Version 1.03 Author Brad Efron and R. Tibshirani Description Gene set analysis Maintainer Rob Tibshirani Dependencies impute
Package ERP. December 14, 2015
Type Package Package ERP December 14, 2015 Title Significance Analysis of Event-Related Potentials Data Version 1.1 Date 2015-12-11 Author David Causeur (Agrocampus, Rennes, France) and Ching-Fan Sheu
Package SHELF. February 5, 2016
Type Package Package SHELF February 5, 2016 Title Tools to Support the Sheffield Elicitation Framework (SHELF) Version 1.1.0 Date 2016-01-29 Author Jeremy Oakley Maintainer Jeremy Oakley
Package retrosheet. April 13, 2015
Type Package Package retrosheet April 13, 2015 Title Import Professional Baseball Data from 'Retrosheet' Version 1.0.2 Date 2015-03-17 Maintainer Richard Scriven A collection of tools
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation
Package trimtrees. February 20, 2015
Package trimtrees February 20, 2015 Type Package Title Trimmed opinion pools of trees in a random forest Version 1.2 Date 2014-08-1 Depends R (>= 2.5.0),stats,randomForest,mlbench Author Yael Grushka-Cockayne,
Cluster Analysis using R
Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more similar (in some sense or another) to each other
Package cgdsr. August 27, 2015
Type Package Package cgdsr August 27, 2015 Title R-Based API for Accessing the MSKCC Cancer Genomics Data Server (CGDS) Version 1.2.5 Date 2015-08-25 Author Anders Jacobsen Maintainer Augustin Luna
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Package ISLR. R topics documented: February 19, 2015. Type Package
Type Package Package ISLR February 19, 2015 Title Data for An Introduction to Statistical Learning with Applications in R Version 1.0 Date 2013-06-10 Author Gareth James, Daniela Witten, Trevor Hastie
Package forensic. February 19, 2015
Type Package Title Statistical Methods in Forensic Genetics Version 0.2 Date 2007-06-10 Package forensic February 19, 2015 Author Miriam Marusiakova (Centre of Biomedical Informatics, Institute of Computer
Predict the Popularity of YouTube Videos Using Early View Data
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Package hazus. February 20, 2015
Package hazus February 20, 2015 Title Damage functions from FEMA's HAZUS software for use in modeling financial losses from natural disasters Damage Functions (DFs), also known as Vulnerability Functions,
Package hive. January 10, 2011
Package hive January 10, 2011 Version 0.1-9 Date 2011-01-09 Title Hadoop InteractiVE Description Hadoop InteractiVE, is an R extension facilitating distributed computing via the MapReduce paradigm. It
Package wordcloud. R topics documented: February 20, 2015
Package wordcloud February 20, 2015 Type Package Title Word Clouds Version 2.5 Date 2013-04-11 Author Ian Fellows Maintainer Ian Fellows Pretty word clouds. License LGPL-2.1 LazyLoad
Implementation of Logistic Regression with Truncated IRLS
Implementation of Logistic Regression with Truncated IRLS Paul Komarek School of Computer Science Carnegie Mellon University [email protected] Andrew Moore School of Computer Science Carnegie Mellon University
Package uptimerobot. October 22, 2015
Type Package Version 1.0.0 Title Access the UptimeRobot Ping API Package uptimerobot October 22, 2015 Provide a set of wrappers to call all the endpoints of UptimeRobot API which includes various kind
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
Package CoImp. February 19, 2015
Title Copula based imputation method Date 2014-03-01 Version 0.2-3 Package CoImp February 19, 2015 Author Francesca Marta Lilja Di Lascio, Simone Giannerini Depends R (>= 2.15.2), methods, copula Imports
Package bigrf. February 19, 2015
Version 0.1-11 Date 2014-05-16 Package bigrf February 19, 2015 Title Big Random Forests: Classification and Regression Forests for Large Data Sets Maintainer Aloysius Lim OS_type
Package httprequest. R topics documented: February 20, 2015
Version 0.0.10 Date 2014-09-29 Title Basic HTTP Request Author Eryk Witold Wolski, Andreas Westfeld Package httprequest February 20, 2015 Maintainer Andreas Westfeld HTTP
Effective Linear Discriminant Analysis for High Dimensional, Low Sample Size Data
Effective Linear Discriant Analysis for High Dimensional, Low Sample Size Data Zhihua Qiao, Lan Zhou and Jianhua Z. Huang Abstract In the so-called high dimensional, low sample size (HDLSS) settings, LDA
Package lmertest. July 16, 2015
Type Package Title Tests in Linear Mixed Effects Models Version 2.0-29 Package lmertest July 16, 2015 Maintainer Alexandra Kuznetsova Depends R (>= 3.0.0), Matrix, stats, methods, lme4 (>=
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
Package hybridensemble
Type Package Package hybridensemble May 30, 2015 Title Build, Deploy and Evaluate Hybrid Ensembles Version 1.0.0 Date 2015-05-26 Imports randomforest, kernelfactory, ada, rpart, ROCR, nnet, e1071, NMOF,
Package erp.easy. September 26, 2015
Type Package Package erp.easy September 26, 2015 Title Event-Related Potential (ERP) Data Exploration Made Easy Version 0.6.3 A set of user-friendly functions to aid in organizing, plotting and analyzing
Statistical issues in the analysis of microarray data
Statistical issues in the analysis of microarray data Daniel Gerhard Institute of Biostatistics Leibniz University of Hannover ESNATS Summerschool, Zermatt D. Gerhard (LUH) Analysis of microarray data
Package benford.analysis
Type Package Package benford.analysis November 17, 2015 Title Benford Analysis for Data Validation and Forensic Analytics Version 0.1.3 Author Carlos Cinelli Maintainer Carlos Cinelli
Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
Generalizing Random Forests Principles to other Methods: Random MultiNomial Logit, Random Naive Bayes, Anita Prinzie & Dirk Van den Poel
Generalizing Random Forests Principles to other Methods: Random MultiNomial Logit, Random Naive Bayes, Anita Prinzie & Dirk Van den Poel Copyright 2008 All rights reserved. Random Forests Forest of decision
Oracle Data Miner (Extension of SQL Developer 4.0)
An Oracle White Paper October 2013 Oracle Data Miner (Extension of SQL Developer 4.0) Generate a PL/SQL script for workflow deployment Denny Wong Oracle Data Mining Technologies 10 Van de Graff Drive Burlington,
Package NHEMOtree. February 19, 2015
Type Package Package NHEMOtree February 19, 2015 Title Non-hierarchical evolutionary multi-objective tree learner to perform cost-sensitive classification Depends partykit, emoa, sets, rpart Version 1.0
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Building risk prediction models - with a focus on Genome-Wide Association Studies. Charles Kooperberg
Building risk prediction models - with a focus on Genome-Wide Association Studies Risk prediction models Based on data: (D i, X i1,..., X ip ) i = 1,..., n we like to fit a model P(D = 1 X 1,..., X p )
Cyber-Security Analysis of State Estimators in Power Systems
Cyber-Security Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTH-Royal Institute
Faculty of Science School of Mathematics and Statistics
Faculty of Science School of Mathematics and Statistics MATH5836 Data Mining and its Business Applications Semester 1, 2014 CRICOS Provider No: 00098G MATH5836 Course Outline Information about the course
An Introduction to Machine Learning
An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia [email protected] Tata Institute, Pune,
Profile Data Mining with PerfExplorer. Sameer Shende Performance Reseaerch Lab, University of Oregon http://tau.uoregon.edu
Profile Data Mining with PerfExplorer Sameer Shende Performance Reseaerch Lab, University of Oregon http://tau.uoregon.edu TAU Analysis PerfDMF: Performance Data Mgmt. Framework 3 Using Performance Database
Package fimport. February 19, 2015
Version 3000.82 Revision 5455 Date 2013-03-15 Package fimport February 19, 2015 Title Rmetrics - Economic and Financial Data Import Author Diethelm Wuertz and many others Depends R (>= 2.13.0), methods,
The degrees of freedom of the Lasso in underdetermined linear regression models
The degrees of freedom of the Lasso in underdetermined linear regression models C. Dossal (1), M. Kachour (2), J. Fadili (2), G. Peyré (3), C. Chesneau (4) (1) IMB, Université Bordeaux 1 (2) GREYC, ENSICAEN
Package bcrm. September 24, 2015
Type Package Package bcrm September 24, 2015 Title Bayesian Continual Reassessment Method for Phase I Dose-Escalation Trials Version 0.4.5 Date 2015-09-23 Author Michael Sweeting Maintainer Michael Sweeting
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
Regression III: Advanced Methods
Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming
Package colortools. R topics documented: February 19, 2015. Type Package
Type Package Package tools February 19, 2015 Title Tools for s in a Hue-Saturation- (HSV) model Version 0.1.5 Date 2013-12-19 Author Maintainer R package with handy functions to
Package EasyHTMLReport
Type Package Title EasyHTMLReport Version 0.1.1 Date 2013-08-13 Package EasyHTMLReport Author Yohei Sato Maintainer Yohei Sato February 19, 2015 It is a package
Package survpresmooth
Package survpresmooth February 20, 2015 Type Package Title Presmoothed Estimation in Survival Analysis Version 1.1-8 Date 2013-08-30 Author Ignacio Lopez de Ullibarri and Maria Amalia Jacome Maintainer
[3] Big Data: Model Selection
[3] Big Data: Model Selection Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.taddy/teaching [3] Making Model Decisions Out-of-Sample vs In-Sample performance Regularization
