presented by Neal Leddy CMA Analytical Workshop 2012 SURFACE AREA AND POROSITY
|
|
|
- Maryann Tucker
- 10 years ago
- Views:
Transcription
1 presented by Neal Leddy CMA Analytical Workshop 2012 SURFACE AREA AND POROSITY
2 Adsorption When a gas or vapour phase is brought into contact with a solid, part of it is taken up and remains on the outside attached to the surface. In physisorption (physical adsorption), there is a weak Van der Waals attraction between the adsorbate and the solid surface. Useful to characterise porous materials allowing for the determination of specific surface area, pore size distribution and pore volume.
3 Characteristics of Physical Adsorption 1. Low heats of adsorption, no violent or disruptive structural changes. 2. Can involve multiple layers of adsorbate, thus allowing for pore measurements. 3. High temperatures tend to inhibit physical adsorption. 4. Adsorption equilibrium is achieved quickly since no activation energy is generally required. 5. Physical adsorption is fully reversible, allowing adsorbate to fully adsorb and desorb.
4 Adsorption Isotherms An Adsorption Isotherm is obtained by measuring the amount of gas adsorbed across a wide range of relative pressures at a constant temperature (typically liquid N2, 77K). Conversely desorption Isotherms are achieved by measuring gas removed as pressure is reduced
5 Iostherm types described by Brunauer, Deming, Deming and Teller.
6 Type I Pores are typically microporus with the exposed surface residing almost exclusively inside the microspores, which once filled with adsorbate, leave little or no external surface for further adsorption.
7 Type II Most frequently found when adsorption occurs on nonporous powders or powders with diameters exceeding micropores. Inflection point occurs near the completion of the first adsorbed monolayer
8 Type III Characterised by heats of adsorption less than the adsorbate heat of liquification, adsorption proceeds as the adsorbate interaction with an adsorbed layer is greater than the interaction with the adsorbent surface
9 Type IV Occur on porous adsorbents with pores in the range of nm. At higher pressures the slope shows increased uptake of adsorbate as pores become filled, inflection point typically occurs near completion of the first monolayer
10 Type V Are observed where there is small adsorbateabsorbent interaction potentials (similar to type III), and are also associated with pores in the nm range
11 Adsorbate The most common adsorbate used is Nitrogen, however, other adsorbates are used in some circumstances.
12 BET Brunauer, Emmett and Teller (BET), most common method used to describe specific surface area: The BET equation W= weight of gas adsorbed P/P 0 =relative pressure Wm = weight of adsorbate as monolayer C = BET constant
13 BET equation requires a linear plot of 1/[W(P/P 0 )-1] against P/P 0 Slope (s) Intercept (i) Wm (weight of monolayer)
14 Total Surface area (S t ) can then be derived N = Avogadro's number (6.023x10 23 ) M = Molecular weight of Adsorbate A cs = Adsorbate cross sectional area (16.2Å 2 for Nitrogen) Specific Surface Area (S) is then determined by total Surface area by sample weight
15 Single point BET: Involves determining specific surface area using a single point on the isotherm Multipoint BET: Minimum of three data points.
16 Multipoint BET Plot
17 Relative Pressure P/Po STP cc/g 1/[W((Po/P)-1] e e e e e e e e e e+1 Summary Slope = Intercept = 1.195e+00 Correlation coefficient, r = C constant= Surface Area = m²/g
18 C Constant Relative error between single and multipoint BET, (typically measured at P/P 0 of 0.3) Single/Multi point Comparison Constant Relative error Infinity 0
19 Langmuir The Langmuir equation describes Microporus material exhibiting Type I Isotherms. Assumes adsorption limited to one monolayer.
20 IUPAC classification on pores - Macroporous >50nm - Mesoporus 2-50nm - Microporus <2nm
21 Porosity - pore volume Total pore volume is derived from the amount of vapour adsorbed at a relative temperature close to unity (assuming pores are filled with liquid adsorbate). V ads = volume of gas adsorbed V liq = volume of liquid N 2 in pores V m = molar vol. of liquid adsorbate (N 2 =34.7cm 3 /mol) P a = ambient pressure T = ambient temperature
22 Porosity - pore radius Average pore size is estimated from the pore volume. Assuming cylindrical pore geometry (type A hysteresis) average pore radius (r p ) can be expressed as: Other pore geometry models may require further information on the isotherm hysteresis before applying appropriate model.
23 Adsorption/Desorption Isotherm
24 Sample porosity data Pore Volume Data Total pore volume for pores with Radius less than Å at P/Po = BJH method cumulative adsorption pore volume BJH method cumulative desorption pore volume DH method cumulative adsorption pore volume DH method cumulative desorption pore volume HK method cumulative pore volume SF method cumulative pore volume NLDFT method cumulative pore volume 5.787e-01 cc/g 2.103e+00 cc/g 2.192e+00 cc/g 2.054e+00 cc/g 2.146e+00 cc/g 4.257e-01 cc/g 4.358e-01 cc/g 1.904e+00 cc/g Pore Size Data Average pore Radius BJH method adsorption pore Radius (Mode Dv(r)) BJH method desorption pore Radius (Mode Dv(r)) DH method adsorption pore Radius (Mode Dv(r)) DH method desorption pore Radius (Mode Dv(r)) HK method pore Radius (Mode) SF method pore Radius (Mode) NLDFT pore Radius (Mode) 3.505e+01 Å 1.698e+01 Å 1.710e+01 Å 1.698e+01 Å 1.710e+01 Å 1.838e+00 Å 2.261e+00 Å 2.376e+01 Å
25 Other Methods Barrett-Joyner-Halenda Method (BJH) Dollimore Heal Method (DH) Alpha S Method (αs) MP Method (MP) Dubinn-Radushkevic Method (DR) Dubinin-Astakhov Method (DA) Horvath-Kawazoe Method (HK) Saito-Foley Method (SF) Density Functional Theory Method (DFT) Frenkel-Halsey-Hill Method (FHH) Neimark-Kiselev Method (NK)
26 Degas Important step before measurement of surface area or pore size/volume Surfaces are cleaned of water/organic vapours in two ways:- 1. With heating under a vacuum 2. Under a flow of dry, inert gas.
27 Analysis Adsorbate is introduced in to the manifold The valve to the sample cell is opened allowing the adsorbate to interact with the sample material. The pressure is repeatedly measured for the preset equilibration time, if the pressure drops dosing recurs and measurement proceeds until a stable reading is achieved.
28 Nova Quantachrome 4200e
EXPERIMENTAL METHODS IN COLLOIDS AND SURFACES
EXPERIMENTAL METHODS IN COLLOIDS AND SURFACES PARTICLE SURFACE AREA FROM GAS ADSORPTION TYPES OF ADSORPTION Physical adsorption: rapid, depends on adsorbate bulk concentration, multiple molecular layers
Adsorption. December 2014
Adsorption December 2014 1 Nanosized objects have a large surface area Dividing the size of an object by 2... doubles the accessible surface 2 Adsorption Absorption Absorption is a phenomenon that occurs
Surface Area and Porosity
Surface Area and Porosity 1 Background Techniques Surface area Outline Total - physical adsorption External Porosity meso micro 2 Length 1 Å 1 nm 1 µm 1 1 1 1 1 mm macro meso micro metal crystallite 1-1
Motivation Physisorption Chemisorption Outlook
Surface area determination - physisorption and chemisorption Literature: Motivation Physisorption Chemisorption Outlook 1. DIN ISO 9277: BET method 2. DIN 66136: Dispersion measurement of metals 3. DIN
Texture characteristic of membrane materials ASAP, BET
Texture characteristic of membrane materials ASAP, BET Theory Specific surface (surface area) is used for the characterization of many materials. There are various techniques how measure the specific surface
BET Surface Area Analysis of Nanoparticles
OpenStax-CNX module: m38278 1 BET Surface Area Analysis of Nanoparticles Nina Hwang Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0
PHYSISORPTION DETERMINATIONS
G A S S O R P T I O N A N A L Y S I S PHYSISORPTION DETERMINATIONS Most atoms that make up a solid are bound on all sides by other atoms in the bulk of the solid. The atoms on the surface of the solid,
Analytical Services. Part number Measurement Description. Single-Point BET with Nitrogen 06000-1N. Multi-Point BET With Nitrogen 06000-3N
06000-1N 06000-3N Single-Point BET with Nitrogen Multi-Point BET With Nitrogen Single-point BET specific surface area (P/Po = 0.3) by nitrogen adsorption at 77K. Dynamic flow method unless otherwise requested.
The PMI Advanced. BET SORPTOMETER BET-201-AELC-2OS Not just products...solutions!
The PMI Advanced BET SORPTOMETER BET-201-AELC-2OS Not just products...solutions! DESCRIPTION The Fully automated equipment is intended for measurement of adsorption characteristics of various gases on
Physical Chemistry Practical Course, Oxford University. Determination of the Surface Area of Alumina by Nitrogen Adsorption at 77K (4 points)
Physical Chemistry Practical Course, Oxford University 1.06 Determination of the Surface Area of Alumina by Nitrogen Adsorption at 77K (4 points) What you will do In this experiment you will study the
Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi
Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Module - 03 Lecture 10 Good morning. In my last lecture, I was
ASAP 2460. Accelerated Surface Area and
ASAP 2460 Accelerated Surface Area and Porosimetry System Analytical Versatility with Superior Throughput ASAP 2460 Accelerated Surface Area and Porosimetry System The ASAP 2460 Surface Area and Porosimetry
ISO 12800 INTERNATIONAL STANDARD
INTERNATIONAL STANDARD ISO 12800 First edition 2003-12-01 Nuclear fuel technology Guide to the measurement of the specific surface area of uranium oxide powders by the BET method Technologie du combustible
Pharmaceutical Physical Characterization: Surface Area and Porosity
Whitepaper Authors: Dr John M. Zielinski Intertek Chemicals & Pharmaceuticals, Allentown, USA Dr Lorna Kettle Intertek Chemicals & Pharmaceuticals, Manchester, UK Date: April 2013 Pharmaceutical Physical
Nano-pore structure characterization of shales using gas adsorption and mercury intrusion techniques
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):850-857 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Nano-pore structure characterization of shales using
Low Temperature Adsorption Versus Pore Size in Activated Carbons
Low Temperature Adsorption Versus Pore Size in Activated Carbons D. Martins 1, I. Catarino 1, D. Lopes 1, I. Esteves 2, J.P. Mota 2, G. Bonfait 1 1 CEFITEC Departamento de Física, Faculdade de Ciências
Hydrogen Adsorption on Nanoporous Biocarbon
Hydrogen Adsorption on Nanoporous Biocarbon Mikael Wood, Jacob Burress, Cintia Lapilli, Peter Pfeifer, Parag Shah, Galen Suppes University of Missouri-Columbia Phillip Parilla, Anne Dillon National Renewable
Surface Parameters of Stannic Oxide in Powder, Ceramic and Gel Forms by Nitrogen Adsorption Techniques l
PHYSICAL SCIENCES 137 Surface Parameters of Stannic Oxide in Powder, Ceramic and Gel Forms by Nitrogen Adsorption Techniques l JAMES L. RUTLEDGE, Department of Physics OIdahoma State University, StlUwater
Standard Test Methods for Carbon Black Surface Area by Multipoint B.E.T. Nitrogen Adsorption 1
Designation: D 4820 99 Standard Test Methods for Carbon Black Surface Area by Multipoint B.E.T. Nitrogen Adsorption 1 This standard is issued under the fixed designation D 4820; the number immediately
The use of nitrogen adsorption for the characterisation of porous materials
Colloids and Surfaces A: Physicochemical and Engineering Aspects 187 188 (2001) 3 9 www.elsevier.nl/locate/colsurfa Review The use of nitrogen adsorption for the characterisation of porous materials Kenneth
Derivation of the BET and Langmuir Isotherms
Derivation of the BET and Langmuir Isotherms October 5, 2011 1 Langmuir Isotherm Assumptions used for the Langmuir isotherm 1. Gaseous molecules behave ideally 2. Only one monolayer forms 3. All sites
Characterization of Gas Shale Pore Systems by Analyzing Low Pressure Nitrogen Adsorption
Characterization of Gas Shale Pore Systems by Analyzing Low Pressure Nitrogen Adsorption Presented by: Mehdi Labani PhD student in Petroleum Engineering Supervisor: Reza Rezaee September 212 Objective
INSTALLATION AND OPERATION OF AUTOSORB-l-C-8 FOR BET SURFACE AREA MEASUREMENT OF POROUS MATERIALS
PINSTECH-221 INSTALLATION AND OPERATION OF AUTOSORB-l-C-8 FOR BET SURFACE AREA MEASUREMENT OF POROUS MATERIALS Abdul Sattar Ali Khan Chemistry Division Directorate of Science Pakistan Institute of Nuclear
TriStar II Surface Area and Porosity Analyzer
TriStar II Plus TriStar II Surface Area and Porosity Analyzer Analytical Versatility/ High Throughput/ Small Footprint Surface area and porosity are important physical properties that influence the quality
CHARACTERIZATION OF POROUS GLASS
2.1. Introduction The characterisation of amorphous networked materials is problematic because the structure of the materials is enormously complex, and a "complete'' characterisation requires no less
ADSORPTION OF N2 ON SILICA GEL
Chapter 6. Adsorption of N 2 41 6 ADSORPTION OF N2 ON SILICA GEL The purpose of this experiment is to study the adsorption of gases on solid surfaces and to introduce you to some aspects of vacuum technique
Some generalization of Langmuir adsorption isotherm
Internet Journal of Chemistry, 2000, 3, 14 [ISSN: 1099-8292]. Article 14 Some generalization of Langmuir adsorption isotherm Leszek Czepirski, Mieczyslaw R. Balys, Ewa Komorowska-Czepirska University of
Federal Institute for Materials Research and Testing
Federal Institute for Materials Research and Testing CERTIFIED REFERENCE MATERIAL FOR THE GAS ADSORPTION BAM-PM-101 Material: SiO 2 with specific surface area (BET) of 0.177 0.004 m² g -1 Mean of means
Surface Area and Porosity Determinations by Physisorption. Measurements and Theory
Surface Area and Porosity Determinations by Physisorption Measurements and Theory i This page intentionally left blank ii Surface Area and Porosity Determinations by Physisorption Measurements and Theory
SPECIFICS ON SURFACE AREA Rebecca Lea Wolfrom
SPECIFICS ON SURFACE AREA Rebecca Lea Wolfrom Surface area is an important property of solids with many industrial applications. Particle size is less influential on surface area than particle shape, texture,
FINESORB-3020. Surface Area. as or more than 0.1-2000m 2 /g. Distribution of Pore 0.35-500nm. Degas & Analysis Up to 12 Degas & 6 Analysis Station
1 FINESORB-3020 Surface Area and Porosimetry Analyzer Finesorb-3020 is Surface Area and Porosimetry Analyzer based on vacuum system from fintec instrument company.you could do the Surface Area analysis,aperture
Supporting Information
Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 A Study of Commercial Nanoparticulate g-al 2 O 3 Catalyst Supports Yahaya Rozita, [a] Rik Brydson,* [a] Tim P. Comyn,
(S&G 5th ed. Expt 27, 6th, 7th & 8th eds. Expt 26)
Chem 367-2/ Physical Adsorption 63 PHYSICAL ADSORPTION (S&G 5th ed. Expt 27, 6th, 7th & 8th eds. Expt 26) The sample used in this experiment needs to be conditioned for at least two hours before the experiment;
SORPTION ISOTHERM STUDY ON TWO POLYAMIDE NANOFIBEROUS MEMBRANES. Yan WANG, Jakub WIENER, Guocheng ZHU
SORPTION ISOTHERM STUDY ON TWO POLYAMIDE NANOFIBEROUS MEMBRANES Yan WANG, Jakub WIENER, Guocheng ZHU Technical University of Liberec, Faculty of Textile Engineering, Department of Textile Materials, Liberec,
Physical Adsorption Characterization of Nanoporous Materials
DOI: 10.1002/cite.201000064 Characterization of nanoporous materials 1059 Physical Adsorption Characterization of Nanoporous Materials Matthias Thommes During recent years, major progress has been made
Experimental Study of Micropore Size Distribution in Coals
2012 International Conference on Fluid Dynamics and Thermodynamics Technologies (FDTT 2012) IPCSIT vol.33(2012) (2012) IACSIT Press, Singapore Experimental Study of Micropore Size Distribution in Coals
Pore size and BET surface area. analysis at your fingertips. SA 3100. Gas Adsorption Analyzer
Pore size and BET surface area analysis at your fingertips. SA 3100 Gas Adsorption Analyzer The History of Beckman Coulter Particle Characterization Introducing The SA 3100 Surface Area and Pore Size Analyzer
Analysis of nitrogen and carbon tetrachloride adsorption isotherms and pore size distribution for siliceous MCM-41 synthesized from rice husk silica
ORIGINAL ARTICLE Analysis of nitrogen and carbon tetrachloride adsorption isotherms and pore size distribution for siliceous MCM-41 synthesized from rice husk silica Siriluk Chiarakorn 1, Nurak Grisdanurak
Micromeritics BET Surface Area and Porosity Analyzer Instrument Information and Generalized Standard Operating Procedure
Micromeritics BET Surface Area and Porosity Analyzer Instrument Information and Generalized Standard Operating Procedure Micromeritics ASAP 2020 Surface Area & Porosity Analyzer Location: W108 Plant Science
Textural Characteristics of Activated Carbons Prepared from Oil Palm Shells Activated with ZnCl 2 and Pyrolysis Under Nitrogen and Carbon Dioxide
Journal of Physical Science, Vol. 19(2), 93 104, 2008 93 Textural Characteristics of Activated Carbons Prepared from Oil Palm Shells Activated with ZnCl 2 and Pyrolysis Under Nitrogen and Carbon Dioxide
Adsorption and Catalysis
Adsorption and Catalysis Dr. King Lun Yeung Department of Chemical Engineering Hong Kong University of Science and Technology CENG 511 Lecture 3 Adsorption versus Absorption H H H H H H H H H Adsorption
Appendix A. Fig. 1 Nitrogen adsorption for Activated Carbon from Norit
Appendix A Summary Report Surface Area BET Surface Area: 1555.9551 m²/g Langmuir Surface Area: 1992.1415 m²/g Pore Volume Single point adsorption total pore volume of pores 0.619747 cm³/g t-plot micropore
Nitrogen Sorption Evaluation of the Porous Carbon Made from Cow Gelatin
J. Chem. Eng. Chem. Res. Vol. 1, No. 2, 2014, pp. 101-109 Received: June 5, 2014; Published: August 25, 2014 Journal of Chemical Engineering and Chemistry Research Nitrogen Sorption Evaluation of the Porous
Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile
Indian Journal of Chemistry Vol. 48A, October 2009, pp. 1378-1382 Notes Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile K Joseph Antony
A SIMPLE TECHNIQUE FOR SURFACE AREA DETERMINATION THROUGH SUPERCRITICAL CO 2 ADSORPTION
MAKARA, TEKNOLOGI, VOL. 14, NO. 1, APRIL 2010: 1-6 A SIMPLE TECHNIQUE FOR SURFACE AREA DETERMINATION THROUGH SUPERCRITICAL CO 2 ADSORPTION Mahmud Sudibandriyo Departemen Teknik Kimia, Fakultas Teknik,
A New Technique Provides Faster Particle Size Analysis at a Lower Cost Compared to Conventional Methods
A New Technique Provides Faster Particle Size Analysis at a Lower Cost Compared to Conventional Methods Howard Sanders and Akshaya Jena Porous Material Inc. Ithaca, NY The technique described here calculates
Adsorption from theory to practice
Advances in Colloid and Interface Science Ž. 93 2001 135 224 Adsorption from theory to practice A. Dąbrowski Faculty of Chemistry, M.Curie-Skłodowska Uni ersity, 20031 Lublin, Poland Abstract Adsorption
Characterization of Porous Glasses by Adsorption: Models, Simulations and Data Inversion
Characterization of Porous Glasses by Adsorption: Models, Simulations and Data Inversion Lev D. Gelb and K. E. Gubbins North Carolina State University Department of Chemical Engineering Raleigh, NC 27695-7905,
The PMI Advanced. BET SORPTOMETER BET-203A Not just products...solutions!
The PMI Advanced BET SORPTOMETER BET-203A Nt just prducts...slutins! DESCRIPTION PMI s BET-Srptmeter is fully autmated, vlumetric gas srptin analyzer t measure accurately adsrptin and desrptin istherms
Surface area and pore size determination
Modern Methods in Heterogeneous Catalysis Research Further reading Surface area and pore size determination 01. November 2013 A. Trunschke S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization
The literature pertaining to the sorption of gases by solids is now so vast that it is
13 Chapter 2 Physical Adsorption The literature pertaining to the sorption of gases by solids is now so vast that it is impossible for any, except those who are specialists in the experimental technique,
How To Understand Isotherm Theory
Gas Adsorption and Separation Properties of Porous Materials Wolfson Northern Carbon Reduction Laboratories School of Chemical Engineering and Advanced Materials Jayne Armstrong A Thesis Submitted for
TriStar II 3020. Surface Area and Porosity System. The Science and Technology of Small Particles
TriStar II 3020 Surface Area and Porosity System The Science and Technology of Small Particles Analytical Versatility/High Throughput/Small Footprint TriStar II 3020 Surface Area and Porosity System Surface
Studies on Pore Systems in Catalysts
JOURNAL OF CATALYSIS 4, 319323 (1965) Studies on Pore Systems in Catalysts V. The t Method B. C. LIPPENS* AND J. H. DE BOER From the Department of Chemical Technology, Technological University of Delft,
Characteriza*on of Lignocellulosics by Using Separa*on of Fibre Surface Layers and Nitrogen Sorp*on
Characteriza*on of Lignocellulosics by Using Separa*on of Fibre Surface Layers and Nitrogen Sorp*on Latvian State Ins,tute of Wood Chemistry COST FP1105 in Stockholm Fibres surface layers separa,on procedure
Synthesis, characterization and application of a novel mercapto- and new kind of
SUPPLEMENTARY MATERIAL Synthesis, characterization and application of a novel mercapto- and new kind of polyaminophenol-bifunctionalized MCM-41 for dispersive micro solid phase extraction of Ni(II) prior
Adsorption at Surfaces
Adsorption at Surfaces Adsorption is the accumulation of particles (adsorbate) at a surface (adsorbent or substrate). The reverse process is called desorption. fractional surface coverage: θ = Number of
Adsorption of Ammonia on Coal Fly Ash
Adsorption of Ammonia on Coal Fly Ash Indrek Külaots, Yu-Ming Gao, Robert H. Hurt and Eric M. Suuberg Division of Engineering, Brown University, Providence, RI 02912 KEYWORDS: Coal fly ash, ammonia, adsorption,
Development of porous materials for hydrogen storage
Development of porous materials for hydrogen storage Shinji Oshima, Osamu Kato, Takeshi Kataoka, Yoshihiro Kobori, Michiaki Adachi Hydrogen & New Energy Research Laboratory Nippon Oil Corporation 8, Chidoricho,
Silver Sinter Heat Exchangers
Silver Sinter Heat Exchangers Construction of a sinter press and a BET-system to measure specific surface areas Semester Project Universität Basel Supervised by Prof. Dr. D. Zumbühl K. Schwarzwälder July
Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption
Number of moles of N 2 in 0.129dm 3 = 0.129/22.4 = 5.76 X 10-3 moles of N 2 gas Module 8 : Surface Chemistry Objectives Lecture 37 : Surface Characterization Techniques After studying this lecture, you
Measurement of BET Surface Area on Silica Nanosprings
PNNL-17648 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Measurement of BET Surface Area on Silica Nanosprings AJ Karkamkar September 2008 DISCLAIMER This report was prepared
Removal of Sulfate from Waste Water by Activated Carbon. Mohammed Sadeq Salman Computer Centre/ University of Baghdad
Al-Khwarizmi Engineering Journal, Vol. 5, No. 3, PP 72-76 (29) Al-Khwarizmi Engineering Journal Removal of Sulfate from Waste Water by Activated Carbon Mohammed Sadeq Salman Computer Centre/ University
ADSORPTION OF WATER ON THE FINE FRACTIONS OF FINNISH TILLS
ADSORPTION OF WATER ON THE FINE FRACTIONS OF FINNISH TILLS AARRE KELLOMÄKI and PERTTI NIEMINEN KELLOMÄKI, AARRE and NIEMINEN, PERTTI, 1986: Adsorption of water on the fine fractions of Finnish tills. Bull.
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS / ABBREVIATIONS LIST OF APPENDICES ii iii
POLLUTED EMISSION TREATMENTS FROM INCINERATOR GASES
POLLUTED EMISSION TREATMENTS FROM INCINERATOR GASES Ecole Nationale Supérieure de Chimie Avenue du Général Leclerc, Campus de Beaulieu 35700 Rennes, France Tel 33 (0)2 23 23 80 02 Fax 33 (0)2 23 23 81
This chapter gives a brief outline of the experimental techniques used for the
CHAPTER II Experimental Techniques This chapter gives a brief outline of the experimental techniques used for the characterization of catalysts and the test of catalyst activity in this study. 2.1 Thermo-gravimetric
Adsorption of methane in porous materials as the basis for the storage of natural gas
Adsorption of methane in porous materials as the basis for the storage of natural gas 205 10 X Adsorption of methane in porous materials as the basis for the storage of natural gas Cecilia Solar, Andrés
a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
Production and Characterisation of Activated Carbons made from Coffee Industry Residues
Production and Characterisation of Activated Carbons made from Coffee Industry Residues João Valente Nabais *1, Peter Carrott 1, M.M.L. Ribeiro Carrott 1, Vânia Luz 1, Angel Ortiz 2 1 Universidade de Évora,
TDS. Dirk Rosenthal Department of Inorganic Chemistry Fritz-Haber-Institut der MPG Faradayweg 4-6, DE 14195 Berlin [email protected].
Modern Methods in Heterogeneous Catalysis Research TDS Dirk Rosenthal Department of Inorganic Chemistry Fritz-Haber-Institut der MPG Faradayweg 4-6, DE 14195 Berlin [email protected] TDS = TPD
Adsorption Characteristics of MOF-199 And MOF-5 Prepared Using Renewable Template
The 3rd National Graduate Conference (NatGrad5), Universiti Tenaga Nasional, Putrajaya Campus, 8-9 April 5. Adsorption Characteristics of MOF-99 And MOF-5 Prepared Using Renewable Template N.S Jamaludin
POROSITY OF THE FINE FRACTIONS OF FINNISH TILLS
POROSITY OF THE FINE FRACTIONS OF FINNISH TILLS PERTTI NIEMINEN and AARRE KELLOMÄKI NIEMINEN, PERTTI and KELLOMÄKI, AARRE, 1984: Porosity of the fine fractions of Finnish tills. Bull. Geol. Soc. Finland
The Potential of Ellipsometric Porosimetry
The Potential of Ellipsometric Porosimetry A. Bourgeois, Y. Turcant, Ch. Walsh, V. Couraudon, Ch. Defranoux SOPRA SA, 26 rue Pierre Joigneaux, 92270 Bois Colombes, France Speaker: Alexis Bourgeois, Application
IDEAL AND NON-IDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
Characterization and Quantification of Lyophilized Product Appearance and Structure
Characterization and Quantification of Lyophilized Product Appearance and Structure Dr Kevin R. Ward B.Sc. Ph.D. MRSC Director of Research & Development Biopharma Technology Ltd. Winchester SO23 0LD, UK
This document is a preview generated by EVS
INTERNATIONAL STANDARD ISO 18852 Third edition 2015-06-01 Rubber compounding ingredients Determination of multipoint nitrogen surface area (NSA) and statistical thickness surface area (STSA) Ingrédients
Universidade Fernando Pessoa - CIAGEB, Praça de 9 de Abril 349, 4249-004 Porto, Portugal 2
1 Universidade Fernando Pessoa - CIAGEB, Praça de 9 de Abril 349, 4249-004 Porto, Portugal 2 Academia das Ciências de Lisboa, Rua da Academia das Ciências 19, 1249-122 Lisboa, Portugal 16-18 Sept 2009
A Study of Specific Surface Area for Matrix, Eheim Substrat Pro, and JBL MicroMec. George L. Batten Jr., Ph.D Gmerice K. Lafayette, M.P.H.
A Study of Specific Surface Area for Matrix, Eheim Substrat Pro, and JBL MicroMec Abstract George L. Batten Jr., Ph.D Gmerice K. Lafayette, M.P.H. Seachem Laboratories 1000 Seachem Drive Madison, GA 30650
Measurement of the viscosities of He, Ne and Ar for the determination of their gas kinetic diameters.
American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-57-62 www.ajer.org Research Paper Measurement of the viscosities of He, Ne and Ar for the determination
CLAY SURFACE PROPERTIES BY WATER VAPOR SORPTION METHODS
CLAY SURFACE PROPERTIES BY WATER VAPOR SORPTION METHODS Master of Science Thesis By Idil Deniz Akin Department of Civil and Environmental Engineering University of Wisconsin-Madison MASTER OF SCIENCE IN
Surface Area and Porosity
Pure & App!. Chem., Vol. 57, No. 4, pp. 603 619, 1985. Printed in Great Britain. 1985 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON COLLOID AND SURFACE
An Energy Efficient Air Conditioner System without Compressor: Application of Embedded System
An Energy Efficient Air Conditioner System without Compressor: Application of Embedded System Poonam Shelke 1, Gajanan Malwatkar 2 Department of Electronics and Telecommunication Engineering, Dnyanganga
Moisture sorption characteristics of heat treated flour, culinary flour and high ratio cake
Moisture sorption characteristics of heat treated flour, culinary flour and high ratio cake T.R.A. Magee a, G. Neill a, A.H. Al-Muhtaseb b a Queen s University Belfast, Belfast, UK. ([email protected])
Supporting Information
Supporting Information Wiley-VCH 2005 69451 Weinheim, Germany Magnetic Nanoparticle-Capped Mesoporous Silica Nanorod-Based Stimuli-Responsive Controlled Release Delivery System** Supratim Giri, Brian G.
Argon adsorption studies of porous structure of nongraphitized carbon blacks
A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N P O L O N I A VOL. LXIV, 4 SECTIO AA 29 Argon adsorption studies of porous structure of nongraphitized carbon
Particle size effect on porosity and specific surface area measurements of shales
SCA2014-013 1/12 Particle size effect on porosity and specific surface area measurements of shales Ali Tinni, Carl Sondergeld, Chandra Rai. Mewbourne School of Petroleum and Geological Engineering, University
GRANULAR ACTIVATED CARBON FOR WATER & WASTEWATER TREATMENT
GRANULAR ACTIVATED CARBON FOR WATER & WASTEWATER TREATMENT CARBTROL Corporation September 1992 Rev. 10/92 TP-3 INTRODUCTION Carbon has been used as an adsorbent for centuries. Early uses of carbon were
Introduction to Chemical Adsorption Analytical Techniques and their Applications to Catalysis
MIC Technical Publications January 2003 Introduction to Chemical Adsorption Analytical Techniques and their Applications to Catalysis Paul A. Webb Micromeritics Instrument Corp., Norcross, Georgia 30093
