Students will use various media (computer, graphing calculator, paper and pencil) to graph/sketch linear equations.
|
|
|
- Norman O’Neal’
- 10 years ago
- Views:
Transcription
1 Title: Lines, Lines, Everywhere!! A discovery/exploration lesson investigating equations of the form y = mx + b to see how the values of b and m affects the graph. Link to Outcomes: Communication/ Cooperation Reasoning/ Analysis Connections Measurement/ Graphing Algebra Technology Students will work in groups of two to investigate mathematical concepts. They will share their investigations and conclusions verbally within their groups and in writing on their activity worksheets. Students will analyze linear equations and their graphs to determine their algebraic and graphic properties. Students will observe/make connections between the algebraic concept of rate of change (slope) and a similar real-world situation. Students will use various media (computer, graphing calculator, paper and pencil) to graph/sketch linear equations. Students will write equations in slope-intercept form and demonstrate their understanding of the role of slope and y-intercept in the equations and graphs. Students will use a desktop computer (MET and/or Derive) and/or a graphing calculator to assist in the drawing and analysis of linear equations. Brief Overview: Grade/Level: Duration: In this lesson, the students will explore the effects of changing values for the y-intercept and for the slope of a line. They will explain/discover the concepts of slope, intercepts, parallel, and perpendicular lines. Grades 9-10: Pre-Algebra, Basic Algebra and Algebra 1 3 one-hour sessions
2 Prerequisite Knowledge: Objectives: Introduction to linear equations. Knowledge of Cartesian coordinates. Ability to plot points on graphs. Introductory skills in MET, Derive, TI-81, or TI-82. Students will be able to: use computer/graphing calculator to graph linear equations given in slope-intercept form. describe the effect on the graph of a linear equation by changing the value for the y-intercept. describe the effect on the graph of a linear equation by changing the value for the slope. determine the relationships of parallel and perpendicular between two lines based on knowledge of the respective slopes. write in slope-intercept form the equation of a line that is parallel to a given line. write in slope-intercept form the equation of a line that is perpendicular to a given line. Materials/Resources/Printed Materials: Computer and software (MET, Derive) Graphing calculator (TI-81 or TI-82) Activity worksheet Development/Procedures: The teacher will pair students into cooperative workgroups. In each group, students will use a worksheet that consists of a series of activities that allows them to explore the effect of making changes in the slope and y-intercept of a linear equation. The activities also require student teams to use a computer/graphing calculator to plot linear equations; students will then make sketches of the plots. These activities will task students to explore the algebraic and graphic concepts of parallel and perpendicular lines. Warmup/Lead-in Activity: McArthur Shopping Mall has just opened. You have a retail job which pays $ plus a 10% commission of your sales per week. In your first week you sold $700 of merchandise. What is your pay? In the following weeks, you sold $300 and $1500 worth of merchandise. What is your pay for each of these weeks? Plot these salaries as points on a linear graph. Activity 1: a. The teacher will give students a starting equation then choose several different values to substitute for the y-intercept. Students will graph the new equation and describe the resulting graph. b. The teacher will give students a new starting equation that is the same as the first except that the slope is negative. The students repeat their actions from step a. above.
3 Activity 2: The teacher will give students a starting equation then choose several different values to substitute for the slope. Students will graph the new equation and describe the resulting graph. Activity 3: Evaluation: a. The teacher will give the students the equations of three pairs of perpendicular lines. Students will graph each pair of lines and discuss the relationship between each pair of lines. b. Students are tasked to write and/or identify equations which form perpendicular lines. Students will be evaluated on the quality of their discussions and completion of the activity worksheets. The teacher will monitor student progress and involvement by circulating among the teams. Students will be evaluated as a group; student interaction and cooperation within their groups is essential to their development as student mathematicians. Extension/Follow-up: Authors: Students are given the opportunity to continue their exploration of linear equations using a real-world application. Michelle Berry Neal Jenkins Joe Joyner Warwick High School Norview High School Norview High School Newport News, VA Norfolk, VA Norfolk, VA
4 LINES, LINES, EVERYWHERE WORKSHEET Activity 1 In this activity, we will study equations of the form y = mx + b to see how the value of b affects the graph. Use the table below to complete the following tasks. a. Select four different values for b. b. Write the linear equation for each value of b. c. Using the computer/graphing calculator, graph each line. d. Determine the y-intercept of each line. e. Analyze each graph to determine if it has moved vertically up or down in reference to the starting equation. f. Sketch each computer generated graph on the attached grid. EQUATION VALUE OF b Y-INTERCEPT MOVES UP/DOWN y = x The slope in your starting equation has been changed from +1 to -1. Repeat steps a - f from above. EQUATION VALUE OF b Y-INTERCEPT MOVES UP/DOWN y = -x
5 Answer the following questions from the tables, graphs, and sketches that you have developed. 1. How does changing the value of b affect the graphs? 2. How does changing the slope from + or - have any affect on the y-intercepts? 3. Does changing the value of b affect the y-intercept? If so, how? 4. Does changing the value of b affect the x-intercept? If so, how? 5. Does changing the value of b affect the slope of the graphs? If so, how? 6. Lines that have the same slope are. 7. If b is equal to zero, what happens to the graph? Describe the resultant line? 8. If b is greater than 0 (b > 0), what happens to the graph? 9. If b is less than zero (b < 0), what happens to the graph? 10. How does the value of b relate to the graph of y = mx + b? Discuss.
6 y = x + 2 y = -x + 2
7 LINES, LINES, EVERYWHERE WORKSHEET Activity 2 In this activity, we will study equations of the form y = mx + b to see how changing the value of m affects the graph. Use the table below to complete the following tasks. a. Select six different values for m. b. Write the linear equation for each value of m. c. Using the computer/graphing calculator, graph each line. d. Analyze each graph to determine the changes in reference to the starting equation. e. Sketch each computer generated graph on the attached grid. EQUATION VALUE OF b Y-INTERCEPT VALUE OF m COMPARE TO y = 2x -4 y = 2x Answer the following questions: 1. How does changing the value of m affect the graphs? 2. Does changing the value of m affect the y-intercept? If so, how? 3. Does changing the value of m affect the x-intercept? If so, how?
8 4. If m = 0, what happens to the graph? 5. If m > 0, what happens to the graph? 6. If m < 0, what happens to the graph? 7. What is m? Explain its significance? Extension: Discuss what happens to m as a line gets closer and closer to being vertical. What happens to the line when it is vertical?
9 y = 2x - 4
10 LINES, LINES, EVERYWHERE WORKSHEET Activity 3 This activity will explore two special lines. Use your calculator or computer to graph the following equations. 2 y' x%4 3 3 y'& x% Sketch the graph of the two lines. 2. Study the two equations and state the changes that were made to form the second equation?
11 Graph each set of lines below and sketch. 3. y = ½x -3 y = -2x y = 4x + 6 y = -¼x y' x&3 2 4 y'& x%7 3
12 6. What changes were made in each set of equations? 7. In each case, the graphs form what type of lines? 8. What must occur in the equations of two lines for their graphs to be perpendicular? 9. Identify whether each set of lines is perpendicular by circling yes or no. A. y'4x%3 1 x%3 Yes/No y'& 4 2 B. y'& x%5 7 7 Yes/No y' x%5 2 2 C. y'& x&4 3 3 y'& x%4 2 Yes/No D. y'5x 1 y'& x 5 Yes/No E. y'4&5x 1 x%4 Yes/No y' Write an equation that is perpendicular to y'& x%4 8
13 11. Write 3 sets of perpendicular lines and graph each set. A. B. C.
14 EXTENSION/FOLLOW-UP ACTIVITY 1. You have been working at McArthur Shopping Mall for several months. Your retail job still pays $ plus a 10% commission of your sales per week. In your first three weeks you sold $700 of merchandise, then $300 and $1500 worth of merchandise. a. Plot these three salaries as points on a linear graph. b. Determine the linear equation that models how your pay is calculated. Graph/sketch this equation. c. How are the graphs from the two steps above related? Discuss. 2. Your supervisor comes to you and offers you a new pay scale where you earn $200 plus 7% commission of your sales per week. Should you accept the offer? Why? Why not?
Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.
Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is
Write the Equation of the Line Review
Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
Solving Equations Involving Parallel and Perpendicular Lines Examples
Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines
Slope-Intercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine
Slope-Intercept Form of a Linear Equation Examples
Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation
Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan
Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.
Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in
Worksheet A5: Slope Intercept Form
Name Date Worksheet A5: Slope Intercept Form Find the Slope of each line below 1 3 Y - - - - - - - - - - Graph the lines containing the point below, then find their slopes from counting on the graph!.
Math 113 Review for Exam I
Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular
A synonym is a word that has the same or almost the same definition of
Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
NCTM Content Standard/National Science Education Standard:
Title: Do These Systems Meet Your Expectations Brief Overview: This concept development unit is designed to develop the topic of systems of equations. Students will be able to graph systems of equations
CHAPTER 1 Linear Equations
CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Writing the Equation of a Line in Slope-Intercept Form
Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
1 Functions, Graphs and Limits
1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its
What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
Title: Line of Best Fit. Brief Overview:
Title: Line of Best Fit Brief Overview: This Concept Development Lesson is based on the skills needed to determine the line best fit for a set of data. The focus is based on grade levels 7-12. Students
Solving Systems of Linear Equations Graphing
Solving Systems of Linear Equations Graphing Outcome (learning objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
Graphing - Slope-Intercept Form
2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,
Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope -
Aim: How do we find the slope of a line? Warm Up: Go over test A. Slope - Plot the points and draw a line through the given points. Find the slope of the line.. A(-5,4) and B(4,-3) 2. A(4,3) and B(4,-6)
Answer Key Building Polynomial Functions
Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,
5. Equations of Lines: slope intercept & point slope
5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes
Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber
Linear Equations 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Tools: Geometer s Sketchpad Software Overhead projector with TI- 83
Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:
Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These
1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
Effects of changing slope or y-intercept
Teacher Notes Parts 1 and 2 of this lesson are to be done on the calculator. Part 3 uses the TI-Navigator System. Part 1: Calculator Investigation of changing the y-intercept of an equation In your calculators
Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.
MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION
Mathematics Curriculum Guide Precalculus 2015-16. Page 1 of 12
Mathematics Curriculum Guide Precalculus 2015-16 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing
Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form
Name Date Linear Functions: Slope-Intercept Form Student Worksheet Overview The Overview introduces the topics covered in Observations and Activities. Scroll through the Overview using " (! to review,
Graphing Linear Equations in Two Variables
Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the
MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope
MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem Constant Rate of Change/Slope In a Table Relationships that have straight-lined graphs
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
Final Graphing Practice #1
Final Graphing Practice #1 Beginning Algebra / Math 100 Fall 2013 506 (Prof. Miller) Student Name/ID: Instructor Note: Assignment: Set up a tutoring appointment with one of the campus tutors or with me.
Answers for the lesson Write Linear Equations in Slope-Intercept Form
LESSON 4.1 Answers for the lesson Write Linear Equations in Slope-Intercept Form Skill Practice 1. slope. You can substitute the slope for m and the y-intercept for b to get the equation of the line..
Florida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
Graphs of Proportional Relationships
Graphs of Proportional Relationships Student Probe Susan runs three laps at the track in 12 minutes. A graph of this proportional relationship is shown below. Explain the meaning of points A (0,0), B (1,),
Graphing - Parallel and Perpendicular Lines
. Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
Geometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
Unit 5: Coordinate Geometry Practice Test
Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this
Intro to Linear Equations Algebra 6.0
Intro to Linear Equations Algebra 6.0 Linear Equations: y x 7 y x 5 x y Linear Equations generally contain two variables: x and y. In a linear equation, y is called the dependent variable and x is the
SPIRIT 2.0 Lesson: A Point Of Intersection
SPIRIT 2.0 Lesson: A Point Of Intersection ================================Lesson Header============================= Lesson Title: A Point of Intersection Draft Date: 6/17/08 1st Author (Writer): Jenn
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will
ALGEBRA I (Created 2014) Amherst County Public Schools
ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies
Designer: Nathan Kimball. Stage 1 Desired Results
Interpolation Subject: Science, math Grade: 6-8 Time: 4 minutes Topic: Reading Graphs Designer: Nathan Kimball Stage 1 Desired Results Lesson Overview: In this activity students work with the direct linear
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.
Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
Lesson 4: Solving and Graphing Linear Equations
Lesson 4: Solving and Graphing Linear Equations Selected Content Standards Benchmarks Addressed: A-2-M Modeling and developing methods for solving equations and inequalities (e.g., using charts, graphs,
To represent mathematical relationships using graphs. 4-1 Activity: Relating Quantities See Department Chair for File 1 day A.REI.10, F.IF.
CCSS for Mathematical Practice: 1. Make sense of problems and persevere in solving them 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4. Model
Concept 7: Writing Linear Equations
Concept 7: Writing Linear Equations Level 2 1. Watch the video (Writing Linear Equations: Level 2) 2. Complete the Notes & Basic Practice 3. Complete 2 of the following tasks IXL Practice Worksheets Creating
CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide
Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
Answers Teacher Copy. Systems of Linear Equations Monetary Systems Overload. Activity 3. Solving Systems of Two Equations in Two Variables
of 26 8/20/2014 2:00 PM Answers Teacher Copy Activity 3 Lesson 3-1 Systems of Linear Equations Monetary Systems Overload Solving Systems of Two Equations in Two Variables Plan Pacing: 1 class period Chunking
Algebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true.
Definitions: Sstem of Linear Equations: or more linear equations Sstem of Linear Inequalities: or more linear inequalities Solution of the Sstem of Linear Equations: an ordered pair in a sstem that makes
Algebra 1. Curriculum Map
Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring
Chapter 1 Linear Models page Linear Models Part 1 2 Linear Models Activities 1 17 Linear Models Part 2 21 Linear Models Activities 2 28
Table of Contents Chapter 1 Linear Models page Linear Models Part 1 Linear Models Activities 1 17 Linear Models Part 1 Linear Models Activities 8 Chapter Linear Programming Linear Programming Part 1 34
Prerequisite: MATH 0302, or meet TSI standard for MATH 0305; or equivalent.
18966.201610 COLLIN COLLEGE COURSE SYLLABUS Course Number: MATH 0305.XS1 Course Title: Beginning Algebra Course Description: With an emphasis on developing critical thinking skills, a study of algebraic
Activity 6 Graphing Linear Equations
Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be
Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
Lecture 9: Lines. m = y 2 y 1 x 2 x 1
Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending
Chapter 9. Systems of Linear Equations
Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables
1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
Student Guide and Syllabus for MAT100 Introductory Algebra
Course Information: MAT100 Introductory Algebra Section: 05C Section: 06C Section: 07C* Classroom: 341 Main Building Classroom: 341 Main Building Classroom: 341 Main Building Meeting Dates: Monday Thursday
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Teacher: Maple So School: Herron High School. Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles
Teacher: Maple So School: Herron High School Name of Lesson: Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles Subject/ Course: Mathematics, Algebra I Grade Level: 9 th
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
2-2 Linear Relations and Functions. So the function is linear. State whether each function is a linear function. Write yes or no. Explain.
1. 2. 3. 4. State whether each function is a linear function. Write yes or no. Explain. The function written as. is linear as it can be + b. cannot be written in the form f (x) = mx So the function is
IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.
IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of $2,000. She also earns $500 for
5 Systems of Equations
Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate
Homework #1 Solutions
Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)
G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) Final Practice Exam
G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) Final Practice Exam G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d
Functional Math II. Information CourseTitle. Types of Instruction
Functional Math II Course Outcome Summary Riverdale School District Information CourseTitle Functional Math II Credits 0 Contact Hours 135 Instructional Area Middle School Instructional Level 8th Grade
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
High School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
Basic Understandings
Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying
MASTER COURSE SYLLABUS
MASTER COURSE SYLLABUS MAT 101 ~ BEGINNING ALGEBRA Course Number MAT 101 Course Title Beginning Algebra Credit Hours 3 Prerequisites A C or Higher in MAT 155 ~ Contemporary Mathematics or approved placement
