Food Proteins. Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt

Size: px
Start display at page:

Download "Food Proteins. Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt"

Transcription

1 Food Proteins Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt

2 -Amino Acid Sequence -Protein Conformation -Levels of Protein Structure -Primary structure -Secondary structure -Tertiary structure -Quaternary structure -Classification of Proteins -Denaturation of Protein

3 Peptide Linkage Formation

4 Peptides and Proteins Peptides and proteins are polymers of twenty amino acids connected to each other by peptide bonds. Oligopeptide is formed of (2 10) amino acids: 2 amino acids dipeptide, 3 amino acids tripeptide, 4 amino acids tetrapeptide.etc. Polypeptide is formed of more than 10 amino acids.

5 In proteins, almost all carboxyl and amino groups are combined in peptide linkage and not available for chemical reaction (except for hydrogen bond formation).

6 Food Proteins -Like peptides, proteins are formed from amino acids through amide linkages. -Covalently bound hetero constituents can also be incorporated into proteins. For example, phosphoproteins such as milk casein or phosvitin of egg yolk contain phosphoric acid esters of serine and threonine residues. -The structure of a protein is dependent on the amino acid sequence (the primary structure) which determines the molecular conformation (secondary and tertiary structures). -Proteins sometimes occur as molecular aggregates which are arranged in an orderly geometric fashion (quaternary structure). -The sequences and conformations of a large number of proteins have been elucidated and recorded in several data bases.

7 -Glycoproteins, such as casein, various components of egg white and egg yolk, collagen from connective tissue and serum proteins of some species of fish, contain one or more monosaccharide or oligosaccharide units bound O-glycosidically to serine, threonine or hydroxylysine or N- glycosidically to asparagine.

8 Amino Acid Sequence

9 1-Amino Acid Composition, Subunits -Sequence analysis can only be conducted on a pure protein. -First, the amino acid composition is determined after acidic hydrolysis. -The procedure (separation on a single cation-exchange resin column and color development with ninhydrin reagent) has been standardized and automated (amino acid analyzers). -As an alternative to these established methods, the derivatization of amino acids with the subsequent separation and detection of derivatives is possible (pre-column derivatization). Various derivatization reagents can be selected, such as: 9-Fluorenylmethylchloroformate (FMOC) Phenylisothiocyanate (PITC) Dimethylaminoazobenzenesulfonylchloride (DABS-Cl) Dimethylaminonaphthalenesulfonylchloride (DANS-Cl) 7-Fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBDF) 7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBDCl) o-phthaldialdehyde (OPA)

10 Amino acid chromatogram. Separation of a mixture of amino acids (10 nmol/amino acid) by an amino acid analyzer.

11 Amino Acid Composition, Subunits -It is also necessary to know the molecular weight (MW) of the protein. -MW could be determined by gel column chromatography, ultracentrifugation or electrophoresis. -It is necessary to determine whether the protein is a single molecule or consists of a number of different polypeptide chains (subunits) associated through disulfide bonds or non-covalent forces. -Dissociation into subunits can be accomplished by a change in ph, by chemical modification of the protein, such as succinylation, or with denaturing agents (urea, guanidine hydrochloride, sodium dodecyl sulfate SDS). -Disulfide bonds, which are also found in proteins which consist of only one peptide chain, can be cleaved by oxidation of cystine to cysteic acid or by reduction to cysteine with subsequent alkylation of thiol group to prevent reoxidation. -Separation of subunits is achieved by chromatographic or electrophoretic methods.

12 2-Terminal Groups -N-terminal amino acids can be determined by treating a protein with l-fluoro-2,4-dinitrobenzene (Sanger s reagent) or 5- dimethylaminonaphthalene-1-sulfonyl chloride (dansyl chloride). -Another possibility is the reaction with cyanate, followed by elimination of the N-terminal amino acid in the form of hydantoin, and separation and recovery of the amino acid by cleavage of the hydantoin. -The N-terminal amino acid (and the amino acid sequence close to the N-terminal) is accessible by hydrolysis with aminopeptidase, in which case it should be remembered that the hydrolysis rate is dependent on amino acid side chains and that proline residues are not cleaved. -A special procedure is required when the N-terminal residue is acylated (N-formyl- or N-acetyl amino acids).

13 -Determination of C-terminal amino acids is possible via the hydrazinolysis procedure recommended by Akabori: -The C-terminal amino acid could be then separated from the amino acid hydrazides by a cation exchange resin.

14 Terminal Groups -The C-terminal amino acids can be removed enzymatically by - Carboxypeptidase A which cleaves amino acids with aromatic and large aliphatic side chains, - Carboxypeptidase B which cleaves lysine, arginine and amino acids with neutral side chains or - Carboxypeptidase C which cleaves with less specificity but cleaves proline.

15 3- Partial Hydrolysis -Long peptide chains are usually fragmented. The fragments are then analyzed for amino acid sequences. -Selective enzymatic cleavage of peptide bonds is accomplished primarily with Trypsin, which cleaves exclusively Lys-X- and Arg-X-bonds, and Chymotrypsin, which cleaves peptide bonds with less specificity (Tyr-X, Phe-X, Trp-X and Leu-X). -The enzymatic attack can be influenced by modification of protein. For example, -Acylation of the amino group of lysine limits tryptic hydrolysis to Arg-X, -Substitution of the SH-group of cysteine residue with an aminoethyl group introduces a new cleavage position for trypsin into the molecule pseudolysine residue

16 -Also suited for the specific enzymatic hydrolysis of peptide chains is the endoproteinase Glu-C from Staphylococcus aureus. It cleaves Glu-X bonds as well as Glu-X plus Asp-X bonds. -The most important chemical method for selective cleavage uses cyanogen bromide (BrCN) to attack Met-X-linkages. Partial Hydrolysis

17 Partial Hydrolysis -Hydrolysis of proteins with strong acids reveals a difference in the rates of hydrolysis of peptide bonds depending on the next amino acid side chain. -Bonds involving amino groups of serine and threonine are particularly sensitive to hydrolysis. -This effect is due to N O-acyl migration via oxazoline and subsequent hydrolysis of the ester bond. -Hydrolysis of proteins with dilute acids cleaves aspartyl-x-bonds.

18 Partial Hydrolysis -Separation of peptide fragments is achieved by gel and ionexchange column chromatography using a volatile buffer as eluent (pyridine) which can be removed by freeze-drying of the fractions. -The separation of peptides and proteins by reversed-phase HPLC has gained great importance, using volatile buffers mixed with organic, water-soluble solvents as the mobile phase. -The fragmentation of the protein is performed by different enzymic and/or chemical techniques, at least by two enzymes of different specifity. -The arrangement of the obtained peptides in the same order as they found in the protein is accomplished with the aid of overlapping sequences.

19 4- Sequence Analysis -The classical method is the Edman degradation reaction. -It involves stepwise degradation of peptides with phenylisothiocyanate. -The resultant phenylthiohydantoin is identified directly. -The stepwise reactions are performed in solution or on peptide bound to a carrier, i. e. to a solid phase. -Both approaches have been automated ( sequencer ). Carriers used include resins containing amino groups (e.g., amino polystyrene) or glass beads treated with amino alkylsiloxane:

20 Sequence Analysis -The peptides are then attached to the carrier by carboxyl groups (activation with carbodiimide as in peptide synthesis) or by amino groups. -For example, a peptide segment from the hydrolysis of protein by trypsin has lysine as its C-terminal amino acid. It is attached to the carrier with phenylene-diisothiocyanate through amino groups. -Mild acidic treatment of the carrier under conditions of the Edman degradation splits the first peptide bond. -The Edman procedure is then performed on the shortened peptide through second, third and subsequent repetitive reactions:

21 Protein Conformation

22 Protein molecule can be formed of one or more polypeptide chains which may vary in the number and sequence of amino acid residues.

23 Extended Peptide Chains -Information about conformation is available through X-ray crystallographic analysis of protein crystals and by measuring the distance between selected protons of the peptide chain by means of H-NMR spectroscopy in solution. -X-ray structural analysis of a fully extended peptide chain reveal the lengths and angles of bonds -The peptide bond has partial (40%) double bond character with electrons shared between the C-O and C-N bonds. -The resonance energy is about 83.6 kj/mole Structure of an elongated peptide chain.

24 Levels of Protein Structure Primary structure Secondary structure Tertiary structure Quaternary structure

25 Primary structure It is the amino acid sequence of the polypeptide chain linked by peptide bonds. It is characteristic for every protein. All proteins have an N-terminal end (with a free amino group) and C-terminal end (with a free carboxyl group). Polypeptide chain sequence is written according to the sequence of amino acid residues from the N to C terminus amino acids.

26

27 Secondary structure Is the local spatial arrangement of the polypeptide s backbone (peptide bond) atoms without regard to the conformations of its side chains. Peptide bonds contain polar amide hydrogen atoms (with a partial positive charge) and polar carbonyl oxygen atoms (with a partial negative charge). This allows hydrogen bonds to form between peptide bonds in different parts of the chain. The polypeptide chain can take different shapes or patterns in different parts of the chain, and these patterns are called the secondary protein structure. There are 2 types of secondary structure: Alpha helix (α-helix) Beta-pleated sheet (β-pleated sheet).

28 Secondary structure Alpha helix A spiral, compact, rod like structure Mostly right handed α-helix, with R groups protruding outside Stabilized by numerous hydrogen bonds which are formed between carbonyl oxygen (C=O, hydrogen acceptor) and peptide nitrogen (NH, hydrogen donor). Forms about 100% of fibrous protein -keratin -80% of the globular protein; hemoglobin.

29 Alpha helix Alpha helix is disrupted by: Proline: its imino group is not geometrically compatible with α- helix. Large numbers of bulky amino acids e.g. tryptophan because of steric interference. Large numbers of branched amino acids e.g. valine and isoleucine because of steric interference. Large numbers of acidic and basic amino acids because they form ionic bonds or electrically repel each other.

30 β- PLEATED SHEET Almost fully extended and its surface appear pleated. Found in fibrous and globular protein. Formed of 1 or more polypeptide chains. Stabilized by hydrogen bonds between peptide bonds.

31 Types of β-pleated SHEET 1. Parallel β-pleated sheet: formed of 2 or more polypeptide chains running in the same direction (Nterminals are on the same side) 2. Anti-parallel β-pleated sheet: formed of one or more polypeptide chains running in opposite directions (N and C terminals are alternating).

32

33 Comparison of -helix and -sheet -helix -sheet Structure 1 polypeptide chain 1 or more polypeptide chains polypeptide Coiled Almost fully extended Hydrogen bonds - Formed between 2 peptide bonds of 4 amino acids apart in the primary structure. - Parallel to the axis of polypeptide chain. - Formed between amino acids which has no relation in primary structure. - Perpendicular to the axis of polypeptide chain. R groups - Protrude outside the helix - Project above and below the plane of the sheet

34

35 SECONDARY STRUCTURE OF PROTEIN α- helix

36 Tertiary structure Is the three dimensional structure of a single polypeptide chain giving protein its characteristic shape. I- Globular proteins (enzymes) Approximately spherical shape- water Soluble. II- Fibrous proteins (structural proteins) Rod-like shape Poor water solubility. Cross links and bonds in 3ry structure: S-S bond, Ionic, Hydrophobic interactions and H-bonding. Globular protein Fibrous protein

37 Tertiary structure

38 Forces that stabilize tertiary structure These are bonds that form between side chains of amino acids of the same polypeptide chain: 1. Disulfide bonds. 2. Hydrophobic interactions. 3. Hydrogen bonds. 4. Ionic interactions. 5. Van der Waal s forces.

39 Forces that stabilize tertiary structure Disulfide bonds: covalent bond between 2 SH groups of 2 cysteine residues forming an S~S bond of cystine residue. Hydrophobic interaction: non covalent bonds between amino acids with non-polar side chains that are located in the interior of polytpeptide chain away from water. Hydrogen bonds: non covalent bond between a hydrogen atom attached to nitrogen or oxygen and another oxygen or nitrogen atom. Ionic interaction: non covalent bonds between negatively charged groups in acidic amino acids (as carboxilic group in the side chain of aspartate or glutamate) and positively charged groups in basic amino acids (as amino group in the side chain of lysine) Van der Waal s forces: non covalent bonds occurring when two adjacent atoms come into closer distance.

40 Forces that stabilize tertiary structure

41 Quaternary structure Many proteins are composed of two or more polypeptide chains which are loosely associated through noncovalent interactions (hydrogen bonds, ionic bonds and hydrophobic interactions). An individual polypeptide is termed subunit or monomer. According to the number of subunits, proteins are either: dimeric (2 subunits), trimeric (3 subunits), tetrameric (4 subunits; e.g. HB) oligomeric (many subunits).

42 Examples of globular proteins

43 Classification of Proteins Simple Conjugated Derived proteins proteins proteins 1. Albumin 2. Globulins 3. Histones 1. Phosphoproteins 2. Glycoproteins 3. Chromoproteins 4. Lipoproteins 5. Nucleoproteins 6. Metalloproteins Results from denaturation or cleavage of native proteins by the action of acids, alkali or enzymes.

44 Conjugated Proteins Proteins can be modified to include other chemical groups prosthetic groups besides amino acids: Class Prosthetic group (s) Example Lipoproteins Glycoproteins Phosphoproteins hemoproteins Lipids Carbohydrates Phosphate groups Heme (iron porphyrin) VLDL Immunoglobulin G Casinogen of milk Hemoglobin

45 Denaturation of Protein

46 Denaturation of Protein -The term denaturation denotes a reversible or irreversible change of native conformation (tertiary structure) without cleavage of covalent bonds (except for disulfide bridges). The primary structure of the protein is not changed because the peptide bonds are not affected Denaturing agents include: 1. Heat 2. Changes in ph (concentrated acids or alkali) 3. Ultraviolet rays 4. X ray 5. High salt concentration 6. Heavy metals.

47 Denaturation -Denaturation is possible with any treatment that cleaves hydrogen bridges, ionic or hydrophobic bonds. This can be accomplished by: changing the temperature, adjusting the ph, increasing the interface area, or adding organic solvents, salts, urea, or detergents such as sodium dodecyl sulfate. -Denaturation is generally reversible when the peptide chain is stabilized in its unfolded state by the denaturing agent and native conformation can be re-established after removal of the agent. -Irreversible denaturation occurs when the unfolded peptide chain is stabilized by interaction with other chains (as occurs for instance with egg proteins during boiling). During unfolding reactive groups, such as thiol groups, that were blocked, may be exposed. Their participation in the formation of disulfide bonds may also cause an irreversible denaturation.

48 Denaturation

49 Effects of Denaturation -Denaturation destroys the native conformation of protein. -Denaturation destroys the biologic activity of protein, there is loss of hormonal, enzymatic and antibody activity. Applications of protein denaturing 1- Boiling eggs: Change in albumin shape and solubility. 2- Cooking meat: Easily chewable, digestible. 3- Swabbing skin with alcohol (disinfectant): Denatures/kills bacteria and viruses. 4- HCl in our stomach: denatures proteins and making it easily digestible by enzymes - So, eating cooked eggs, meat and liver is more useful to humans than eating them raw

50 Denaturation of Protein: Examples in Food -An aggregation of the peptide chains caused by the folding of globular proteins is connected with reduced solubility or swellability. -Thus the part of wheat gluten that is soluble in acetic acid diminishes as heat stress increases. -As a result of the reduced rising capacity of gluten caused by the pre-treatment, the volume of bread made of recombined flours is smaller. Solubility of gluten (wheat) in diluted acetic acid after various forms of thermal stress

51 Denaturation of Protein: Examples in Food -In the case of fibrous proteins, denaturation, through destruction of the highly ordered structure, generally leads to increased solubility or rising capacity. One example is the thermally caused collagen-to-gelatin conversion, which occurs when meat is cooked. -The thermal denaturation of the whey proteins β- lactoglobulin and α-lactalbumin has been well-studied. -Denaturation of biologically active proteins is usually associated with loss of activity. The fact that denatured proteins are more readily digested by proteolytic enzymes is also of interest.

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

The Organic Chemistry of Amino Acids, Peptides, and Proteins

The Organic Chemistry of Amino Acids, Peptides, and Proteins Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition

Lecture 13-14 Conformation of proteins Conformation of a protein  three-dimensional structure native state. native condition Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as

More information

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of

More information

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

Structure and properties of proteins. Vladimíra Kvasnicová

Structure and properties of proteins. Vladimíra Kvasnicová Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism

More information

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist

More information

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton? Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A

More information

Amino Acids and Proteins

Amino Acids and Proteins Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)

More information

PROTEIN SEQUENCING. First Sequence

PROTEIN SEQUENCING. First Sequence PROTEIN SEQUENCING First Sequence The first protein sequencing was achieved by Frederic Sanger in 1953. He determined the amino acid sequence of bovine insulin Sanger was awarded the Nobel Prize in 1958

More information

Structure of proteins

Structure of proteins Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0? Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following?

Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? MCAT Question Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? A. Carboxylic group and amino group B. Two carboxylic

More information

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See

More information

Biological Molecules

Biological Molecules Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIAIDS PEPTIDES AMIAIDS = substitutional/functional derivatives of carboxylic acids = basic units of proteins (2-aminoacids) General formula of 2-aminoacids (α-aminoacids):

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

Structures of Proteins. Primary structure - amino acid sequence

Structures of Proteins. Primary structure - amino acid sequence Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10 CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

How To Understand The Chemistry Of Organic Molecules

How To Understand The Chemistry Of Organic Molecules CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d) Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)

More information

Chapter 12 - Proteins

Chapter 12 - Proteins Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

--not necessarily a protein! (all proteins are polypeptides, but the converse is not true)

--not necessarily a protein! (all proteins are polypeptides, but the converse is not true) 00Note Set 5b 1 PEPTIDE BONDS AND POLYPEPTIDES OLIGOPEPTIDE: --chain containing only a few amino acids (see tetrapaptide, Fig 5.9) POLYPEPTIDE CHAINS: --many amino acids joined together --not necessarily

More information

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins MCAT rganic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins Question No. 1 of 10 Question 1. Which amino acid does not contain a chiral center? Question #01 (A) Serine (B) Proline (C)

More information

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl

More information

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein. Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic

More information

Worksheet 13.1. Chapter 13: Human biochemistry glossary

Worksheet 13.1. Chapter 13: Human biochemistry glossary Worksheet 13.1 Chapter 13: Human biochemistry glossary α-helix Refers to a secondary structure of a protein where the chain is twisted to form a regular helix, held by hydrogen bonds between peptide bonds

More information

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins hemistry 110 Bettelheim, Brown, ampbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry hapter 22 Proteins Step-growth polyamide (polypeptide) polymers or oligomers of L-α-aminoacids.

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Disulfide Bonds at the Hair Salon

Disulfide Bonds at the Hair Salon Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,

More information

Marmara Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü / Biyokimya Anabilim Dalı

Marmara Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü / Biyokimya Anabilim Dalı EXPERIMENT IX Marmara Üniversitesi DETERMINATION OF N-TERMINAL AMINO ACID RESIDUE OF PROTEINS BY THIN LAYER CHROMATOGRAPHY Functions of the proteins depend upon its amino acid sequence. Because amino acid

More information

CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS APTER 29 AMI AIDS, PLYPEPTIDES, AD PRTEIS SLUTIS T REVIEW QUESTIS 1. The designation, α, means that the amine group in common amino acids is connected to the carbon immediately adjacent to the carboxylic

More information

6 Characterization of Casein and Bovine Serum Albumin

6 Characterization of Casein and Bovine Serum Albumin 6 Characterization of Casein and Bovine Serum Albumin (BSA) Objectives: A) To separate a mixture of casein and bovine serum albumin B) to characterize these proteins based on their solubilities as a function

More information

Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw

Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. Peptide Bond Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. + H 2 O 2 Peptide bonds are strong and not broken by conditions that denature proteins, such as heating.

More information

INTRODUCTION TO PROTEIN STRUCTURE

INTRODUCTION TO PROTEIN STRUCTURE Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which

More information

Chemical Bonds and Groups - Part 1

Chemical Bonds and Groups - Part 1 hemical Bonds and Groups - Part 1 ARB SKELETS arbon has a unique role in the cell because of its ability to form strong covalent bonds with other carbon atoms. Thus carbon atoms can join to form chains.

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

Amino Acids, Peptides, Proteins

Amino Acids, Peptides, Proteins Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 7. The monomer units of proteins are amino acids. The

More information

Polypeptides and Proteins

Polypeptides and Proteins Polypeptides and Proteins These molecules are composed, at least in part, of chains of amino acids. Each amino acid is joined to the next one through an amide or peptide bond from the carbonyl carbon of

More information

Peptides: Synthesis and Biological Interest

Peptides: Synthesis and Biological Interest Peptides: Synthesis and Biological Interest Therapeutic Agents Therapeutic peptides approved by the FDA (2009-2011) 3 Proteins Biopolymers of α-amino acids. Amino acids are joined by peptide bond. They

More information

Methods for Protein Analysis

Methods for Protein Analysis Methods for Protein Analysis 1. Protein Separation Methods The following is a quick review of some common methods used for protein separation: SDS-PAGE (SDS-polyacrylamide gel electrophoresis) separates

More information

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are put together. 1 A more detailed view of a single protein

More information

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5 Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational

More information

The peptide bond is rigid and planar

The peptide bond is rigid and planar Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)

More information

Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes

Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes Chemistry: Introduction to General, Organic & Biological Chemistry (Timberlake) Chapter 16: Amino Acids, Proteins, and Enzymes MULTIPLE CHOICE 1) Which of the following is NOT a function of proteins? A)

More information

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms attached to the carbons (hydrogens in this case) can no

More information

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins. Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

Proteins the primary biological macromolecules of living organisms

Proteins the primary biological macromolecules of living organisms Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt

More information

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

Amino Acids as Acids, Bases and Buffers:

Amino Acids as Acids, Bases and Buffers: Amino Acids as Acids, Bases and Buffers: - Amino acids are weak acids - All have at least 2 titratable protons (shown below as fully protonated species) and therefore have 2 pka s o α-carboxyl (-COOH)

More information

Peptide Bonds: Structure

Peptide Bonds: Structure Peptide Bonds: Structure Peptide primary structure The amino acid sequence, from - to C-terminus, determines the primary structure of a peptide or protein. The amino acids are linked through amide or peptide

More information

Lecture 4: Peptides and Protein Primary Structure [PDF] Key Concepts. Objectives See also posted Peptide/pH/Ionization practice problems.

Lecture 4: Peptides and Protein Primary Structure [PDF] Key Concepts. Objectives See also posted Peptide/pH/Ionization practice problems. Lecture 4: Peptides and Protein Primary Structure [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 2, pp. 34-37 Practice problems (peptide ionization) [PDF]; problems in textbook: chapter 2, pp. 63-64,

More information

Introduction to Chemical Biology

Introduction to Chemical Biology Professor Stuart Conway Introduction to Chemical Biology University of xford Introduction to Chemical Biology ecommended books: Professor Stuart Conway Department of Chemistry, Chemistry esearch Laboratory,

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

Preliminary MFM Quiz

Preliminary MFM Quiz Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate

More information

Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and it

More information

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH)

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH) Introduction to Proteins - Proteins are abundant and functionally diverse molecules - They participate in cell regulation at all levels - They share a common structural feature: all are linear polymers

More information

Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE. Section 1. Primary structure, secondary motifs,

Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE. Section 1. Primary structure, secondary motifs, Previously published in Biophysical Society On-line Textbook PROTEINS CHAPTER 1. PROTEIN STRUCTURE Section 1. Primary structure, secondary motifs, tertiary architecture, and quaternary organization Jannette

More information

UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS

UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS UNIT (11) MOLECULES OF LIFE: LIPIDS AND PROTEINS 11.1 Types of Lipids Lipids are also biochemical compounds that contain carbon, hydrogen, and oxygen. But lipids, unlike carbohydrates, share no common

More information

The chemistry of insulin

The chemistry of insulin FREDERICK S ANGER The chemistry of insulin Nobel Lecture, December 11, 1958 It is great pleasure and privilege for me to give an account of my work on protein structure and I am deeply sensitive of the

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

USP's Therapeutic Peptides Expert Panel discusses manufacturing processes and impurity control for synthetic peptide APIs.

USP's Therapeutic Peptides Expert Panel discusses manufacturing processes and impurity control for synthetic peptide APIs. Control Strategies for Synthetic Therapeutic Peptide APIs Part III: Manufacturing Process Considerations By Brian Gregg,Aleksander Swietlow,Anita Y. Szajek,Harold Rode,Michael Verlander,Ivo Eggen USP's

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Guidance for Industry

Guidance for Industry Guidance for Industry for the Submission of Chemistry, Manufacturing, and Controls Information for Synthetic Peptide Substances Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation

More information

Lecture 15: Enzymes & Kinetics Mechanisms

Lecture 15: Enzymes & Kinetics Mechanisms ROLE OF THE TRANSITION STATE Lecture 15: Enzymes & Kinetics Mechanisms Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products Margaret A. Daugherty Fall 2004

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid.

Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid. A Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid. Active site: Usually applied to catalytic site of an enzyme or where

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information