Foundations of Business Intelligence: Databases and Information Management
|
|
|
- Lucas Barnett
- 10 years ago
- Views:
Transcription
1 Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1
2 See Markers-ORDER-DB Logically Related Tables Relational Approach: Physically Related Tables: The Relationship Screen Multi-Table Queries 5.2 Ayati s notes
3 A parallel: Information System: Storage Concept vs. Program Concept: Any Production System Parts Storage Assembly Line Product Any Information System Organized Parts (The value is in the organization) Data Database Program (Instruction Codes) Information 5.3 Ayati s notes Organized Data (a report, a form, on a screen or on paper)
4 Format of Stored Data Text-based ( Free Format ) information: Some 85 % of total written information Record-based ( Formatted ) Information: Some 15 % of total written Information Volume of Data vs. vs. Accessing Data 5.4 Ayati s notes
5 Definition of Database A Broad Definition: Storage of Data and Knowledge in any Medium and any Format A Narrow definition: Storage of Physically Related Data (and Knowledge) in Electronic Medium in either record or text Formats: A Narrower definition, Relevant to This course: Storage of Formatted record based Data (and Knowledge) in Electronic Medium which are Physically Related 5.5 Ayati s notes
6 Database vs. Database Management System (DBMS)? Data Database Program (Instruction Codes) Information (a report, a screen) Data Entry Forms Data Definition Language Data Manipulatio n Language Database Management Systems (DBMS) Reports & Forms Generating Facilities 5.6 Ayati s notes
7 Learning Database Involves: Database Design : How to Design Storage Database Processing: Learning the structure and mechanics of a DBMS 5.7 Ayati s notes
8 Approaches to learning Database: Concept first: The Academic approach Practice first: the Layman approach : The Professional Approach Concept Practice 5.8 Ayati s notes
9 STUDENT OBJECTIVES Describe how a relational database organizes data and compare its approach to an objectoriented database. Identify and describe the principles of a database management system. Evaluate tools and technologies for providing information from databases to improve business performance and decision making. 5.9
10 STUDENT OBJECTIVES (Continued) Assess the role of information policy and data administration in the management of organizational data resources. Assess the importance of data quality assurance for the business. 5.10
11 7-Eleven Stores Ask the Customer by Asking the Data Problem: Detached view of customer base, inadequate sales data. Solutions: Implement retail information system and database and deploy POS workstations to analyze customer preferences and analyze sales trends. HP servers and Retail Information System leads to reduced inventory and increased sales revenue. Demonstrates IT s role in establishing customer intimacy and managing inventory. Illustrates digital technology s role in forging success in business from data harvesting. 5.11
12 7-Eleven Stores Ask the Customer by Asking the Data Interactive Session: 7-Eleven7 What are your experiences with shopping at your local convenience store? Does the store ever run out of your favorite items? If so, how quickly are they replaced? Does the store proprietor have a relationship with his or her customers? Are you aware of purchase data being collected? Are you more or less likely to shop at a convenience store when you know that your purchase data are being collected? Are you more or less likely to frequent a store that caters to your personal buying habits? 5.12
13 The Database Approach to Data Management Database: a collection of related files containing records on people, places, or things Entities and attributes Organizing data in a relational database Fields, records, key fields, primary key, foreign key Establishing relationships Entity-relationship diagram, normalization, join table 5.13
14 The Database Approach to Data Management A Relational Database Table A relational database organizes data in the form of two-dimensional tables. Illustrated here is a table for the entity SUPPLIER showing how it represents the entity and its attributes. Supplier_Number is the key field. Figure
15 The Database Approach to Data Management A Simple Entity-Relationship Diagram This diagram shows the relationship between the entities SUPPLIER and PART. Figure
16 Database Management Systems DBMS A specific type of software for creating, storing, organizing, and accessing data from a database Separates the logical and physical views of the data Logical view: how end users view data Physical view: how data are actually structured and organized Examples of DBMS: Microsoft Access, DB2, Oracle Database, Microsoft SQL Server, MYSQL 5.16
17 Database Management Systems Operations of a Relational DBMS Select: creates a subset of records based on stated criteria Join: combines relational tables to present the user with more information than is available from individual tables Project: creates a subset consisting of columns in a table 5.17
18 Capabilities of Database Management Systems Data definition Data dictionary Essentials of Business Information Systems Querying and reporting Data manipulation language Structured query language (SQL) Object-oriented databases Database Management Systems 5.18
19 Using Databases to Improve Business Performance and Decision Making Data Warehouses What is a data warehouse? A database that stores current and historical data that may be of interest to decision makers Data marts Essentials of Business Information Systems Subsets of data warehouses that are highly focused and isolated for a specific population of users 5.19
20 Using Databases to Improve Business Performance and Decision Making Components of a Data Warehouse The data warehouse extracts current and historical data from multiple operational systems inside the organization. These data are combined with data from external sources and reorganized into a central database designed for management reporting and analysis. The information directory provides users with information about the data available in the warehouse. Figure
21 Using Databases to Improve Business Performance and Decision Making Business Intelligence, Multidimensional Data Analysis, and Data Mining Business intelligence: tools for consolidating, analyzing, and providing access to large amounts of data to improve decision making Online analytical processing (OLAP) Data mining and predictive analysis Associations Sequences Classifications Clusters Forecasts 5.21
22 Using Databases to Improve Business Performance and Decision Making Business Intelligence A series of analytical tools works with data stored in databases to find patterns and insights for helping managers and employees make better decisions to improve organizational performance. Figure
23 Using Databases to Improve Business Performance and Decision Making Peru s Banco de Credito Scores with a New Data Warehouse Read the Focus on Organizations and then discuss the following questions: What problems does Banco de Credito Peru face? How do the problems affect the bank s strategy and business performance? How did management choose to solve these problems? Analyze the people, organization, and technology dimensions of its solution. What alternatives were available to management? Did management choose the best alternative? Explain your answer. 5.23
24 Using Databases to Improve Business Performance and Decision Making Firms use the Web to make information from their internal databases available to customers and partners Middleware and other software make this possible Database servers CGI Databases and the Web Web interfaces provide familiarity to users and savings over redesigning and rebuilding legacy systems 5.24
25 Managing Data Resources Establishing an Information Policy An information policy states an organization s rules for managing and storing information Data administration is responsible for the specific policies and procedures through which data can be managed as a resource Large organizations use a database design and management group to perform database administration 5.25
26 Managing Data Resources Ensuring Data Quality Poor data quality is a major obstacle to successful customer relationship management Data quality problems can be caused by redundant and inconsistent data produced by multiple systems Data input errors are the cause of many data quality problems A data quality audit is a structured survey of the accuracy and completeness of data Data cleansing detects and corrects incorrect, incomplete, improperly formatted, and redundant data 5.26
27 Managing Data Resources Downloading Digital Music When You re on the Wrong Track Read the Focus on Technology and then discuss the following questions: What data management and data quality problems are posed by digital music services? What is the impact of these problems on individuals and the digital music industry? What people, organization, and technology factors were involved? What alternative solutions are available? 5.27
28 Managing Data Resources Interactive Session: Downloading Digital Music What experiences have you had with bad data in relation to digital music? Visit the Gracenote Web site at and search the music database for a few of your favorite songs and artists. Are you able to find any bad or conflicting data? How concerned are you with having correct metadata for your digital music? What steps do you take to protect the quality of your metadata? 5.28
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,
Databases and Information Management
Databases and Information Management Reading: Laudon & Laudon chapter 5 Additional Reading: Brien & Marakas chapter 3-4 COMP 5131 1 Outline Database Approach to Data Management Database Management Systems
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
Course 103402 MIS. Foundations of Business Intelligence
Oman College of Management and Technology Course 103402 MIS Topic 5 Foundations of Business Intelligence CS/MIS Department Organizing Data in a Traditional File Environment File organization concepts Database:
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives Describe how the problems of managing data resources in a traditional file environment are solved
Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 6.1 2010 by Prentice Hall LEARNING OBJECTIVES Describe how the problems of managing data resources in a traditional
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of
Chapter 6. Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
TIM 50 - Business Information Systems
TIM 50 - Business Information Systems Lecture 15 UC Santa Cruz March 1, 2015 The Database Approach to Data Management Database: Collection of related files containing records on people, places, or things.
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Wienand Omta Fabiano Dalpiaz 1 drs. ing. Wienand Omta Learning Objectives Describe how the problems of managing data resources
Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem:
Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Chapter 6 Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
INFO 1400. Koffka Khan. Tutorial 6
INFO 1400 Koffka Khan Tutorial 6 Running Case Assignment: Improving Decision Making: Redesigning the Customer Database Dirt Bikes U.S.A. sells primarily through its distributors. It maintains a small customer
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
Technology in Action. Alan Evans Kendall Martin Mary Anne Poatsy. Eleventh Edition. Copyright 2015 Pearson Education, Inc.
Copyright 2015 Pearson Education, Inc. Technology in Action Alan Evans Kendall Martin Mary Anne Poatsy Eleventh Edition Copyright 2015 Pearson Education, Inc. Technology in Action Chapter 9 Behind the
Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management LEARNING OBJECTIVESS After reading this chapter, you will be able to answer the following questions: 1. What are the
Data Hierarchy. Traditional File based Approach. Hierarchy of Data for a Computer-Based File
Management Information Systems Data and Knowledge Management Dr. Shankar Sundaresan (Adapted from Introduction to IS, Rainer and Turban) LEARNING OBJECTIVES Recognize the importance of data, issues involved
Business Intelligence: Effective Decision Making
Business Intelligence: Effective Decision Making Bellevue College Linda Rumans IT Instructor, Business Division Bellevue College [email protected] Current Status What do I do??? How do I increase
n Assignment 4 n Due Thursday 2/19 n Business paper draft n Due Tuesday 2/24 n Database Assignment 2 posted n Due Thursday 2/26
Class Announcements TIM 50 - Business Information Systems Lecture 14 Instructor: John Musacchio UC Santa Cruz n Assignment 4 n Due Thursday 2/19 n Business paper draft n Due Tuesday 2/24 n Database Assignment
Data. Data and database. Aniel Nieves-González. Fall 2015
Data and database Aniel Nieves-González Fall 2015 Data I In the context of information systems, the following definitions are important: 1 Data refers simply to raw facts, i.e., facts obtained by measuring
Establish and maintain Center of Excellence (CoE) around Data Architecture
Senior BI Data Architect - Bensenville, IL The Company s Information Management Team is comprised of highly technical resources with diverse backgrounds in data warehouse development & support, business
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
Chapter 14: Databases and Database Management Systems
15 th Edition Understanding Computers Today and Tomorrow Comprehensive Chapter 14: Databases and Database Management Systems Deborah Morley Charles S. Parker Copyright 2015 Cengage Learning Learning Objectives
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
When to consider OLAP?
When to consider OLAP? Author: Prakash Kewalramani Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 03/10/08 Email: [email protected] Abstract: Do you need an OLAP
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Retail POS Data Analytics Using MS Bi Tools. Business Intelligence White Paper
Retail POS Data Analytics Using MS Bi Tools Business Intelligence White Paper Introduction Overview There is no doubt that businesses today are driven by data. Companies, big or small, take so much of
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
CHAPTER 5: BUSINESS ANALYTICS
Chapter 5: Business Analytics CHAPTER 5: BUSINESS ANALYTICS Objectives The objectives are: Describe Business Analytics. Explain the terminology associated with Business Analytics. Describe the data warehouse
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
SQL Server 2005 Features Comparison
Page 1 of 10 Quick Links Home Worldwide Search Microsoft.com for: Go : Home Product Information How to Buy Editions Learning Downloads Support Partners Technologies Solutions Community Previous Versions
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
Relational Database Basics Review
Relational Database Basics Review IT 4153 Advanced Database J.G. Zheng Spring 2012 Overview Database approach Database system Relational model Database development 2 File Processing Approaches Based on
Integrating SAP and non-sap data for comprehensive Business Intelligence
WHITE PAPER Integrating SAP and non-sap data for comprehensive Business Intelligence www.barc.de/en Business Application Research Center 2 Integrating SAP and non-sap data Authors Timm Grosser Senior Analyst
<Insert Picture Here> Extending Hyperion BI with the Oracle BI Server
Extending Hyperion BI with the Oracle BI Server Mark Ostroff Sr. BI Solutions Consultant Agenda Hyperion BI versus Hyperion BI with OBI Server Benefits of using Hyperion BI with the
Breadboard BI. Unlocking ERP Data Using Open Source Tools By Christopher Lavigne
Breadboard BI Unlocking ERP Data Using Open Source Tools By Christopher Lavigne Introduction Organizations have made enormous investments in ERP applications like JD Edwards, PeopleSoft and SAP. These
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING Ramesh Babu Palepu 1, Dr K V Sambasiva Rao 2 Dept of IT, Amrita Sai Institute of Science & Technology 1 MVR College of Engineering 2 [email protected]
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
Database Management. Technology Briefing. Modern organizations are said to be drowning in data but starving for information p.
Technology Briefing Database Management Modern organizations are said to be drowning in data but starving for information p. 509 TB3-1 Learning Objectives TB3-2 Learning Objectives TB3-3 Database Management
An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
<Insert Picture Here> Oracle Retail Data Model Overview
Oracle Retail Data Model Overview The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into
DATABASES AND DATABASE USERS
1 DATABASES AND DATABASE USERS CHAPTER 1 Acknowledgement: Most slides for this course have been adapted from slides made available by Addison Wesley to accompany Elmasri and Navathe s textbook. 2 LECTURE
Moving Large Data at a Blinding Speed for Critical Business Intelligence. A competitive advantage
Moving Large Data at a Blinding Speed for Critical Business Intelligence A competitive advantage Intelligent Data In Real Time How do you detect and stop a Money Laundering transaction just about to take
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
Databases in Organizations
The following is an excerpt from a draft chapter of a new enterprise architecture text book that is currently under development entitled Enterprise Architecture: Principles and Practice by Brian Cameron
CHAPTER 4: BUSINESS ANALYTICS
Chapter 4: Business Analytics CHAPTER 4: BUSINESS ANALYTICS Objectives Introduction The objectives are: Describe Business Analytics Explain the terminology associated with Business Analytics Describe the
MDM and Data Warehousing Complement Each Other
Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There
3/13/2008. Financial Analytics Operational Analytics Master Data Management. March 10, 2008. Looks like you ve got all the data what s the holdup?
Financial Analytics Operational Analytics Master Data Management Master Data Management Adam Hanson Principal, Profisee Group March 10, 2008 Looks like you ve got all the data what s the holdup? 1 MDM
Delivering Business Intelligence With Microsoft SQL Server 2005 or 2008 HDT922 Five Days
or 2008 Five Days Prerequisites Students should have experience with any relational database management system as well as experience with data warehouses and star schemas. It would be helpful if students
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
Release: 1. ICADBS601A Build a data warehouse
Release: 1 ICADBS601A Build a data warehouse ICADBS601A Build a data warehouse Modification History Release Release 1 Comments This Unit first released with ICA11 Information and Communications Technology
Building an Advancement Data Warehouse. created every year according to a study. Data Facilitates all Advancement Activities
Building an Advancement Data Warehouse Strategy, Planning, Implementation 10 18 bytes of data being created every year according to a study. Challenge for a data warehouse project is to turn data into
Chapter 7: Data Mining
Chapter 7: Data Mining Overview Topics discussed: The Need for Data Mining and Business Value The Data Mining Process: Define Business Objectives Get Raw Data Identify Relevant Predictive Variables Gain
BENEFITS OF AUTOMATING DATA WAREHOUSING
BENEFITS OF AUTOMATING DATA WAREHOUSING Introduction...2 The Process...2 The Problem...2 The Solution...2 Benefits...2 Background...3 Automating the Data Warehouse with UC4 Workload Automation Suite...3
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
FIFTH EDITION. Oracle Essentials. Rick Greenwald, Robert Stackowiak, and. Jonathan Stern O'REILLY" Tokyo. Koln Sebastopol. Cambridge Farnham.
FIFTH EDITION Oracle Essentials Rick Greenwald, Robert Stackowiak, and Jonathan Stern O'REILLY" Beijing Cambridge Farnham Koln Sebastopol Tokyo _ Table of Contents Preface xiii 1. Introducing Oracle 1
Oracle BI Application: Demonstrating the Functionality & Ease of use. Geoffrey Francis Naailah Gora
Oracle BI Application: Demonstrating the Functionality & Ease of use Geoffrey Francis Naailah Gora Agenda Oracle BI & BI Apps Overview Demo: Procurement & Spend Analytics Creating a ad-hoc report Copyright
HROUG. The future of Business Intelligence & Enterprise Performance Management. Rovinj October 18, 2007
HROUG Rovinj October 18, 2007 The future of Business Intelligence & Enterprise Performance Management Alexander Meixner Sales Executive, BI/EPM, South East Europe Oracle s Product
Demystified CONTENTS Acknowledgments xvii Introduction xix CHAPTER 1 Database Fundamentals CHAPTER 2 Exploring Relational Database Components
Acknowledgments xvii Introduction xix CHAPTER 1 Database Fundamentals 1 Properties of a Database 1 The Database Management System (DBMS) 2 Layers of Data Abstraction 3 Physical Data Independence 5 Logical
... Foreword... 17. ... Preface... 19
... Foreword... 17... Preface... 19 PART I... SAP's Enterprise Information Management Strategy and Portfolio... 25 1... Introducing Enterprise Information Management... 27 1.1... Defining Enterprise Information
Chapter 6 Basics of Data Integration. Fundamentals of Business Analytics RN Prasad and Seema Acharya
Chapter 6 Basics of Data Integration Fundamentals of Business Analytics Learning Objectives and Learning Outcomes Learning Objectives 1. Concepts of data integration 2. Needs and advantages of using data
David M. Kroenke and David J. Auer Database Processing 11 th Edition Fundamentals, Design, and Implementation. Chapter Objectives
David M. Kroenke and David J. Auer Database Processing 11 th Edition Fundamentals, Design, and Implementation Chapter One: Introduction 1-1 Chapter Objectives To understand the nature and characteristics
資 料 倉 儲 (Data Warehousing)
商 業 智 慧 實 務 Prac&ces of Business Intelligence Tamkang University 資 料 倉 儲 (Data Warehousing) 1022BI04 MI4 Wed, 9,10 (16:10-18:00) (B113) Min-Yuh Day 戴 敏 育 Assistant Professor 專 任 助 理 教 授 Dept. of Information
CHAPTER 5. Data and Knowledge Management
CHAPTER 5 Data and Knowledge Management CHAPTER OUTLINE 5.1 Managing Data 5.2 The Database Approach 5.3 Database Management Systems 5.4 Data Warehouses and Data Marts 5.5 Knowledge Management LEARNING
Implementing Data Models and Reports with Microsoft SQL Server
Course 20466C: Implementing Data Models and Reports with Microsoft SQL Server Course Details Course Outline Module 1: Introduction to Business Intelligence and Data Modeling As a SQL Server database professional,
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services Length: Delivery Method: 3 Days Instructor-led (classroom) About this Course Elements of this syllabus are subject
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The
Chapter 1: Introduction. Database Management System (DBMS) University Database Example
This image cannot currently be displayed. Chapter 1: Introduction Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Database Management System (DBMS) DBMS contains information
Module 3: File and database organization
Module 3: File and database organization Overview This module introduces the basic concepts of files and databases, their components, and organization. Database characteristics, advantages, and disadvantages
SAS Financial Intelligence. What s new. Copyright 2006, SAS Institute Inc. All rights reserved.
SAS Financial Intelligence What s new Copyright 2006, SAS Institute Inc. All rights reserved. SAS Strategic Performance Management Gokhan Sevik Product Manager SAS EMEA Copyright 2006, SAS Institute Inc.
DBMS / Business Intelligence, SQL Server
DBMS / Business Intelligence, SQL Server Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the needs of IT professionals.
ETL-EXTRACT, TRANSFORM & LOAD TESTING
ETL-EXTRACT, TRANSFORM & LOAD TESTING Rajesh Popli Manager (Quality), Nagarro Software Pvt. Ltd., Gurgaon, INDIA [email protected] ABSTRACT Data is most important part in any organization. Data
A WHITE PAPER By Silwood Technology Limited
A WHITE PAPER By Silwood Technology Limited Using Safyr to facilitate metadata transparency and communication in major Enterprise Applications Executive Summary Enterprise systems packages such as SAP,
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006 What is a Data Warehouse? A data warehouse is a subject-oriented, integrated, time-varying, non-volatile
THE OPEN UNIVERSITY OF TANZANIA FACULTY OF SCIENCE TECHNOLOGY AND ENVIRONMENTAL STUDIES BACHELOR OF SIENCE IN INFORMATION AND COMMUNICATION TECHNOLOGY
THE OPEN UNIVERSITY OF TANZANIA FACULTY OF SCIENCE TECHNOLOGY AND ENVIRONMENTAL STUDIES BACHELOR OF SIENCE IN INFORMATION AND COMMUNICATION TECHNOLOGY OIT 217.DATABASE CONCEPTS AND DESIGN COURSE OUTLINE
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Top Data Management Terms to Know Fifteen essential definitions you need to know
Top Data Management Terms to Know Fifteen essential definitions you need to know We know it s not always easy to keep up-to-date with the latest data management terms. That s why we have put together the
Hexaware E-book on Predictive Analytics
Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,
JOURNAL OF OBJECT TECHNOLOGY
JOURNAL OF OBJECT TECHNOLOGY Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2008 Vol. 7, No. 8, November-December 2008 What s Your Information Agenda? Mahesh H. Dodani,
Ursuline College Accelerated Program
Ursuline College Accelerated Program CRITICAL INFORMATION! DO NOT SKIP THIS LINK BELOW... BEFORE PROCEEDING TO READ THE UCAP MODULE, YOU ARE EXPECTED TO READ AND ADHERE TO ALL UCAP POLICY INFORMATION CONTAINED
Welcome To Today s Webinar: Dynamics Insights SM for Microsoft Dynamics AX
Welcome To Today s Webinar: Dynamics Insights SM for Microsoft Dynamics AX The presentation will begin in a few moments Participants will receive an email within 3 business days with access to their certificate
Oracle Data Integrator: Administration and Development
Oracle Data Integrator: Administration and Development What you will learn: In this course you will get an overview of the Active Integration Platform Architecture, and a complete-walk through of the steps
College of Engineering, Technology, and Computer Science
College of Engineering, Technology, and Computer Science Design and Implementation of Cloud-based Data Warehousing In partial fulfillment of the requirements for the Degree of Master of Science in Technology
DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT
Scientific Bulletin Economic Sciences, Vol. 9 (15) - Information technology - DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT Associate Professor, Ph.D. Emil BURTESCU University of Pitesti,
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
Business Intelligence, Analytics & Reporting: Glossary of Terms
Business Intelligence, Analytics & Reporting: Glossary of Terms A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ad-hoc analytics Ad-hoc analytics is the process by which a user can create a new report
