Foundations of Business Intelligence: Databases and Information Management
|
|
|
- Hilda Ray
- 10 years ago
- Views:
Transcription
1 Foundations of Business Intelligence: Databases and Information Management Wienand Omta Fabiano Dalpiaz 1 drs. ing. Wienand Omta
2 Learning Objectives Describe how the problems of managing data resources in a traditional file environment are solved by a database management system. Describe the capabilities and value of a database management system. Apply important database design principles. Evaluate tools and technologies for accessing information from databases to improve business performance and decision making. Assess the role of information policy, data administration, and data quality assurance in the management of firm s data resources. 2
3 Banco de Credito Del Peru Banks on Better Data Management Problem: Multiple outdated systems, duplicate, inconsistent data Solutions: Replace heterogeneous legacy systems with single repository for business information SAP integrated software suite included modules for enterprise resource planning, and a data warehouse to support enterprise-wide tracking, reporting, and analysis Demonstrates IT s role in successful data management Illustrates digital technology s ability to lower costs while improving performance 3
4 Organizing Data in a Traditional File Environment File organization concepts Database: Group of related files File: Group of records of same type Record: Group of related fields Field: Group of characters as word(s) or number Describes an entity (person, place, thing on which we store information) Attribute: Each characteristic, or quality, describing entity Example: Attributes DATE or GRADE belong to entity COURSE 4
5 A computer system organizes data in a hierarchy that starts with the bit, which represents either a 0 or a 1. Bits can be grouped to form a byte to represent one character, number, or symbol. Bytes can be grouped to form a field, and related fields can be grouped to form a record. Related records can be collected to form a file, and related files can be organized into a database. The data hierarchy 5
6 Organizing Data in a Traditional File Environment Problems with the traditional file environment (files maintained separately by different departments) Data redundancy: Presence of duplicate data in multiple files Data inconsistency: Same attribute has different values Program-data dependence: When changes in program requires changes to data accessed by program Lack of flexibility Poor security Lack of data sharing and availability 6
7 Traditional File Processing The use of a traditional approach to file processing encourages each functional area in a corporation to develop specialized applications. Each application requires a unique data file that is likely to be a subset of the master file. These subsets of the master file lead to data redundancy and inconsistency, processing inflexibility, and wasted storage resources. 7
8 The Database Approach to Data Management Database Serves many applications by centralizing data and controlling redundant data Database management system (DBMS) Interfaces between applications and physical data files Separates logical and physical views of data Solves problems of traditional file environment Controls redundancy Eliminates inconsistency Uncouples programs and data Enables organization to central manage data and data security 8
9 Human Resources database with multiple views FIGURE 6-3 A single human resources database provides many different views of data, depending on the information requirements of the user. Illustrated here are two possible views, one of interest to a benefits specialist and one of interest to a member of the company s payroll department. 9
10 The Database Approach to Data Management Relational DBMS Represent data as two-dimensional tables Each table contains data on entity and attributes Table: grid of columns and rows Rows (tuples): Records for different entities Fields (columns): Represents attribute for entity Key field: Field used to uniquely identify each record Primary key: Field in table used for key fields Foreign key: Primary key used in second table as look-up field to identify records from original table 10
11 Relational Database Tables A relational database organizes data in the form of two-dimensional tables. Illustrated here are tables for the entities SUPPLIER and PART showing how they represent each entity and its attributes. Supplier Number is a primary key for the SUPPLIER table and a foreign key for the PART table. 11
12 The Database Approach to Data Management Operations of a Relational DBMS Three basic operations used to develop useful sets of data SELECT: Creates subset of data of all records that meet stated criteria JOIN: Combines relational tables to provide user with more information than available in individual tables PROJECT: Creates subset of columns in table, creating tables with only the information specified 12
13 The three basic operations for a relational DBMS The select, join, and project operations enable data from two different tables to be combined and only selected attributes to be displayed. 13
14 The Database Approach to Data Management Non-relational databases: NoSQL More flexible data model Data sets stored across distributed machines Easier to scale Handle large volumes of unstructured and structured data (Web, social media, graphics) Databases in the cloud Typically, less functionality than on-premises DBs Amazon Relational Database Service, Microsoft SQL Azure Private clouds 14
15 MS Access dictionary features FIGURE 6-6 Microsoft Access has a rudimentary data dictionary capability that displays information about the size, format, and other characteristics of each field in a database. Displayed here is the information maintained in the SUPPLIER table. The small key icon to the left of Supplier_Number indicates that it is a key field. 15
16 Example of an SQL query Illustrated here are the SQL statements for a query to select suppliers for parts 137 or
17 An Access Query FIGURE 6-8 Illustrated here is how the previous query would be constructed using Microsoft Access query building tools. It shows the tables, fields, and selection criteria used for the query. 17
18 The Database Approach to Data Management Designing Databases Conceptual (logical) design: abstract model from business perspective Physical design: How database is arranged on direct-access storage devices Design process identifies: Relationships among data elements, redundant database elements Most efficient way to group data elements to meet business requirements, needs of application programs Normalization Streamlining complex groupings of data to minimize redundant data elements and awkward many-to-many relationships 18
19 AN UNNORMALIZED RELATION FOR ORDER An unnormalized relation contains repeating groups. For example, there can be many parts and suppliers for each order. There is only a one-to-one correspondence between Order_Number and Order_Date. 19
20 Normalized tables created from order After normalization, the original relation ORDER has been broken down into four smaller relations. The relation ORDER is left with only two attributes and the relation LINE_ITEM has a combined, or concatenated, key consisting of Order_Number and Part_Number. 20
21 The Database Approach to Data Management Referential integrity rules Used by RDMS to ensure relationships between tables remain consistent Entity-relationship diagram Used by database designers to document the data model Illustrates relationships between entities Caution: If a business doesn t get their data model right, the system won t be able to serve business well 21
22 An Entity-Relationship Diagram (ERD) This diagram shows the relationships between the entities SUPPLIER, PART, LINE_ITEM 22
23 Using Databases to Improve Business Performance and Decision Making Big data Massive sets of unstructured/semi-structured data from Web traffic, social media, sensors, and so on Petabytes, exabytes of data Volumes too great for typical DBMS Can reveal more patterns and anomalies 23
24 Using Databases to Improve Business Performance and Decision Making Business intelligence infrastructure Today includes an array of tools for separate systems, and big data Contemporary tools: Data warehouses Data marts In-memory computing Analytical platforms 24
25 Using Databases to Improve Business Performance and Decision Making Data warehouse: Stores current and historical data from many core operational transaction systems Consolidates and standardizes information for use across enterprise, but data cannot be altered Provides analysis and reporting tools Data marts: Subset of data warehouse Summarized or focused portion of data for use by specific population of users Typically focuses on single subject or line of business 25
26 COMPONENTS OF A DATA WAREHOUSE A contemporary business intelligence infrastructure features capabilities and tools to manage and analyze large quantities and different types of data from multiple sources. Easy-to-use query and reporting tools for casual business users and more sophisticated analytical toolsets for power users are included. 26
27 Using Databases to Improve Business Performance and Decision Making Hadoop Enables distributed parallel processing of big data across inexpensive computers Key services Hadoop Distributed File System (HDFS): data storage MapReduce: breaks data into clusters for work Hbase: NoSQL database Used by Facebook, Yahoo, NextBio 27
28 Using Databases to Improve Business Performance and Decision Making In-memory computing Used in big data analysis Use computers main memory (RAM) for data storage to avoid delays in retrieving data from disk storage Can reduce hours/days of processing to seconds Requires optimized hardware Analytic platforms High-speed platforms using both relational and non-relational tools optimized for large datasets 28
29 Using Databases to Improve Business Performance and Decision Making Analytical tools: Relationships, patterns, trends Tools for consolidating, analyzing, and providing access to vast amounts of data to help users make better business decisions Multidimensional data analysis (OLAP) Data mining Text mining Web mining 29
30 Using Databases to Improve Business Performance and Decision Making Online analytical processing (OLAP) Supports multidimensional data analysis Viewing data using multiple dimensions Each aspect of information (product, pricing, cost, region, time period) is different dimension Example: How many washers sold in East in June compared with other regions? OLAP enables rapid, online answers to ad hoc queries 30
31 Multidimensional data model The view that is showing is product versus region. If you rotate the cube 90 degrees, the face that will show product versus actual and projected sales. If you rotate the cube 90 degrees again, you will see region versus actual and projected sales. Other views are possible. 31
32 Using Databases to Improve Business Performance and Decision Making Data mining: Finds hidden patterns, relationships in datasets Example: customer buying patterns Infers rules to predict future behavior Types of information obtainable from data mining: Associations Sequences Classification Clustering Forecasting 32
33 Using Databases to Improve Business Performance and Decision Making Text mining Extracts key elements from large unstructured data sets Stored s Call center transcripts Legal cases Patent descriptions Service reports, and so on Sentiment analysis software Mines s, blogs, social media to detect opinions 33
34 Using Databases to Improve Business Performance and Decision Making Web mining Discovery and analysis of useful patterns and information from Web Understand customer behavior Evaluate effectiveness of Web site, and so on Web content mining Mines content of Web pages Web structure mining Analyzes links to and from Web page Web usage mining Mines user interaction data recorded by Web server 34
35 Big Data, Big Rewards Describe the kinds of big data collected by the organizations described in this case. List and describe the business intelligence technologies described in this case. Why did the companies described in this case need to maintain and analyze big data? What business benefits did they obtain? Identify three decisions that were improved by using big data. What kinds of organizations are most likely to need big data management and analytical tools? 35
36 Using Databases to Improve Business Performance and Decision Making Databases and the Web Many companies use the Web to make some internal databases available to customers or partners Typical configuration includes: Web server Application server/middleware/cgi scripts Database server (hosting DBMS) Advantages of using Web for database access: Ease of use of browser software Web interface requires few or no changes to database Inexpensive to add Web interface to system 36
37 Linking internal databases to the web Users access an organization s internal database through the Web using their desktop PCs and Web browser software. 37
38 Managing Data Resources Establishing an information policy Firm s rules, procedures, roles for sharing, managing, standardizing data Data administration Establishes policies and procedures to manage data Data governance Deals with policies and processes for managing availability, usability, integrity, and security of data, especially regarding government regulations Database administration Creating and maintaining database 38
39 Managing Data Resources Ensuring data quality More than 25% of critical data in Fortune 1000 company databases are inaccurate or incomplete Redundant data Inconsistent data Faulty input Before new database in place, need to: Identify and correct faulty data Establish better routines for editing data once database in operation 39
40 Managing Data Resources Data quality audit: Structured survey of the accuracy and level of completeness of the data in an information system Survey samples from data files, or Survey end users for perceptions of quality Data cleansing Software to detect and correct data that are incorrect, incomplete, improperly formatted, or redundant Enforces consistency among different sets of data from separate information systems 40
41 41 Questions
Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem:
Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Chapter 6 Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
Chapter 6. Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives Describe how the problems of managing data resources in a traditional file environment are solved
Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management 6.1 2010 by Prentice Hall LEARNING OBJECTIVES Describe how the problems of managing data resources in a traditional
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management
Course 103402 MIS. Foundations of Business Intelligence
Oman College of Management and Technology Course 103402 MIS Topic 5 Foundations of Business Intelligence CS/MIS Department Organizing Data in a Traditional File Environment File organization concepts Database:
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
TIM 50 - Business Information Systems
TIM 50 - Business Information Systems Lecture 15 UC Santa Cruz March 1, 2015 The Database Approach to Data Management Database: Collection of related files containing records on people, places, or things.
Databases and Information Management
Databases and Information Management Reading: Laudon & Laudon chapter 5 Additional Reading: Brien & Marakas chapter 3-4 COMP 5131 1 Outline Database Approach to Data Management Database Management Systems
INFO 1400. Koffka Khan. Tutorial 6
INFO 1400 Koffka Khan Tutorial 6 Running Case Assignment: Improving Decision Making: Redesigning the Customer Database Dirt Bikes U.S.A. sells primarily through its distributors. It maintains a small customer
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 See Markers-ORDER-DB Logically Related Tables Relational Approach: Physically Related Tables: The Relationship Screen
Foundations of Business Intelligence: Databases and Information Management
Chapter 6 Foundations of Business Intelligence: Databases and Information Management LEARNING OBJECTIVESS After reading this chapter, you will be able to answer the following questions: 1. What are the
Information Systems Roles in the Value Chain Customer Relationship Management (CRM) Systems 09/11/2015. ACS 3907 E-Commerce
ACS 3907 E-Commerce Instructor: Kerry Augustine November 10 th 2015 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) SYSTEMS Managing materials, services and information from suppliers through to the organization
ACS 3907 E-Commerce. Instructor: Kerry Augustine November 10 th 2015. Bowen Hui, Beyond the Cube Consulting Services Ltd.
ACS 3907 E-Commerce Instructor: Kerry Augustine November 10 th 2015 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) SYSTEMS Managing materials, services and information from suppliers through to the organization
Data Hierarchy. Traditional File based Approach. Hierarchy of Data for a Computer-Based File
Management Information Systems Data and Knowledge Management Dr. Shankar Sundaresan (Adapted from Introduction to IS, Rainer and Turban) LEARNING OBJECTIVES Recognize the importance of data, issues involved
When to consider OLAP?
When to consider OLAP? Author: Prakash Kewalramani Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 03/10/08 Email: [email protected] Abstract: Do you need an OLAP
Technology in Action. Alan Evans Kendall Martin Mary Anne Poatsy. Eleventh Edition. Copyright 2015 Pearson Education, Inc.
Copyright 2015 Pearson Education, Inc. Technology in Action Alan Evans Kendall Martin Mary Anne Poatsy Eleventh Edition Copyright 2015 Pearson Education, Inc. Technology in Action Chapter 9 Behind the
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
ACS 3907 E-Commerce. Instructor: Kerry Augustine March 3 rd 2015. Bowen Hui, Beyond the Cube Consulting Services Ltd.
ACS 3907 E-Commerce Instructor: Kerry Augustine March 3 rd 2015 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) SYSTEMS Managing materials, services and information from suppliers through to the organization s
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
ISM 318: Database Systems. Objectives. Database. Dr. Hamid R. Nemati
ISM 318: Database Systems Dr. Hamid R. Nemati Department of Information Systems Operations Management Bryan School of Business Economics Objectives Underst the basics of data databases Underst characteristics
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services Length: Delivery Method: 3 Days Instructor-led (classroom) About this Course Elements of this syllabus are subject
SQL Server 2012 Business Intelligence Boot Camp
SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations
Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.
Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics
SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM
David Chappell SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM A PERSPECTIVE FOR SYSTEMS INTEGRATORS Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Business
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
9.4 Intelligence. SAS Platform. Overview Second Edition. SAS Documentation
SAS Platform Overview Second Edition 9.4 Intelligence SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS 9.4 Intelligence Platform: Overview,
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
CHAPTER 6 DATABASE MANAGEMENT SYSTEMS. Learning Objectives
CHAPTER 6 DATABASE MANAGEMENT SYSTEMS Management Information Systems, 10 th edition, By Raymond McLeod, Jr. and George P. Schell 2007, Prentice Hall, Inc. 1 Learning Objectives Understand the hierarchy
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Top Data Management Terms to Know Fifteen essential definitions you need to know
Top Data Management Terms to Know Fifteen essential definitions you need to know We know it s not always easy to keep up-to-date with the latest data management terms. That s why we have put together the
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
n Assignment 4 n Due Thursday 2/19 n Business paper draft n Due Tuesday 2/24 n Database Assignment 2 posted n Due Thursday 2/26
Class Announcements TIM 50 - Business Information Systems Lecture 14 Instructor: John Musacchio UC Santa Cruz n Assignment 4 n Due Thursday 2/19 n Business paper draft n Due Tuesday 2/24 n Database Assignment
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
Testing 3Vs (Volume, Variety and Velocity) of Big Data
Testing 3Vs (Volume, Variety and Velocity) of Big Data 1 A lot happens in the Digital World in 60 seconds 2 What is Big Data Big Data refers to data sets whose size is beyond the ability of commonly used
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS
WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS Managing and analyzing data in the cloud is just as important as it is anywhere else. To let you do this, Windows Azure provides a range of technologies
BENEFITS OF AUTOMATING DATA WAREHOUSING
BENEFITS OF AUTOMATING DATA WAREHOUSING Introduction...2 The Process...2 The Problem...2 The Solution...2 Benefits...2 Background...3 Automating the Data Warehouse with UC4 Workload Automation Suite...3
Data. Data and database. Aniel Nieves-González. Fall 2015
Data and database Aniel Nieves-González Fall 2015 Data I In the context of information systems, the following definitions are important: 1 Data refers simply to raw facts, i.e., facts obtained by measuring
Chapter 14: Databases and Database Management Systems
15 th Edition Understanding Computers Today and Tomorrow Comprehensive Chapter 14: Databases and Database Management Systems Deborah Morley Charles S. Parker Copyright 2015 Cengage Learning Learning Objectives
Data Integration Checklist
The need for data integration tools exists in every company, small to large. Whether it is extracting data that exists in spreadsheets, packaged applications, databases, sensor networks or social media
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
DATABASE MANAGEMENT SYSTEM
REVIEW ARTICLE DATABASE MANAGEMENT SYSTEM Sweta Singh Assistant Professor, Faculty of Management Studies, BHU, Varanasi, India E-mail: [email protected] ABSTRACT Today, more than at any previous
Microsoft Analytics Platform System. Solution Brief
Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal
TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS
9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence
Module 3: File and database organization
Module 3: File and database organization Overview This module introduces the basic concepts of files and databases, their components, and organization. Database characteristics, advantages, and disadvantages
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
How To Write A Diagram
Data Model ing Essentials Third Edition Graeme C. Simsion and Graham C. Witt MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE
Agile Business Intelligence Data Lake Architecture
Agile Business Intelligence Data Lake Architecture TABLE OF CONTENTS Introduction... 2 Data Lake Architecture... 2 Step 1 Extract From Source Data... 5 Step 2 Register And Catalogue Data Sets... 5 Step
Data Warehousing Concepts
Data Warehousing Concepts JB Software and Consulting Inc 1333 McDermott Drive, Suite 200 Allen, TX 75013. [[[[[ DATA WAREHOUSING What is a Data Warehouse? Decision Support Systems (DSS), provides an analysis
INTRODUCTION TO CASSANDRA
INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open
SQL Server An Overview
SQL Server An Overview SQL Server Microsoft SQL Server is designed to work effectively in a number of environments: As a two-tier or multi-tier client/server database system As a desktop database system
Microsoft SQL Business Intelligence Boot Camp
To register or for more information call our office (208) 898-9036 or email [email protected] Microsoft SQL Business Intelligence Boot Camp 3 classes 1 Week! Business Intelligence is HOT! If
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage If every image made and every word written from the earliest stirring of civilization
TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP
Pythian White Paper TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP ABSTRACT As companies increasingly rely on big data to steer decisions, they also find themselves looking for ways to simplify
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
BIG DATA: BIG CHALLENGE FOR SOFTWARE TESTERS
BIG DATA: BIG CHALLENGE FOR SOFTWARE TESTERS Megha Joshi Assistant Professor, ASM s Institute of Computer Studies, Pune, India Abstract: Industry is struggling to handle voluminous, complex, unstructured
Online Courses. Version 9 Comprehensive Series. What's New Series
Version 9 Comprehensive Series MicroStrategy Distribution Services Online Key Features Distribution Services for End Users Administering Subscriptions in Web Configuring Distribution Services Monitoring
Big Data at Cloud Scale
Big Data at Cloud Scale Pushing the limits of flexible & powerful analytics Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For
Implementing a Data Warehouse with Microsoft SQL Server 2012
Implementing a Data Warehouse with Microsoft SQL Server 2012 Module 1: Introduction to Data Warehousing Describe data warehouse concepts and architecture considerations Considerations for a Data Warehouse
Modernizing Your Data Warehouse for Hadoop
Modernizing Your Data Warehouse for Hadoop Big data. Small data. All data. Audie Wright, DW & Big Data Specialist [email protected] O 425-538-0044, C 303-324-2860 Unlock Insights on Any Data Taking
ETL PROCESS IN DATA WAREHOUSE
ETL PROCESS IN DATA WAREHOUSE OUTLINE ETL : Extraction, Transformation, Loading Capture/Extract Scrub or data cleansing Transform Load and Index ETL OVERVIEW Extraction Transformation Loading ETL ETL is
Course Outline: Course: Implementing a Data Warehouse with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning
Course Outline: Course: Implementing a Data with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning Duration: 5.00 Day(s)/ 40 hrs Overview: This 5-day instructor-led course describes
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
In-Database Analytics
Embedding Analytics in Decision Management Systems In-database analytics offer a powerful tool for embedding advanced analytics in a critical component of IT infrastructure. James Taylor CEO CONTENTS Introducing
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
A Comparative Study on Operational Database, Data Warehouse and Hadoop File System T.Jalaja 1, M.Shailaja 2
RESEARCH ARTICLE A Comparative Study on Operational base, Warehouse Hadoop File System T.Jalaja 1, M.Shailaja 2 1,2 (Department of Computer Science, Osmania University/Vasavi College of Engineering, Hyderabad,
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances
INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
Big Data and Market Surveillance. April 28, 2014
Big Data and Market Surveillance April 28, 2014 Copyright 2014 Scila AB. All rights reserved. Scila AB reserves the right to make changes to the information contained herein without prior notice. No part
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778
Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778 Course Outline Module 1: Introduction to Business Intelligence and Data Modeling This module provides an introduction to Business
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Speeding ETL Processing in Data Warehouses White Paper
Speeding ETL Processing in Data Warehouses White Paper 020607dmxwpADM High-Performance Aggregations and Joins for Faster Data Warehouse Processing Data Processing Challenges... 1 Joins and Aggregates are
Bringing Big Data to People
Bringing Big Data to People Microsoft s modern data platform SQL Server 2014 Analytics Platform System Microsoft Azure HDInsight Data Platform Everyone should have access to the data they need. Process
Achieving Business Value through Big Data Analytics Philip Russom
Achieving Business Value through Big Data Analytics Philip Russom TDWI Research Director for Data Management October 3, 2012 Sponsor 2 Speakers Philip Russom Research Director, Data Management, TDWI Brian
In-memory databases and innovations in Business Intelligence
Database Systems Journal vol. VI, no. 1/2015 59 In-memory databases and innovations in Business Intelligence Ruxandra BĂBEANU, Marian CIOBANU University of Economic Studies, Bucharest, Romania [email protected],
An Architectural Review Of Integrating MicroStrategy With SAP BW
An Architectural Review Of Integrating MicroStrategy With SAP BW Manish Jindal MicroStrategy Principal HCL Objectives To understand how MicroStrategy integrates with SAP BW Discuss various Design Options
Whitepaper: Solution Overview - Breakthrough Insight. Published: March 7, 2012. Applies to: Microsoft SQL Server 2012. Summary:
Whitepaper: Solution Overview - Breakthrough Insight Published: March 7, 2012 Applies to: Microsoft SQL Server 2012 Summary: Today s Business Intelligence (BI) platform must adapt to a whole new scope,
Integrating SAP and non-sap data for comprehensive Business Intelligence
WHITE PAPER Integrating SAP and non-sap data for comprehensive Business Intelligence www.barc.de/en Business Application Research Center 2 Integrating SAP and non-sap data Authors Timm Grosser Senior Analyst
The IBM Cognos Platform
The IBM Cognos Platform Deliver complete, consistent, timely information to all your users, with cost-effective scale Highlights Reach all your information reliably and quickly Deliver a complete, consistent
Forecast of Big Data Trends. Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014
Forecast of Big Data Trends Assoc. Prof. Dr. Thanachart Numnonda Executive Director IMC Institute 3 September 2014 Big Data transforms Business 2 Data created every minute Source http://mashable.com/2012/06/22/data-created-every-minute/
Keywords Big Data, NoSQL, Relational Databases, Decision Making using Big Data, Hadoop
Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Transitioning
