Lida Latifzadeh Masoudipour, Ph.D Infrared (IR) Spectroscopy
|
|
|
- Ambrose Raymond Cook
- 9 years ago
- Views:
Transcription
1 Contents: 1- Introduction 2- Theory of IR Spectroscopy 3- IR Spectrum 4- Applications Lida Latifzadeh Masoudipour, Ph.D Infrared (IR) Spectroscopy 1-Introduction Review: Electromagnetic Radiation Electromagnetic radiation is made of magnetic and electrical field sinusoidal waves, oscillating at the right angle with each other and propagation direction: Properties of light: Light (electromagnetic radiation) has dual wave-particle properties. wave properties are defined as amplitude A the higth of wave, wavelength and frequency v number of waves per second, as shown in the below:
2 Frequency is inversely proportional to wavelength : v = c / c is the speed of light : 3.00 x 10 8 m/s, in m and v in Hertz (Hz) or 1/s particle properties of radiation is defined energy of photon E: E = h v and E = hc / E is energy in J/ photon and h = Plank constant which is x J.s. Mathematical formula of sinusoidal wave: y = A sin (2 v t + y is the electrical filed, A is the maximum value of y (amplitude), t is time, v is frequency in Hertz (Hz) or 1/s and is the phase angle. Electromagnetic Spectrum: Higher frequency and higher energy Radio Frequency Microwave Infrared Visible Ultraviolet X-ray Gamma ray RF IR VIS UV Shortest wavelength m, cm, mm > 700 nm nm < 400 nm < 100 nm <0.1nm IR radiation has the wavelengths greater than 700 nm. IR spectroscopy is based on absorption of IR radiation by a molecule which causes stretching, bending and motion of chemical bond. The absorbed wavenumber v - = 1 / in cm giving wavenumber in
3 cm -1 to identify a particular chemical bond and study the molecular structure. example, = 2500 nm, 1 nm = 10-9 m, 1 cm = 10-2 m, in cm : 2500 nm x (10-9 m / 1nm) x ( 1cm / 10-2 m) = 2.5 x 10-4 cm v - = 1/ (2.5 x 10-4 cm) = 4000 cm -1 For 2-Theory of IR Spectroscopy IR radiation has three regions: IR Region in nm range v - in cm -1 Near Middle x Far 5x Mostly used IR radiation with initial intensity of I o enters through sample. After passing through sample IR radiation is absorbed by sample and the intensity of IR radiation is decreased to I: I o I IR > Sample > I o = initial intensity of IR radiation I = intensity of IR radiation after passing through sample. I < I o Some of the radiation has been absorbed by sample. A = absorbance = log (I o / I) T = transmittance = I / I o A is directly proportional to the concentration of sample. Absorption of IR causes excitation between vibrational levels making different motions of chemical bond :
4 The different motions of chemical bond are shown in the below: Chemical bond is shown like spring. A presents symmetric stretching bond. B presents asymmetric stretching bond. Bond length is changed upon stretching mode. C shows bending mode in plane. D shows bending mode out of plane. Bond angle is changed upon bending mode. Also, you can visit the following web site: A vibrational mode is active in IR if the dipole moment of bond is changed upon vibration: - < A B >
5 Hook s Law: Wavenumber v - is measured in IR spectrum. How the wavenumber is changed? Hook s law is shown in the below; v - = 1 /2 c (k / v - = wavenumber in cm -1 c = speed of light : 3.00 x cm/s k = force constant in dynes/cm which depends on the bond strength. Stronger chemical bond, higher k = reduced mass in g : in a chemical bond: A- B, if the mass of atom A is m A g and mass of B is m B g the reduced mass can be calculated by the following formula: = (m A x m B ) / (m A + m B ) lower reduced mass, higher wavenumber. 3-IR Spectrum The following figure shows a sample of IR spectrum: The vertical axis is percent Transmittance (%T) and the horizontal axis is the wavenumber in cm -1. In the above spectrum the wavenumber at 2994 cm -1 is corresponded to stretching mode of C-H bond. The broad band at 3335 cm -1 is corresponded to O-H which has participated in chemical bond.
6 Characteristic IR Absorption Frequencies of Organic Functional Groups Functional Group Alcohol O-H Type of Vibration (stretch, H- bonded) Characteristic Absorptions (cm-1) Intensity strong, broad O-H (stretch, free) strong, sharp C-O (stretch) strong Alkane C-H stretch strong -C-H bending variable Alkene =C-H stretch medium =C-H bending strong C=C stretch variable Alkyl Halide C-F stretch strong C-Cl stretch strong C-Br stretch strong C-I stretch 500 strong Alkyne C-H stretch 3300 strong,sharp Amine stretch N-H stretch variable, not present in symmetrical alkynes medium (primary amines have two bands; secondary have one band, often very weak) C-N stretch medium-weak N-H bending 1600 medium Aromatic C-H stretch medium C=C stretch medium-weak, multiple bands
7 Analysis of C-H out-of-plane bending can often distinguish substitution patterns Carbonyl Detailed Information on Carbonyl IR C=O stretch strong Ether C-O Nitrile (conjugation moves absorptions to lower wave numbers) stretch ( ) strong CN stretch medium Nitro N-O stretch & strong, two bands IR Absorption Frequencies of Functional Groups Containing a Carbonyl (C=O) Functional Group Carbonyl Type of Vibration Characteristic Absorptions (cm-1) Intensity C=O stretch strong Acid (conjugation moves absorptions to lower wave numbers) C=O stretch strong O-H stretch strong, very broad C-O stretch strong Aldehyde C=O stretch strong =C-H stretch & medium, two peaks Amide C=O stretch strong N-H stretch N-H bending unsubstituted have two bands
8 Anhydride C=O stretch & two bands Ester C=O stretch strong C-O stretch two bands or more Ketone acyclic stretch strong cyclic stretch 3-membered membered membered membered membered strong, -unsaturated stretch strong aryl ketone stretch strong 4- Applications IR spectroscopy is used to identify chemical bonds in a molecule. As a consequence the molecular structure can be studied. IR spectroscopy is used for qualitative analysis to determine the functional groups and molecular structure. Lida Latifzadeh Masoudipour, Ph.D. 2009
Symmetric Stretch: allows molecule to move through space
BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed
Infrared Spectroscopy 紅 外 線 光 譜 儀
Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed
Determining the Structure of an Organic Compound
Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th
Infrared Spectroscopy
Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.
passing through (Y-axis). The peaks are those shown at frequencies when less than
Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine
INFRARED SPECTROSCOPY (IR)
INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages
for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration
! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency
Infrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY
DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022
Organic Chemistry Tenth Edition
Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with
Experiment 11. Infrared Spectroscopy
Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,
MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY
MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples
HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:
HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule
electron does not become part of the compound; one electron goes in but two electrons come out.
Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.
For example: (Example is from page 50 of the Thinkbook)
SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using
CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy
Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:
Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------
Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment
Typical Infrared Absorption Frequencies Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Alkanes 2850-3000 CH 3, CH 2 & CH 2 or 3 bands Alkenes 3020-3100 1630-1680 1900-2000
How to Interpret an IR Spectrum
How to Interpret an IR Spectrum Don t be overwhelmed when you first view IR spectra or this document. We have simplified the interpretation by having you only focus on 4/5 regions of the spectrum. Do not
The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD
TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic
ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION
Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name 1) Which compound would be expected to show intense IR absorption at 3300 cm-1? A) butane B) CH3CH2C CH C)CH3C CCH3 D) but-1-ene 1) 2) Which compound would be expected to show intense IR absorption
UV-Visible Spectroscopy
UV-Visible Spectroscopy UV-Visible Spectroscopy What is UV-Visible Spectroscopy? Molecular spectroscopy that involves study of the interaction of Ultra violet (UV)-Visible radiation with molecules What
where h = 6.62 10-34 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena
How to Quickly Solve Spectrometry Problems
How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid
Determination of Molecular Structure by MOLECULAR SPECTROSCOPY
Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic
CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY REACTIONS: None TECHNIQUES: IR, NMR Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy are
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
13C NMR Spectroscopy
13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number
Ultraviolet Spectroscopy
Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration
0 10 20 30 40 50 60 70 m/z
Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions
Organic Spectroscopy
1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic
E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY
E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able
Application Note AN4
TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4
IR Applied to Isomer Analysis
DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.
Time out states and transitions
Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.
Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked
Solving Spectroscopy Problems
Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
Suggested solutions for Chapter 3
s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and
12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS
552 APTER 12 INTRODUTION TO SPETROSOPY. INFRARED SPETROSOPY AND MASS SPETROMETRY PROBLEM 12.9 Which of the following vibrations should be infrared-active and which should be infrared-inactive (or nearly
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within
Molecular Formula Determination
Molecular Formula Determination Classical Approach Qualitative elemental analysis Quantitative elemental analysis Determination of empirical formula Molecular weight determination Molecular formula determination
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
Molecular Spectroscopy:
: How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Mass Spec - Fragmentation
Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral
Chapter 16: Infrared Spectroscopy
Where relevant, each IR spectrum will include the corresponding molecular structure. Chapter 16: Infrared Spectroscopy 16.1 Why Should I Study This? Spectroscopy is the study of the interaction of energy
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
Group Theory and Chemistry
Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation
Organic Spectroscopy: a Primer
EM 03 rganic Spectroscopy: a Primer INDEX A. Introduction B. Infrared (IR) Spectroscopy 3. Proton Nuclear Magnetic Resonance ( NMR) Spectroscopy A. Introduction The problem of determining the structure
Chapter 5 Organic Spectrometry
Chapter 5 Organic Spectrometry from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected]
18 electron rule : How to count electrons
18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.
Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.
NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the
Waves - Transverse and Longitudinal Waves
Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.
Chapter 5. IR Spectroscopy and Raman Scattering
PDF File: (Click to Down Load): Chapter5.pdf Polymer Analysis = Back to TOC = To Syllabus Chapter 5. IR Spectroscopy and Raman Scattering (Chapter 5 Campbell & White). Bristol University IR Spectroscopy
Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy
Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value
Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida ([email protected])
Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida ([email protected]) The scattering of light may be thought of as the redirection
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria
6. 3 Molecular spectroscopy Spectroscopy in its various forms is a technique with wide applications across many disciplines. From qualitative analysis in toxicology through to quantitative measurements
Upon completion of this lab, the student will be able to:
1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for
The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?
1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
CHAPTER 13 MOLECULAR SPECTROSCOPY
CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation
MAKING SENSE OF ENERGY Electromagnetic Waves
Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group
Lecture 1: Basic Concepts on Absorption and Fluorescence
Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside
Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company
Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy
WAVES AND ELECTROMAGNETIC RADIATION
WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs
Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or
IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1
Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,
Proton Nuclear Magnetic Resonance Spectroscopy
Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Preview of Period 2: Forms of Energy
Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of
13.4 UV/VIS Spectroscopy
13.4 UV/VIS Spectroscopy The spectroscopy which utilizes the ultraviolet (UV) and visible (VIS) range of electromagnetic radiation, is frequently referred to as Electronic Spectroscopy. The term implies
Examples of Uniform EM Plane Waves
Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling
Interaction of Atoms and Electromagnetic Waves
Interaction of Atoms and Electromagnetic Waves Outline - Review: Polarization and Dipoles - Lorentz Oscillator Model of an Atom - Dielectric constant and Refractive index 1 True or False? 1. The dipole
CHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be
Chapter 3. Infrared Spectrophotometry
Chapter 3 Infrared Spectrophotometry n = wavenumbers (cm -1 ) n = The units used on IR spectrum WAVENUMBERS ( n ) 1 l (cm) n = frequency = nc or l = wavelength (cm) c = speed of light c = 3 x 10 10 cm/sec
Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy 11.1 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei behave
Raman spectroscopy Lecture
Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy
8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts
CHAPTER 8 CELL PROCESSES 8.2 Cells and Energy To stay alive, you need a constant supply of energy. You need energy to move, think, grow, and even sleep. Where does that energy come from? It all starts
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models
EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed
Selected Radio Frequency Exposure Limits
ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 50: Non-ionizing Radiation Selected Radio Frequency Exposure Limits Product ID: 94 Revision ID: 1736 Date published: 30 June 2015 Date effective: 30 June 2015
2. Molecular stucture/basic
2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Survival Organic Chemistry Part I: Molecular Models
Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,
Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde
Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne
Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)
L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm
The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Chapter 5 Fourier Transform Infrared Spectroscopy (FTIR)
MAE 649 Microscopy and Spectroscopy of Materials Chapter 5 Fourier Transform Infrared Spectroscopy (FTIR) What is light?-- Electromagnetic Radiation Dual nature of light: Photons as particle: Photons have
