THEMIS: Fairness in Data Stream Processing under Overload
|
|
|
- Junior Watts
- 10 years ago
- Views:
Transcription
1 THEMIS: Fairness in Data Stream Processing under Overload Evangelia Kalyvianaki City University London, UK Marco Fiscato Imperial College London, UK Theodoros Salonidis IBM Research, USA Peter R. Pietzuch Peter Pietzuch Imperial College London, UK Systems Support for Big Data and Social Graphs CTR, King s College London 2014
2 The Puzzle of Big Data Processing Tools Online popular applications rely on a plethora of tools to support users queries. For example: 1. LinkedIn supports [Sigmod13]: a. online data centres à Avatara, Voldermort, Kafka b. offline data centres à Azkaban, Hadoop, Kafka 2. Conviva: 1. Spark, Hadoop, Hive for historical analysis 2. Spark Streaming for real time Data centres run collaboratively multiple different big data processing engines 2
3 The Puzzle of Big Data Real-Time Processing Engines in Data Centres Data Center Twitter Storm cluster cluster SEEP cluster cluster Spark Streaming Apache S4 Queries overload data center resources. How to efficiently allocate resources across clusters/engines? 3
4 Data Shedding a A well-known mechanism technique to handle transient overload conditions Data is to Center discard data [][][] overload conditions is to discard data Twitter Storm overloaded SEEP Spark Streaming overloaded Apache S4 How to control shedding across clusters/engines and queries in a distributed and fair manner? 4
5 Fairness in Data Stream Processing under Overload Key Contributions: 1. SIC processing metric to quantify shedding in a query-agnostic way 2. Use of SIC to pass shedding information among clusters 3. Distributed SIC fairness to address continuous overload Outline: 1. SIC processing quality metric 2. SIC fairness distributed algorithm 3. SIC fairness shedder 4. Evaluation results 5. Future work 5
6 Source Information Content (SIC) Metric measures the contribution of data from sources to results perfect processing degraded processing results 4/61 + 1/ /3 1 11/6 < 3 2/6 1/2 2/6 1/2 1/2 1/2 1/3 1/3 1/3 UDO UDO UDO 1/3 1/3 1/3 sources 1 1/4 1/4 1/4 1/4 6
7 SIC Correlation to Result Correctness mean absolute error AVG gaussian uniform exponential mixed planetlab mean absolute error COUNT gaussian uniform exponential mixed planetlab SIC values 1 mean absolute error MAX 0 gaussian uniform exponential mixed planetlab SIC values 0.4 There is correlation to result correctness and the SIC metric. Stronger 0.2correlation for certain types of queries SIC values 7
8 Fair Shedding for Equalising SIC values each local shedder equalises the SIC values of its own queries global coordination is achieved with local informed shedding Data Center Twitter Storm fair shedder fair shedder SEEP Spark Streaming result and local SIC result and local SIC result and local SIC fair shedder Apache S4 fair shedder 8
9 SIC Fair Shedder operator processing operator threads processing threads input buffer output data output data fair shedder shedder projects the effect of SIC loss at the result query SIC à local decisions for global convergence online cost model estimates the time to process an average tuple à nodes heterogeneity 9
10 Single-Node Fairness least degraded 1 mean Jain's index 1 most fair mean SIC Jain's index most degraded number of quries least fair SIC fair shedder scales gracefully to the number of queries 10
11 Multi-Cluster Fairness most fair SIC fairness random 18 nodes, 2,000 operators mix workload: cov, top-5, avg least fair Equal SIC fairness is better than the random 11
12 Conclusions and Future Work 1. Data shedding to address continuous overload 2. A simple SIC metric to measure source data contribution 3. Global fairness convergence with local informed decisions Future Work: 1. Data shedding for approximate, controlled computing 2. Semantic shedding Thank you! Questions? [email protected] 12
Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect
Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov
An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research
The Big Data Ecosystem at LinkedIn. Presented by Zhongfang Zhuang
The Big Data Ecosystem at LinkedIn Presented by Zhongfang Zhuang Based on the paper The Big Data Ecosystem at LinkedIn, written by Roshan Sumbaly, Jay Kreps, and Sam Shah. The Ecosystems Hadoop Ecosystem
Kafka & Redis for Big Data Solutions
Kafka & Redis for Big Data Solutions Christopher Curtin Head of Technical Research @ChrisCurtin About Me 25+ years in technology Head of Technical Research at Silverpop, an IBM Company (14 + years at Silverpop)
Systems for Fun and Profit
Department of Computing Building Internet-Scale Distributed Systems for Fun and Profit Peter Pietzuch [email protected] Large-Scale Distributed Systems Group http://platypus.doc.ic.ac.uk Peter R. Pietzuch
Building Scalable Big Data Infrastructure Using Open Source Software. Sam William sampd@stumbleupon.
Building Scalable Big Data Infrastructure Using Open Source Software Sam William sampd@stumbleupon. What is StumbleUpon? Help users find content they did not expect to find The best way to discover new
Putting Apache Kafka to Use!
Putting Apache Kafka to Use! Building a Real-time Data Platform for Event Streams! JAY KREPS, CONFLUENT! A Couple of Themes! Theme 1: Rise of Events! Theme 2: Immutability Everywhere! Level! Example! Immutable
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Building a real-time, self-service data analytics ecosystem Greg Arnold, Sr. Director Engineering
Building a real-time, self-service data analytics ecosystem Greg Arnold, Sr. Director Engineering Self Service at scale 6 5 4 3 2 1 ? Relational? MPP? Hadoop? Linkedin data 350M Members 25B 3.5M 4.8B 2M
Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA
Real Time Fraud Detection With Sequence Mining on Big Data Platform Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA Open Source Big Data Eco System Query (NOSQL) : Cassandra,
Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations
Beyond Lambda - how to get from logical to physical Artur Borycki, Director International Technology & Innovations Simplification & Efficiency Teradata believe in the principles of self-service, automation
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
Apache Kafka Your Event Stream Processing Solution
01 0110 0001 01101 Apache Kafka Your Event Stream Processing Solution White Paper www.htcinc.com Contents 1. Introduction... 2 1.1 What are Business Events?... 2 1.2 What is a Business Data Feed?... 2
Big Data Analysis: Apache Storm Perspective
Big Data Analysis: Apache Storm Perspective Muhammad Hussain Iqbal 1, Tariq Rahim Soomro 2 Faculty of Computing, SZABIST Dubai Abstract the boom in the technology has resulted in emergence of new concepts
HiBench Installation. Sunil Raiyani, Jayam Modi
HiBench Installation Sunil Raiyani, Jayam Modi Last Updated: May 23, 2014 CONTENTS Contents 1 Introduction 1 2 Installation 1 3 HiBench Benchmarks[3] 1 3.1 Micro Benchmarks..............................
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Hadoop in the Enterprise
Hadoop in the Enterprise Modern Architecture with Hadoop 2 Jeff Markham Technical Director, APAC Hortonworks Hadoop Wave ONE: Web-scale Batch Apps relative % customers 2006 to 2012 Web-Scale Batch Applications
Systems Engineering II. Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de
Systems Engineering II Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de About me! Since May 2015 2015 2012 Research Group Leader cfaed, TU Dresden PhD Student MPI- SWS Research Intern Microsoft
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn Presented by :- Ishank Kumar Aakash Patel Vishnu Dev Yadav CONTENT Abstract Introduction Related work The Ecosystem Ingress
Oracle Big Data Spatial & Graph Social Network Analysis - Case Study
Oracle Big Data Spatial & Graph Social Network Analysis - Case Study Mark Rittman, CTO, Rittman Mead OTN EMEA Tour, May 2016 [email protected] www.rittmanmead.com @rittmanmead About the Speaker Mark
Stateful Distributed Dataflow Graphs: Imperative Big Data Programming for the Masses
Stateful Distributed Dataflow Graphs: Imperative Big Data Programming for the Masses Peter Pietzuch [email protected] Large-Scale Distributed Systems Group Department of Computing, Imperial College London
The Top 10 7 Hadoop Patterns and Anti-patterns. Alex Holmes @
The Top 10 7 Hadoop Patterns and Anti-patterns Alex Holmes @ whoami Alex Holmes Software engineer Working on distributed systems for many years Hadoop since 2008 @grep_alex grepalex.com what s hadoop...
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
BIG DATA. Using the Lambda Architecture on a Big Data Platform to Improve Mobile Campaign Management. Author: Sandesh Deshmane
BIG DATA Using the Lambda Architecture on a Big Data Platform to Improve Mobile Campaign Management Author: Sandesh Deshmane Executive Summary Growing data volumes and real time decision making requirements
Introducing Storm 1 Core Storm concepts Topology design
Storm Applied brief contents 1 Introducing Storm 1 2 Core Storm concepts 12 3 Topology design 33 4 Creating robust topologies 76 5 Moving from local to remote topologies 102 6 Tuning in Storm 130 7 Resource
Big Data and Industrial Internet
Big Data and Industrial Internet Keijo Heljanko Department of Computer Science and Helsinki Institute for Information Technology HIIT School of Science, Aalto University [email protected] 16.6-2015
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing Eric Charles [http://echarles.net] @echarles Datalayer [http://datalayer.io] @datalayerio FOSDEM 02 Feb 2014 NoSQL DevRoom
BIG DATA ANALYTICS For REAL TIME SYSTEM
BIG DATA ANALYTICS For REAL TIME SYSTEM Where does big data come from? Big Data is often boiled down to three main varieties: Transactional data these include data from invoices, payment orders, storage
Streaming items through a cluster with Spark Streaming
Streaming items through a cluster with Spark Streaming Tathagata TD Das @tathadas CME 323: Distributed Algorithms and Optimization Stanford, May 6, 2015 Who am I? > Project Management Committee (PMC) member
Performance and Energy Efficiency of. Hadoop deployment models
Performance and Energy Efficiency of Hadoop deployment models Contents Review: What is MapReduce Review: What is Hadoop Hadoop Deployment Models Metrics Experiment Results Summary MapReduce Introduced
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
HDP Hadoop From concept to deployment.
HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some
Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce
Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of
NOT IN KANSAS ANY MORE
NOT IN KANSAS ANY MORE How we moved into Big Data Dan Taylor - JDSU Dan Taylor Dan Taylor: An Engineering Manager, Software Developer, data enthusiast and advocate of all things Agile. I m currently lucky
The basic data mining algorithms introduced may be enhanced in a number of ways.
DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
Introduction To Hive
Introduction To Hive How to use Hive in Amazon EC2 CS 341: Project in Mining Massive Data Sets Hyung Jin(Evion) Kim Stanford University References: Cloudera Tutorials, CS345a session slides, Hadoop - The
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Streamdrill: Analyzing Big Data Streams in Realtime
Streamdrill: Analyzing Big Data Streams in Realtime Mikio L. Braun [email protected] @mikiobraun th 6 Realtime Big Data: Sources Finance Gaming Monitoring Advertisment Sensor Networks Social Media
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf Rong Gu,Qianhao Dong 2014/09/05 0. Introduction As we want to have a performance framework for Tachyon, we need to consider two aspects
I Logs. Apache Kafka, Stream Processing, and Real-time Data Jay Kreps
I Logs Apache Kafka, Stream Processing, and Real-time Data Jay Kreps The Plan 1. What is Data Integration? 2. What is Apache Kafka? 3. Logs and Distributed Systems 4. Logs and Data Integration 5. Logs
Ali Ghodsi Head of PM and Engineering Databricks
Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through
Let the data speak to you. Look Who s Peeking at Your Paycheck. Big Data. What is Big Data? The Artemis project: Saving preemies using Big Data
CS535 Big Data W1.A.1 CS535 BIG DATA W1.A.2 Let the data speak to you Medication Adherence Score How likely people are to take their medication, based on: How long people have lived at the same address
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
The Flink Big Data Analytics Platform. Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org
The Flink Big Data Analytics Platform Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org What is Apache Flink? Open Source Started in 2009 by the Berlin-based database research groups In the Apache
Managing large clusters resources
Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth
SQL + NOSQL + NEWSQL + REALTIME FOR INVESTMENT BANKS
Enterprise Data Problems in Investment Banks BigData History and Trend Driven by Google CAP Theorem for Distributed Computer System Open Source Building Blocks: Hadoop, Solr, Storm.. 3548 Hypothetical
Next-Gen Big Data Analytics using the Spark stack
Next-Gen Big Data Analytics using the Spark stack Jason Dai Chief Architect of Big Data Technologies Software and Services Group, Intel Agenda Overview Apache Spark stack Next-gen big data analytics Our
Architectures for massive data management
Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with
Customer Case Study. Sharethrough
Customer Case Study Customer Case Study Benefits Faster prototyping of new applications Easier debugging of complex pipelines Improved overall engineering team productivity Summary offers a robust advertising
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
Load Distribution in Large Scale Network Monitoring Infrastructures
Load Distribution in Large Scale Network Monitoring Infrastructures Josep Sanjuàs-Cuxart, Pere Barlet-Ros, Gianluca Iannaccone, and Josep Solé-Pareta Universitat Politècnica de Catalunya (UPC) {jsanjuas,pbarlet,pareta}@ac.upc.edu
Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications
Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications Liqiang (Eric) Wang, Hong Zhang University of Wyoming Hai Huang IBM T.J. Watson Research Center Background Hadoop: Apache Hadoop
Data Security in Hadoop
Data Security in Hadoop Eric Mizell Director, Solution Engineering Page 1 What is Data Security? Data Security for Hadoop allows you to administer a singular policy for authentication of users, authorize
Wisdom from Crowds of Machines
Wisdom from Crowds of Machines Analytics and Big Data Summit September 19, 2013 Chetan Conikee Irfan Ahmad About Us CloudPhysics' mission is to discover the underlying principles that govern systems behavior
E6895 Advanced Big Data Analytics Lecture 4:! Data Store
E6895 Advanced Big Data Analytics Lecture 4:! Data Store Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and Big Data Analytics,
Big Data Analytics: Challenges, Tools
Big Data Analytics: Challenges, Tools Ms. Ashwini Mandale, Prof.Shriniwas Gadage Abstract The big data have various challenges like heterogeneity, scale, timeliness, complexity, privacy problem. This paper
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
Chapter 5: Stream Processing. Big Data Management and Analytics 193
Chapter 5: Big Data Management and Analytics 193 Today s Lesson Data Streams & Data Stream Management System Data Stream Models Insert-Only Insert-Delete Additive Streaming Methods Sliding Windows & Ageing
CSE-E5430 Scalable Cloud Computing Lecture 11
CSE-E5430 Scalable Cloud Computing Lecture 11 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 30.11-2015 1/24 Distributed Coordination Systems Consensus
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Future Internet Technologies
Future Internet Technologies Big (?) Processing Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer FIT Until Now Architectures -Server SPDY
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
Integrating Apache Spark with an Enterprise Data Warehouse
Integrating Apache Spark with an Enterprise Warehouse Dr. Michael Wurst, IBM Corporation Architect Spark/R/Python base Integration, In-base Analytics Dr. Toni Bollinger, IBM Corporation Senior Software
Data Stream Ingestion & Complex Event Processing Systems for Data Driven Decisions. White Paper. www.htcinc.com
01 0110 0001 01101 Data Stream Ingestion & Complex Event Processing Systems for Data Driven Decisions White Paper www.htcinc.com Contents 1. Introduction... 2 1.1 What are Event Patterns?... 3 2. Stream
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Hadoop2, Spark Big Data, real time, machine learning & use cases. Cédric Carbone Twitter : @carbone
Hadoop2, Spark Big Data, real time, machine learning & use cases Cédric Carbone Twitter : @carbone Agenda Map Reduce Hadoop v1 limits Hadoop v2 and YARN Apache Spark Streaming : Spark vs Storm Machine
HDP Enabling the Modern Data Architecture
HDP Enabling the Modern Data Architecture Herb Cunitz President, Hortonworks Page 1 Hortonworks enables adoption of Apache Hadoop through HDP (Hortonworks Data Platform) Founded in 2011 Original 24 architects,
Apache Flink Next-gen data analysis. Kostas Tzoumas [email protected] @kostas_tzoumas
Apache Flink Next-gen data analysis Kostas Tzoumas [email protected] @kostas_tzoumas What is Flink Project undergoing incubation in the Apache Software Foundation Originating from the Stratosphere research
Comprehensive Analytics on the Hortonworks Data Platform
Comprehensive Analytics on the Hortonworks Data Platform We do Hadoop. Page 1 Page 2 Back to 2005 Page 3 Vertical Scaling Page 4 Vertical Scaling Page 5 Vertical Scaling Page 6 Horizontal Scaling Page
Big Data Readiness. A QuantUniversity Whitepaper. 5 things to know before embarking on your first Big Data project
A QuantUniversity Whitepaper Big Data Readiness 5 things to know before embarking on your first Big Data project By, Sri Krishnamurthy, CFA, CAP Founder www.quantuniversity.com Summary: Interest in Big
Real-time Data Analytics mit Elasticsearch. Bernhard Pflugfelder inovex GmbH
Real-time Data Analytics mit Elasticsearch Bernhard Pflugfelder inovex GmbH Bernhard Pflugfelder Big Data Engineer @ inovex Fields of interest: search analytics big data bi Working with: Lucene Solr Elasticsearch
Practical Hadoop. Security. Bhushan Lakhe
Practical Hadoop Security Bhushan Lakhe Contents J About the Author About the Technical Reviewer Acknowledgments Introduction xiii xv xvii xix Part I: Introducing Hadoop and Its Security 1 Chapter 1: Understanding
LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera
LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera, Politecnico di Milano {tanelli, ardagna, lovera}@elet.polimi.it Outline 2 Reference scenario:
Agenda. Some Examples from Yahoo! Hadoop. Some Examples from Yahoo! Crawling. Cloud (data) management Ahmed Ali-Eldin. First part: Second part:
Cloud (data) management Ahmed Ali-Eldin First part: ZooKeeper (Yahoo!) Agenda A highly available, scalable, distributed, configuration, consensus, group membership, leader election, naming, and coordination
L1: Introduction to Hadoop
L1: Introduction to Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 1, 2014 Today we are going to learn... 1 General
Large-Scale Data Processing
Large-Scale Data Processing Eiko Yoneki [email protected] http://www.cl.cam.ac.uk/~ey204 Systems Research Group University of Cambridge Computer Laboratory 2010s: Big Data Why Big Data now? Increase
Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack
Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack HIGHLIGHTS Real-Time Results Elasticsearch on Cisco UCS enables a deeper
