Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May Santa Clara, CA
|
|
- Marylou Lang
- 4 years ago
- Views:
Transcription
1 Real Time Fraud Detection With Sequence Mining on Big Data Platform Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May Santa Clara, CA
2 Open Source Big Data Eco System Query (NOSQL) : Cassandra, HBase, MongoDB and more Query (SQL) : Hive, Stinger, Impala, Presto, Shark Aggregation Analytic (NOSQL) : Druid, MongoDB Aggregation Analytic (SQL) : Hive, Stinger, Impala, Presto, Shark Advanced Analytic : Hadoop, Spark Real time : Storm, Samza, S4, Spark Streaming
3 Hadoop Power of functional programming and parallel processing join hands in Hadoop Parallel processing framework running on cluster of commodity machines Stateless functional programming because processing of each row of data does not depend upon any other row or any state Divide and conquer. Data gets partitioned and partitions get processed in parallel
4 Storm Clustered framework for scalable real time stream processing Like Hadoop, parallel processing framework runs on cluster of commodity machines Uses a combination of processes and threads for parallelism, unlike Hadoop which uses only processes Unlike 2 processing stages in Hadoop (map and reduce) there can be multiple processing stages defined in a Storm topology.
5 Redis It s a wonderful glue for Big Data eco system Many people think of it as a distributed data structure server Can be used for list, queue, cache etc. Supports master slave replication There is no sharding support
6 Fraud Detection Basics Belongs to the general category of problems known as Outlier Detection i.e., detecting data points that don t follow the trends and patters in the data Two approaches for treating input: 1. focus on instance of data point 2. focus on sequence of data points Two kinds of algorithms : 1. building a model out of data 2. using data directly. Real time fraud detection is only feasible with model based approach. A model is built with batch processing of training data. A real time stream processor uses the model and makes predictions in real time
7 Credit Card Fraud Detection We will use sequence based approach. We will use Hadoop to build a Markov Chain model Storm will process transaction data in real time and will use the Markov Chain model to predict potential fraud in the incoming transaction stream Redis is used for the incoming transaction queue. It s also used as key value store for the Markov model. Fraudulent transaction sequences are written to another Redis queue
8 Why Sequence Based Algorithm The sequence based algorithms are generally powerful. Certain fraudulent activities may not be detectable with instance based algorithms If your bank account is hacked and there are many transactions involving withdrawal of small amount of money, instance based algorithms will fail to detect the fraud However a sequence based algorithm is more likely to detect the fraudulent activities.
9 Architecture
10 Building Markov Chain Model with Hadoop A transaction consists of the triplet (amount spent, whether it includes high price ticket item, time elapsed since the last transaction) Each item in the triplet is categorical and has possible 2 or 3 values. We end up with 18 possible transaction types. Our goal is to build a 18 x 18 state transition probability matrix Input data consists of customer ID, transaction ID and transaction type.
11 Building Markov Chain Model with Hadoop The data is processed through a Map Reduce job to group by customer ID, so that we can have the transaction sequence for each customer. The next Map Reduce job counts the the different state transitions and builds the the 18 x 18 state transition probability matrix We are using the first order Markov model i.e., the probability of a state only depends on the earlier state.
12 Real Time Prediction with Storm Our Storm topology (i.e. job) is very simple, with one spout for ingesting transaction stream from a Redis queue. There is one bolt that does all the processing. The incoming transaction stream is field grouped (i.e., partitioned) by the customer ID, so that each bolt instance processes data for a subset of customers. Each bolt maintains a window of preconfigured size for each user, where it collects the recent n transactions Every time the window gets updated, the bolt calculates certain metric indicative of whether the current transaction sequence is fraudulent
13 Real Time Prediction with Storm There are are various outlier metrics for sequence. The one we are using is called Miss Probability Metric For a transaction state pair in the sequence, it sums all the state transition probabilities except when the target state is the second state of the pair. The process is repeated for all pair in the sequence and all probabilities are summed. If the final sum exceeds some predefined threshold, the transaction sequence is deemed fraudulent. The transaction sequence is written to a Redis queue
14 Sequence Outlier Metric The metric we have used reflects the probability of the transaction sequence in the window. Higher the metric, lower the probability of the transaction sequence. Lower the probability of the transaction sequence, higher the likelihood of the transaction sequence being an outlier i.e., fraudulent. The size of the window holding the current transactions is an important factor. Smaller the time window more locally sensitive the result Proper choice of the metric threshold is critical. A smaller value will cause more false positives and a larger value will cause more false negatives. Since false negatives are costlier, it s more conservative to choose a smaller threshold value
15 Some Storm Limitations Storm guarantees at least once message processing semantics. Some messages may be processed twice. Impact of this is not too serious in this case. Storm does not provide any state management features. We were doing state full processing inside the storm bolt with recent transactions stored in an in memory buffer. Impact of this could be serious in our case. A Storm node might go down right around when the buffer contains potentially fraudulent transactions.
16 Summing Up We have shown how different components of the Big Data ecosystem can be orchestrated to solve the real time fraud detection problem We have used Hadoop and Storm effectively as a solution platform. However, if I were to start the project today, I would seriously consider Spark and Spark Streaming.
17 Resources For more details, please visit my blog at The implementation is part of my OSS project on github at A survey of different outlier detection algorithms is available in this blog post of mine
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: bdg@qburst.com Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Putting Apache Kafka to Use!
Putting Apache Kafka to Use! Building a Real-time Data Platform for Event Streams! JAY KREPS, CONFLUENT! A Couple of Themes! Theme 1: Rise of Events! Theme 2: Immutability Everywhere! Level! Example! Immutable
Large-Scale Test Mining
Large-Scale Test Mining SIAM Conference on Data Mining Text Mining 2010 Alan Ratner Northrop Grumman Information Systems NORTHROP GRUMMAN PRIVATE / PROPRIETARY LEVEL I Aim Identify topic and language/script/coding
Real-time Big Data Analytics with Storm
Ron Bodkin Founder & CEO, Think Big June 2013 Real-time Big Data Analytics with Storm Leading Provider of Data Science and Engineering Services Accelerating Your Time to Value IMAGINE Strategy and Roadmap
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
GigaSpaces Real-Time Analytics for Big Data
GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and
extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010
System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached
Data Services Advisory
Data Services Advisory Modern Datastores An Introduction Created by: Strategy and Transformation Services Modified Date: 8/27/2014 Classification: DRAFT SAFE HARBOR STATEMENT This presentation contains
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through
Streaming items through a cluster with Spark Streaming
Streaming items through a cluster with Spark Streaming Tathagata TD Das @tathadas CME 323: Distributed Algorithms and Optimization Stanford, May 6, 2015 Who am I? > Project Management Committee (PMC) member
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
16.1 MAPREDUCE. For personal use only, not for distribution. 333
For personal use only, not for distribution. 333 16.1 MAPREDUCE Initially designed by the Google labs and used internally by Google, the MAPREDUCE distributed programming model is now promoted by several
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
NOT IN KANSAS ANY MORE
NOT IN KANSAS ANY MORE How we moved into Big Data Dan Taylor - JDSU Dan Taylor Dan Taylor: An Engineering Manager, Software Developer, data enthusiast and advocate of all things Agile. I m currently lucky
Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013
Big Data Use Case How Rackspace is using Private Cloud for Big Data Bryan Thompson May 8th, 2013 Our Big Data Problem Consolidate all monitoring data for reporting and analytical purposes. Every device
INTRODUCTION TO CASSANDRA
INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com Legacy ETL platforms & conventional Data Integration approach Unable to meet latency & data throughput demands of Big Data integration challenges Based
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta iorhian@gmail.com Radu Chilom radu.chilom@gmail.com Buzzwords Berlin - 2015 Big data analytics / machine
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
Kafka & Redis for Big Data Solutions
Kafka & Redis for Big Data Solutions Christopher Curtin Head of Technical Research @ChrisCurtin About Me 25+ years in technology Head of Technical Research at Silverpop, an IBM Company (14 + years at Silverpop)
Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic
Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services
TRAINING PROGRAM ON BIGDATA/HADOOP
Course: Training on Bigdata/Hadoop with Hands-on Course Duration / Dates / Time: 4 Days / 24th - 27th June 2015 / 9:30-17:30 Hrs Venue: Eagle Photonics Pvt Ltd First Floor, Plot No 31, Sector 19C, Vashi,
Firebird meets NoSQL (Apache HBase) Case Study
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
Dell* In-Memory Appliance for Cloudera* Enterprise
Built with Intel Dell* In-Memory Appliance for Cloudera* Enterprise Find out what faster big data analytics can do for your business The need for speed in all things related to big data is an enormous
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing
Evaluating NoSQL for Enterprise Applications Dirk Bartels VP Strategy & Marketing Agenda The Real Time Enterprise The Data Gold Rush Managing The Data Tsunami Analytics and Data Case Studies Where to go
Hadoop Beyond Hype: Complex Adaptive Systems Conference Nov 16, 2012. Viswa Sharma Solutions Architect Tata Consultancy Services
Hadoop Beyond Hype: Complex Adaptive Systems Conference Nov 16, 2012 Viswa Sharma Solutions Architect Tata Consultancy Services 1 Agenda What is Hadoop Why Hadoop? The Net Generation is here Sizing the
Hadoop in the Enterprise
Hadoop in the Enterprise Modern Architecture with Hadoop 2 Jeff Markham Technical Director, APAC Hortonworks Hadoop Wave ONE: Web-scale Batch Apps relative % customers 2006 to 2012 Web-Scale Batch Applications
Time-Series Databases and Machine Learning
Time-Series Databases and Machine Learning Jimmy Bates November 2017 1 Top-Ranked Hadoop 1 3 5 7 Read Write File System World Record Performance High Availability Enterprise-grade Security Distribution
Enterprise Operational SQL on Hadoop Trafodion Overview
Enterprise Operational SQL on Hadoop Trafodion Overview Rohit Jain Distinguished & Chief Technologist Strategic & Emerging Technologies Enterprise Database Solutions Copyright 2012 Hewlett-Packard Development
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
Testing 3Vs (Volume, Variety and Velocity) of Big Data
Testing 3Vs (Volume, Variety and Velocity) of Big Data 1 A lot happens in the Digital World in 60 seconds 2 What is Big Data Big Data refers to data sets whose size is beyond the ability of commonly used
Architecting Open source solutions on Azure. Nicholas Dritsas Senior Director, Microsoft Singapore
Learn. Connect. Explore. Architecting Open source solutions on Azure Nicholas Dritsas Senior Director, Microsoft Singapore Agenda Developing OSS Apps on Azure Customer case with OSS Apps Hadoop on Azure
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Big Data Visualization. Apache Spark and Zeppelin
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
FAQs. This material is built based on. Lambda Architecture. Scaling with a queue. 8/27/2015 Sangmi Pallickara
CS535 Big Data - Fall 2015 W1.B.1 CS535 Big Data - Fall 2015 W1.B.2 CS535 BIG DATA FAQs Wait list Term project topics PART 0. INTRODUCTION 2. A PARADIGM FOR BIG DATA Sangmi Lee Pallickara Computer Science,
Oracle Database 12c Plug In. Switch On. Get SMART.
Oracle Database 12c Plug In. Switch On. Get SMART. Duncan Harvey Head of Core Technology, Oracle EMEA March 2015 Safe Harbor Statement The following is intended to outline our general product direction.
Unified Big Data Analytics Pipeline. 连 城 lian@databricks.com
Unified Big Data Analytics Pipeline 连 城 lian@databricks.com What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
Upcoming Announcements
Enterprise Hadoop Enterprise Hadoop Jeff Markham Technical Director, APAC jmarkham@hortonworks.com Page 1 Upcoming Announcements April 2 Hortonworks Platform 2.1 A continued focus on innovation within
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES AWS GLOBAL INFRASTRUCTURE 10 Regions 25 Availability Zones 51 Edge locations WHAT
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Introduction to Big Data Training
Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies kalpak@clogeny.com 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Using Data Mining and Machine Learning in Retail
Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune
Infrastructures for big data
Infrastructures for big data Rasmus Pagh 1 Today s lecture Three technologies for handling big data: MapReduce (Hadoop) BigTable (and descendants) Data stream algorithms Alternatives to (some uses of)
Customized Report- Big Data
GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
[Hadoop, Storm and Couchbase: Faster Big Data]
[Hadoop, Storm and Couchbase: Faster Big Data] With over 8,500 clients, LivePerson is the global leader in intelligent online customer engagement. With an increasing amount of agent/customer engagements,
Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel
Big Data and Analytics: Getting Started with ArcGIS Mike Park Erik Hoel Agenda Overview of big data Distributed computation User experience Data management Big data What is it? Big Data is a loosely defined
ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA
ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call
Data Stream Algorithms in Storm and R. Radek Maciaszek
Data Stream Algorithms in Storm and R Radek Maciaszek Who Am I? l Radek Maciaszek l l l l l l Consul9ng at DataMine Lab (www.dataminelab.com) - Data mining, business intelligence and data warehouse consultancy.
Big Data Management. Big Data Management. (BDM) Autumn 2013. Povl Koch September 16, 2013 15-09-2013 1
Big Data Management Big Data Management (BDM) Autumn 2013 Povl Koch September 16, 2013 15-09-2013 1 Overview Today s program 1. Little more practical details about this course 2. Chapter 7 in NoSQL Distilled
III Big Data Technologies
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Big Data: A Storage Systems Perspective Muthukumar Murugan Ph.D. HP Storage Division
Big Data: A Storage Systems Perspective Muthukumar Murugan Ph.D. HP Storage Division In this talk Big data storage: Current trends Issues with current storage options Evolution of storage to support big
Embedded inside the database. No need for Hadoop or customcode. True real-time analytics done per transaction and in aggregate. On-the-fly linking IP
Operates more like a search engine than a database Scoring and ranking IP allows for fuzzy searching Best-result candidate sets returned Contextual analytics to correctly disambiguate entities Embedded
In-Stream Big Data Processing
In-Stream Big Data Processing The shortcomings and drawbacks of batch-oriented data processing were widely recognized by the Big Data community quite a long time ago. It became clear that realtime query
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island
Big Data Principles and best practices of scalable real-time data systems NATHAN MARZ JAMES WARREN II MANNING Shelter Island contents preface xiii acknowledgments xv about this book xviii ~1 Anew paradigm
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
From Dolphins to Elephants: Real-Time MySQL to Hadoop Replication with Tungsten
From Dolphins to Elephants: Real-Time MySQL to Hadoop Replication with Tungsten MC Brown, Director of Documentation Linas Virbalas, Senior Software Engineer. About Tungsten Replicator Open source drop-in
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
HADOOP. Revised 10/19/2015
HADOOP Revised 10/19/2015 This Page Intentionally Left Blank Table of Contents Hortonworks HDP Developer: Java... 1 Hortonworks HDP Developer: Apache Pig and Hive... 2 Hortonworks HDP Developer: Windows...
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
Real Time Generalized Log File Management and Analysis using Pattern Matching and Dynamic Clustering
Real Time Generalized Log File Management and Analysis using Pattern Matching and Dynamic Clustering Bhupendra Moharil Pranav Tambvekar Chaitanya Gokhale Sumitra Pundlik Assistant Professor, Computer Department
Wisdom from Crowds of Machines
Wisdom from Crowds of Machines Analytics and Big Data Summit September 19, 2013 Chetan Conikee Irfan Ahmad About Us CloudPhysics' mission is to discover the underlying principles that govern systems behavior
HiBench Introduction. Carson Wang (carson.wang@intel.com) Software & Services Group
HiBench Introduction Carson Wang (carson.wang@intel.com) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
The Top 10 7 Hadoop Patterns and Anti-patterns. Alex Holmes @
The Top 10 7 Hadoop Patterns and Anti-patterns Alex Holmes @ whoami Alex Holmes Software engineer Working on distributed systems for many years Hadoop since 2008 @grep_alex grepalex.com what s hadoop...
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Data Challenges in Telecommunications Networks and a Big Data Solution
Data Challenges in Telecommunications Networks and a Big Data Solution Abstract The telecom networks generate multitudes and large sets of data related to networks, applications, users, network operations
A very short Intro to Hadoop
4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,
Massive Cloud Auditing using Data Mining on Hadoop
Massive Cloud Auditing using Data Mining on Hadoop Prof. Sachin Shetty CyberBAT Team, AFRL/RIGD AFRL VFRP Tennessee State University Outline Massive Cloud Auditing Traffic Characterization Distributed