The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
|
|
|
- Myrtle Ward
- 10 years ago
- Views:
Transcription
1 The evolution of database technology (II) Huibert Aalbers Senior Certified Executive IT Architect
2 IT Insight podcast This podcast belongs to the IT Insight series You can subscribe to the podcast through itunes. Additional material such as presentations in PDF format or white papers mentioned in the podcast can be downloaded from the IT insight section of my site at You can send questions or suggestions regarding this podcast to my personal ,
3 A brave new world With Web 2.0, came the need for a new set of tools that could handle an explosive growth of data Data willfully shared by the users Data collected on users and customers, sometimes unsuspectedly on their part Sensors, IoT, etc. Big Data requires a new kind of data repository
4 Do I need a different solution? There are basically two ways to determine that you require a new type of database solution instead of a traditional relational database The architect designs a new system from the ground up using a Big Data solution because he knowns that it will require it The team has tried every single strategy to try to scale the existing relational database and it is still not enough Upgrading the hardware / use of SSDs / Networking, etc. Query optimization Using a data caching scheme Partitioning the data Building new indices Denormalizing the data Using stored procedures, etc.
5 In order to solve the issue, we have to give up something What can we give up? ACID properties Data normalization Transaction support
6 No SQL Repositories From my point of view, the name No SQL is not right to describe non-relational databases The success behind No SQL databases is not related to the fact that developers don t like SQL. It is due to the following reasons: They scale linearly They are more flexible (schema-less) Easier to manage for extremely high volumes of data I think it is better to call them distributed nonrelational databases
7 Key-Value pair databases These data stores are also known as distributed hash tables Pros Extremely quick, well understood CS problem Scale almost linearly Cons Performing complex queries against the values can be slow and complex Key-value pair data stores in which the product also keeps a time stamp on the data for versioning are a particular case of key-value pair databases
8 Document based databases This is a large category of data stores which allow to work with data stored in a particular document format. Among popular document formats used to store data, we could mention: XML JSON YAML In this kind of data stores, documents are identified by a unique key, which allows for quick retrieval of the information. Although conceptually all data stores in this category are relatively similar, there are still important differences from one product to another Query methods (SQL like, Map/Reduce, etc.) Replication Data consistency Document based databases are schema-less
9 MongoDB vs CouchDB MongoDB Very high volumes of data somewhat mutable data Dynamic flexible queries, somewhat similar to SQL Very quick queries CouchDB Very high volumes of mostly immutable data Pre-defined queries, based on MapReduce, implemented in Javascript Master-Master replication Neither MongoDB nor CouchDB natively work with XML data, both work with JSON documents
10 Document based databases Among the many Document based databases, MongoDB is currently the most popular, closely followed by CouchDB The MongoDB API is currently supported by both DB2 and Informix That means that it is now very easy to migrate from mongodb to any of those databases and store in a single repository both structured data and JSON documents
11 Hosted Document databases Both MongoDB and CouchDB are popular databases, which explains why there are many options to use both hosted and managed versions of these products Cloudant is a fully managed version of BigCouch, which is in turn a high availability, fault tolerant version of CouchDB Migrating from CouchDB or BigCouch to Cloudant is totally transparent Both MongoDB and CouchDB scale very well by implementing sharding, which make them very well suited for born-on-cloud applications
12 Graph databases Social networks have become one of the most representative applications of what is known as Web 2.0 Storing and processing social graphs in relational is both complex and inefficient Unlike relational databases, this new kind of data stores focuses more on relationships than on data. For social networks kind of projects this results in: Increased performance Simpler and more natural development
13 Hadoop Hadoop is a framework designed to process tasks that can be parallelized on extremely high volumes of data distributed over a large number of server nodes belonging to a cluster. It has four main components: Hadoop common Hadoop Distributed File System (HDFS) Designed primarily to handle extremely high volumes of immutable data Loading and deleting data is efficient, updating data is not Hadoop YARN Hadoop MapReduce Managing a complete Hadoop system is currently not for the faint of heart
14 MapReduce MapReduce is the data processing algorithm that sits at the very core of Hadoop Developers need to implement for each query the following functions: Map: In this phase the overall problem is divided into smaller problems which can be divided into smaller tasks (which can also be further broken down) that can be distributed to run on different server nodes Reduce: In this second phase, the master node combines the answers received from the different nodes and processes them to produce a reply to the query
15 MapReduce Hadoop allows to store any kind of data Structured Unstructured When using Hadoop to store structured data, in a data warehouse like environment, it is possible to use languages that automatically generate the code for the Map/Reduce functions Apache Pig (pig latin) Apache Hive (HiveQL, similar to SQL) IBM Big SQL
16 Analyzing streams of data Sometimes the amount of stored data is so large that it simply becomes impossible to perform real time analysis In those cases, the best alternative is to analyze the stream of data before it is stored in the database The main idea is that the data is kept outside the database (generally in RAM) during a certain window of time in order to detect a combination of events in a short period of time Fraud detection Digital marketing
17 Polygot Persistence When working with applications that require extreme scaling, there is no solution that fits all challenges. It is likely that after careful analysis of the problem more than one datastore will be required to obtain the best performance. This is known as Polygot Persistence
18 Contact information On (Spanish) Web site: Blog:
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS
WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS Managing and analyzing data in the cloud is just as important as it is anywhere else. To let you do this, Windows Azure provides a range of technologies
Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world
Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3
In Memory Accelerator for MongoDB
In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000
Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1
Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
extensible record stores document stores key-value stores Rick Cattel s clustering from Scalable SQL and NoSQL Data Stores SIGMOD Record, 2010
System/ Scale to Primary Secondary Joins/ Integrity Language/ Data Year Paper 1000s Index Indexes Transactions Analytics Constraints Views Algebra model my label 1971 RDBMS O tables sql-like 2003 memcached
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Understanding NoSQL Technologies on Windows Azure
David Chappell Understanding NoSQL Technologies on Windows Azure Sponsored by Microsoft Corporation Copyright 2013 Chappell & Associates Contents Data on Windows Azure: The Big Picture... 3 Windows Azure
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Open Source Technologies on Microsoft Azure
Open Source Technologies on Microsoft Azure A Survey @DChappellAssoc Copyright 2014 Chappell & Associates The Main Idea i Open source technologies are a fundamental part of Microsoft Azure The Big Questions
Understanding NoSQL on Microsoft Azure
David Chappell Understanding NoSQL on Microsoft Azure Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Data on Azure: The Big Picture... 3 Relational Technology: A Quick
HadoopRDF : A Scalable RDF Data Analysis System
HadoopRDF : A Scalable RDF Data Analysis System Yuan Tian 1, Jinhang DU 1, Haofen Wang 1, Yuan Ni 2, and Yong Yu 1 1 Shanghai Jiao Tong University, Shanghai, China {tian,dujh,whfcarter}@apex.sjtu.edu.cn
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
A survey of big data architectures for handling massive data
CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - [email protected] Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK OVERVIEW ON BIG DATA SYSTEMATIC TOOLS MR. SACHIN D. CHAVHAN 1, PROF. S. A. BHURA
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
How To Use Big Data For Telco (For A Telco)
ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call
NoSQL Database Options
NoSQL Database Options Introduction For this report, I chose to look at MongoDB, Cassandra, and Riak. I chose MongoDB because it is quite commonly used in the industry. I chose Cassandra because it has
Big Systems, Big Data
Big Systems, Big Data When considering Big Distributed Systems, it can be noted that a major concern is dealing with data, and in particular, Big Data Have general data issues (such as latency, availability,
TRAINING PROGRAM ON BIGDATA/HADOOP
Course: Training on Bigdata/Hadoop with Hands-on Course Duration / Dates / Time: 4 Days / 24th - 27th June 2015 / 9:30-17:30 Hrs Venue: Eagle Photonics Pvt Ltd First Floor, Plot No 31, Sector 19C, Vashi,
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY ANN KELLY II MANNING Shelter Island contents foreword preface xvii xix acknowledgments xxi about this book xxii Part 1 Introduction
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
Applications for Big Data Analytics
Smarter Healthcare Applications for Big Data Analytics Multi-channel sales Finance Log Analysis Homeland Security Traffic Control Telecom Search Quality Manufacturing Trading Analytics Fraud and Risk Retail:
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
Apache Hadoop: The Big Data Refinery
Architecting the Future of Big Data Whitepaper Apache Hadoop: The Big Data Refinery Introduction Big data has become an extremely popular term, due to the well-documented explosion in the amount of data
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
Integrating Big Data into the Computing Curricula
Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
Brave New World: Hadoop vs. Spark
Brave New World: Hadoop vs. Spark Dr. Kurt Stockinger Associate Professor of Computer Science Director of Studies in Data Science Zurich University of Applied Sciences Datalab Seminar, Zurich, Oct. 7,
Sentimental Analysis using Hadoop Phase 2: Week 2
Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra [email protected] Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
Certified Apache CouchDB Professional VS-1045
Certified Apache CouchDB Professional VS-1045 Certified Apache CouchDB Professional Certification Code VS-1045 Vskills certification for Apache CouchDB Professional assesses the candidate for couchdb database.
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Structured Data Storage
Structured Data Storage Xgen Congress Short Course 2010 Adam Kraut BioTeam Inc. Independent Consulting Shop: Vendor/technology agnostic Staffed by: Scientists forced to learn High Performance IT to conduct
Lofan Abrams Data Services for Big Data Session # 2987
Lofan Abrams Data Services for Big Data Session # 2987 Big Data Are you ready for blast-off? Big Data, for better or worse: 90% of world s data generated over last two years. ScienceDaily, ScienceDaily
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
Data Modeling for Big Data
Data Modeling for Big Data by Jinbao Zhu, Principal Software Engineer, and Allen Wang, Manager, Software Engineering, CA Technologies In the Internet era, the volume of data we deal with has grown to terabytes
MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15
MongoDB in the NoSQL and SQL world. Horst Rechner [email protected] Berlin, 2012-05-15 1 MongoDB in the NoSQL and SQL world. NoSQL What? Why? - How? Say goodbye to ACID, hello BASE You
Alternatives to HIVE SQL in Hadoop File Structure
Alternatives to HIVE SQL in Hadoop File Structure Ms. Arpana Chaturvedi, Ms. Poonam Verma ABSTRACT Trends face ups and lows.in the present scenario the social networking sites have been in the vogue. The
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014
White Paper Big Data Executive Overview WP-BD-10312014-01 By Jafar Shunnar & Dan Raver Page 1 Last Updated 11-10-2014 Table of Contents Section 01 Big Data Facts Page 3-4 Section 02 What is Big Data? Page
Real Time Fraud Detection With Sequence Mining on Big Data Platform. Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA
Real Time Fraud Detection With Sequence Mining on Big Data Platform Pranab Ghosh Big Data Consultant IEEE CNSV meeting, May 6 2014 Santa Clara, CA Open Source Big Data Eco System Query (NOSQL) : Cassandra,
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
General announcements In-Memory is available next month http://www.oracle.com/us/corporate/events/dbim/index.html X4-2 Exadata announced (well actually around Jan 1) OEM/Grid control 12c R4 just released
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Introduction to Big Data Training
Introduction to Big Data Training The quickest way to be introduce with NOSQL/BIG DATA offerings Learn and experience Big Data Solutions including Hadoop HDFS, Map Reduce, NoSQL DBs: Document Based DB
ITG Software Engineering
Introduction to Apache Hadoop Course ID: Page 1 Last Updated 12/15/2014 Introduction to Apache Hadoop Course Overview: This 5 day course introduces the student to the Hadoop architecture, file system,
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
Big Data Management and Security
Big Data Management and Security Audit Concerns and Business Risks Tami Frankenfield Sr. Director, Analytics and Enterprise Data Mercury Insurance What is Big Data? Velocity + Volume + Variety = Value
Microsoft Azure Data Technologies: An Overview
David Chappell Microsoft Azure Data Technologies: An Overview Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Blobs... 3 Running a DBMS in a Virtual Machine... 4 SQL Database...
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Introduction to NoSQL Databases. Tore Risch Information Technology Uppsala University 2013-03-05
Introduction to NoSQL Databases Tore Risch Information Technology Uppsala University 2013-03-05 UDBL Tore Risch Uppsala University, Sweden Evolution of DBMS technology Distributed databases SQL 1960 1970
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY
Spark in Action Fast Big Data Analytics using Scala Matei Zaharia University of California, Berkeley www.spark- project.org UC BERKELEY My Background Grad student in the AMP Lab at UC Berkeley» 50- person
Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010
Hadoop s Entry into the Traditional Analytical DBMS Market Daniel Abadi Yale University August 3 rd, 2010 Data, Data, Everywhere Data explosion Web 2.0 more user data More devices that sense data More
June 2015. JMS and Hadoop Agent. Automic Workload Automation
June 2015 JMS and Hadoop Agent Automic Workload Automation + Hadoop Agent Demonstration Structure of Automic Hadoop Connection Hadoop use cases Demonstration + Feature Introduction + JMS Agent Demonstration
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
NoSQL in der Cloud Why? Andreas Hartmann
NoSQL in der Cloud Why? Andreas Hartmann 17.04.2013 17.04.2013 2 NoSQL in der Cloud Why? Quelle: http://res.sys-con.com/story/mar12/2188748/cloudbigdata_0_0.jpg Why Cloud??? 17.04.2013 3 NoSQL in der Cloud
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Azure Data Lake Analytics
Azure Data Lake Analytics Compose and orchestrate data services at scale Fully managed service to support orchestration of data movement and processing Connect to relational or non-relational data
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
MongoDB and Couchbase
Benchmarking MongoDB and Couchbase No-SQL Databases Alex Voss Chris Choi University of St Andrews TOP 2 Questions Should a social scientist buy MORE or UPGRADE computers? Which DATABASE(s)? Document Oriented
Affordable, Scalable, Reliable OLTP in a Cloud and Big Data World: IBM DB2 purescale
WHITE PAPER Affordable, Scalable, Reliable OLTP in a Cloud and Big Data World: IBM DB2 purescale Sponsored by: IBM Carl W. Olofson December 2014 IN THIS WHITE PAPER This white paper discusses the concept
Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D.
Big Data Technology ดร.ช ชาต หฤไชยะศ กด Choochart Haruechaiyasak, Ph.D. Speech and Audio Technology Laboratory (SPT) National Electronics and Computer Technology Center (NECTEC) National Science and Technology
Big Data Training - Hackveda
Big Data Training - Hackveda Become a Hackveda Certified Big Data Professional - (Beginner) Skill level: Beginner Training fee: INR 9000 only (Topics covered: 108) Chief Trainer: Mr. Devanshu Shukla Training
Preparing Your Data For Cloud
Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Manifest for Big Data Pig, Hive & Jaql
Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,
Big data and urban mobility
Big data and urban mobility Antònia Tugores,PereColet Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC(UIB-CSIC) Abstract. Data sources have been evolving the last decades and nowadays
Big Data: Tools and Technologies in Big Data
Big Data: Tools and Technologies in Big Data Jaskaran Singh Student Lovely Professional University, Punjab Varun Singla Assistant Professor Lovely Professional University, Punjab ABSTRACT Big data can
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
GridGain In- Memory Data Fabric: UlCmate Speed and Scale for TransacCons and AnalyCcs
GridGain In- Memory Data Fabric: UlCmate Speed and Scale for TransacCons and AnalyCcs DMITRIY SETRAKYAN Founder & EVP Engineering @dsetrakyan www.gridgain.com #gridgain Agenda EvoluCon of In- Memory CompuCng
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
Вовченко Алексей, к.т.н., с.н.с. ВМК МГУ ИПИ РАН
Вовченко Алексей, к.т.н., с.н.с. ВМК МГУ ИПИ РАН Zettabytes Petabytes ABC Sharding A B C Id Fn Ln Addr 1 Fred Jones Liberty, NY 2 John Smith?????? 122+ NoSQL Database
