QoS optimization for an. on-demand transportation system via a fractional linear objective function
|
|
|
- Antony Elwin Goodman
- 10 years ago
- Views:
Transcription
1 QoS optimization for an Load charge ratio on-demand transportation system via a fractional linear objective function Thierry Garaix, University of Avignon (France) Column Generation 2008 QoS optimization for an on-demand transportation system via a fractional linear objective function p. 1
2 Plan On-demand transportation system (DARP) Load charge ratio Column generation for the DARP Maximization of the loading rate Computational results and observations QoS optimization for an on-demand transportation system via a fractional linear objective function p. 2
3 Dial-a-ride Problem (DARP) Pick-Up & Delivery with Time Windows + QoS constraints A road-network: travel times, distances... Introduction DARP Classical method QoS Load charge ratio R requests r pick-up r +, drop-off r points load F r, time windows [T inf r, T sup r ] K vehicles type k depots k +, k, quantity K k, capacity F k, km cost, speed 10: :55 9: :00 10:00 8: :25 13:00 9: :10 11:50 12:00 QoS optimization for an on-demand transportation system via a fractional linear objective function p. 3
4 Master problem min ω Ω C ω λ ω Introduction DARP Classical method QoS Load charge ratio subject to λ ω ρ ωr = 1 ω Ω λ ω K k ω Ω k λ ω integer r = 1,..., R k = 1,..., K ω Ω Ω k : feasible routes with vehicle type k, Ω = K k=1 Ω k Objective function minimizes total inconvenience ρ ωr {0,1} : request r is in route ω QoS optimization for an on-demand transportation system via a fractional linear objective function p. 4
5 Introduction DARP Classical method QoS Load charge ratio Slave problems RC ω = C ω = (i,j) ω (i,j) ω C ij (C ij π ij ) ω: arcs of ω, π ij : well defined dual cost We model slave problem as an ESPPRC solved by dynamic programming Label L is a partial path ending in v L at time T L with open requests O L, closed requests that are still time reachable S L and a cost C L Dominance rule: v L = v M, T L T M, O L O M and S L S M O M T M and C L C M ; T M are time reachable requests for M QoS optimization for an on-demand transportation system via a fractional linear objective function p. 5
6 Quality of service We develop an algorithm using robust accelerations (LDS, heuristic... ). We solve instances with 100 requests Introduction DARP Classical method QoS Load charge ratio Adaptation to new QoS criteria? time lost for inbound and outbound requests Cost resource extension fonction is not non-decreasing distance Working network is a p-graph of non-dominated (distance/time) paths loading rate Fractional linear objective function QoS optimization for an on-demand transportation system via a fractional linear objective function p. 6
7 Loading rate Definition Iterative method Loading rate: number of passengers times their travel time divided by the total travel time of vehicles max P P ω Ω N ωλ ω ω Ω D ωλ ω = N(λ) D(λ) f ij (variables): passenger flow N ω = (i,j) ω f ijt ij D ω = (i,j) ω T ij T ij (data): travel time. We exclude waiting times Practical interests: Good indicator for local authorities, that prefer full-loaded vehicles on road A social impact QoS optimization for an on-demand transportation system via a fractional linear objective function p. 7
8 Direct algorithm Charnes-Cooper (62) Change of variable x = 1/ ω Ω D ωλ ω : max x ω Ω N ωλ ω Direct method Iterative method s.t. x ω Ω λ ωρ ωr = x, r = 1,..., R x ω Ω k λ ω xk k x ω Ω D ωλ ω = 1 xλ ω 0 x 0, k = 1,..., K, ω Ω λ ω xλ ω : max ω Ω N ωλ ω s.t. ω Ω λ ωρ ωr = x, r = 1,..., R ω Ω k λ ω xk k, k = 1,..., K ω Ω D ωλ ω = 1 λ ω 0, ω Ω x 0 QoS optimization for an on-demand transportation system via a fractional linear objective function p. 8
9 Direct algorithm slave problem ESPPRC: min ω Ω N ωλ ω Direct method Iterative method C ω = (i,j) ω f it ij RC ω = C ω (i,j) ω (π ij + µt ij ) New dominance rule: v L = v M, T L T M, O L O M C L C M and S L S M O M T L become C L C M + r O M \O L det(r, T M ) + r S L \(S M O M T M ) min{det(r+, T M ) + det(r, T M ),0} QoS optimization for an on-demand transportation system via a fractional linear objective function p. 9
10 Direct algorithm slave problem Lower bounds on detours by vertex v Direct method Iterative method Compare each feasible arc (u, w) with path (u, v, w) det(v, t) = min u,w V ( µ f u )(T uv + T vu T uw ) F v T vw π uv Durations observe triangular inequality Pre-preprocessing max f u depending on u,v and w type, since other values are constant at each iteration QoS optimization for an on-demand transportation system via a fractional linear objective function p. 10
11 Iterative algorithm Dinkelbach(67) P = {λ R + : ω Ω λ ωρ ωr = 1 r = 1,..., R; ω Ω k λ ω K k k = 1,..., K} Iterative method MP: max λ P q(λ) = N(λ)/D(λ) Introduce F(x) = max λ P N(λ) xd(λ) Propertie: λ is optimal for MP F(q(λ )) = 0 Find λ n s.t. q(λ ) q(λ n ) < δ, δ > 0 Find λ n s.t. F(q(λ n )) < ε, ε > 0 Since F(x) is decreasing and F(q(λ )) = 0 Proof: q(λ 0 ) = N(λ 0 )/D(λ 0 ) F(q(λ 0 )) 0 F(q(λ 0 )) = 0 0 > N(λ) q(λ 0 )D(λ), λ q(λ 0 ) = max λ P N(λ)/D(λ) QoS optimization for an on-demand transportation system via a fractional linear objective function p. 11
12 Iterative algorithm Iterative method Sequence (λ n ): λ n+1 is defined as the optimal solution of F(q(λ n )) = max λ P N(λ) q(λ n )D(λ) Sequence (q n ) = q(λ n ) = N(λ n 1 )/D(λ n 1 ) increases and converges Algorithm builds (λ n ) and stops when F(q n ) < ε Two schemes integrate column generation (CG): Apply Dinkelbach algorithm on MP Apply Dinkelbach algorithm on each RMP Branch-and-Bound scheme is based on q n values QoS optimization for an on-demand transportation system via a fractional linear objective function p. 12
13 Iterative algorithm λ 0 = λ 1 Ω {λ i } Ω {λ i } λ 0 = λ 1 Iterative method Solve LP F(q 0 ) = max λ P N(λ) q 0 D(λ) q 1 = N(λ 1 )/D(λ 1 ) F(q 0 ) = N(λ 1 ) q 0 D(λ 1 ) Solve LP F(q 0 ) = max λ P N(λ) q 0 D(λ) q 1 = N(λ 1 )/D(λ 1 ) F(q 0 ) = N(λ 1 ) q 0 D(λ 1 ) λ i with positive reduced cost? no yes F(q 0 ) ε? no yes yes F(q 0 ) ε? no yes λ i with positive reduced cost? no STOP STOP QoS optimization for an on-demand transportation system via a fractional linear objective function p. 13
14 Iterative algorithm slave problem ESPPRC: min F(q 0 ) = q 0 D(λ) N(λ) Iterative method C ω = (i,j) ω q0 T ij f i T ij RC ω = C ω (i,j) ω π ij Same remarks as for the direct algorithm and lower bounds on detours: det(v, t) = min u,w V (q 0 f u )(T uv + T vu + T uw ) F v T vw π uv Pre-preprocessing max f u QoS optimization for an on-demand transportation system via a fractional linear objective function p. 14
15 Instances Iterative method Two benchmarks Li and Lim ( 50 requests) from Solomon s Cordeau (from 16 to 96 requests) One vehicle type Modifications We compute new tight time windows T sup T inf = 1.5T r r + r + r QoS optimization for an on-demand transportation system via a fractional linear objective function p. 15
16 Results on random Li & Lim s Iterative method instance loading rate cpu sec. name min D(λ) max N(λ)/D(λ) direct iterative r r r r r r r r r r r r QoS optimization for an on-demand transportation system via a fractional linear objective function p. 16
17 Results on cluster Li & Lim s Iterative method instance loading rate cpu sec. name min D(λ) max N(λ)/D(λ) direct iterative c c c c c c c c c QoS optimization for an on-demand transportation system via a fractional linear objective function p. 17
18 Results on random/cluster Li & Lim s Iterative method instance loading rate cpu sec. name min D(λ) max N(λ)/D(λ) direct iterative rc rc rc rc rc rc rc rc QoS optimization for an on-demand transportation system via a fractional linear objective function p. 18
19 Iterative method Results on Cordeau s instance loading rate cpu sec. name min D(λ) max N(λ)/D(λ) direct iterative b b b b b b b b b b b b b b b b b b b b b b b b QoS optimization for an on-demand transportation system via a fractional linear objective function p. 19
20 Conclusions Iterative method Generic schemes managing fractional linear objective function with column generation They succeed in solving our problem Travel time minimization also (almost) optimizes loading rate We could implement many of classical acceleration methods in the proposed algorithm have to be carried out with less bounded numerator and denominator in order to test the convergence speed QoS optimization for an on-demand transportation system via a fractional linear objective function p. 20
Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
A hierarchical multicriteria routing model with traffic splitting for MPLS networks
A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
Two objective functions for a real life Split Delivery Vehicle Routing Problem
International Conference on Industrial Engineering and Systems Management IESM 2011 May 25 - May 27 METZ - FRANCE Two objective functions for a real life Split Delivery Vehicle Routing Problem Marc Uldry
A Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
Optimal Vehicle Routing and Scheduling with Precedence Constraints and Location Choice
Optimal Vehicle Routing and Scheduling with Precedence Constraints and Location Choice G. Ayorkor Korsah, Anthony Stentz, M. Bernardine Dias, and Imran Fanaswala Abstract To realize the vision of intelligent
Dantzig-Wolfe bound and Dantzig-Wolfe cookbook
Dantzig-Wolfe bound and Dantzig-Wolfe cookbook [email protected] DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
Solving the Vehicle Routing Problem with Multiple Trips by Adaptive Memory Programming
Solving the Vehicle Routing Problem with Multiple Trips by Adaptive Memory Programming Alfredo Olivera and Omar Viera Universidad de la República Montevideo, Uruguay ICIL 05, Montevideo, Uruguay, February
Modeling and solving vehicle routing problems with many available vehicle types
MASTER S THESIS Modeling and solving vehicle routing problems with many available vehicle types SANDRA ERIKSSON BARMAN Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF
A Column Generation Model for Truck Routing in the Chilean Forest Industry
A Column Generation Model for Truck Routing in the Chilean Forest Industry Pablo A. Rey Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad Diego Portales, Santiago, Chile, e-mail: [email protected]
Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes
Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with
Column Generation for the Pickup and Delivery Problem with Time Windows
Column Generation for the Pickup and Delivery Problem with Time Windows Kombinatorisk optimering 1. april 2005 Stefan Røpke Joint work with Jean-François Cordeau Work in progress! Literature, homework
The vehicle routing problem with time windows is a hard combinatorial optimization problem that has
TRANSPORTATION SCIENCE Vol. 38, No. 4, November 2004, pp. 515 530 issn 0041-1655 eissn 1526-5447 04 3804 0515 informs doi 10.1287/trsc.1030.0049 2004 INFORMS A Two-Stage Hybrid Local Search for the Vehicle
A Service Design Problem for a Railway Network
A Service Design Problem for a Railway Network Alberto Caprara Enrico Malaguti Paolo Toth Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna Viale Risorgimento, 2-40136 - Bologna
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Dave Sly, PhD, MBA, PE Iowa State University
Dave Sly, PhD, MBA, PE Iowa State University Tuggers deliver to multiple locations on one trip, where Unit Load deliveries involve only one location per trip. Tugger deliveries are more complex since the
Modeling and Solving the Capacitated Vehicle Routing Problem on Trees
in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering
Charles Fleurent Director - Optimization algorithms
Software Tools for Transit Scheduling and Routing at GIRO Charles Fleurent Director - Optimization algorithms Objectives Provide an overview of software tools and optimization algorithms offered by GIRO
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
On the Technician Routing and Scheduling Problem
On the Technician Routing and Scheduling Problem July 25, 2011 Victor Pillac *, Christelle Guéret *, Andrés Medaglia * Equipe Systèmes Logistiques et de Production (SLP), IRCCyN Ecole des Mines de Nantes,
The Trip Scheduling Problem
The Trip Scheduling Problem Claudia Archetti Department of Quantitative Methods, University of Brescia Contrada Santa Chiara 50, 25122 Brescia, Italy Martin Savelsbergh School of Industrial and Systems
IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
Some representability and duality results for convex mixed-integer programs.
Some representability and duality results for convex mixed-integer programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer
GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1
(R) User Manual Environmental Energy Technologies Division Berkeley, CA 94720 http://simulationresearch.lbl.gov Michael Wetter [email protected] February 20, 2009 Notice: This work was supported by the U.S.
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
Optimal Scheduling for Dependent Details Processing Using MS Excel Solver
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of
Hybrid Heterogeneous Electric Fleet Routing Problem with City Center Restrictions
Hybrid Heterogeneous Electric Fleet Routing Problem with City Center Restrictions Gerhard Hiermann 1, Richard Hartl 2, Jakob Puchinger 1, Thibaut Vidal 3 1 AIT Austrian Institute of Technology 2 University
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Integrating Benders decomposition within Constraint Programming
Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP
Convex Programming Tools for Disjunctive Programs
Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
Research Paper Business Analytics. Applications for the Vehicle Routing Problem. Jelmer Blok
Research Paper Business Analytics Applications for the Vehicle Routing Problem Jelmer Blok Applications for the Vehicle Routing Problem Jelmer Blok Research Paper Vrije Universiteit Amsterdam Faculteit
Routing and Scheduling in Tramp Shipping - Integrating Bunker Optimization Technical report
Downloaded from orbit.dtu.dk on: Jul 04, 2016 Routing and Scheduling in Tramp Shipping - Integrating Bunker Optimization Technical report Vilhelmsen, Charlotte; Lusby, Richard Martin ; Larsen, Jesper Publication
A hybrid approach for solving real-world nurse rostering problems
Presentation at CP 2011: A hybrid approach for solving real-world nurse rostering problems Martin Stølevik ([email protected]) Tomas Eric Nordlander ([email protected]) Atle Riise ([email protected])
On a Railway Maintenance Scheduling Problem with Customer Costs and Multi-Depots
Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor On a Railway Maintenance Scheduling Problem with Customer Costs and Multi-Depots F. Heinicke (1), A. Simroth (1), G. Scheithauer
COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN ABSTRACT
Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity (1998) COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN Kadir Ertogral, S. David
Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach
MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical
A Network Flow Approach in Cloud Computing
1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges
Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually
Optimization Modeling for Mining Engineers
Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2
Routing in Line Planning for Public Transport
Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
Online vehicle routing and scheduling with continuous vehicle tracking
Online vehicle routing and scheduling with continuous vehicle tracking Jean Respen, Nicolas Zufferey, Jean-Yves Potvin To cite this version: Jean Respen, Nicolas Zufferey, Jean-Yves Potvin. Online vehicle
11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach
Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach Patrik Björklund, Peter Värbrand and Di Yuan Department of Science and Technology, Linköping University SE-601
Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach
Outline Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach The University of New South Wales SPOM 2013 Joint work with V. Jeyakumar, B.S. Mordukhovich and
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
PUBLIC TRANSPORT ON DEMAND
MASTER S THESIS SUMMARY PUBLIC TRANSPORT ON DEMAND A better match between passenger demand and capacity M.H. Matena C o n n e x x i o n L a a p e r s v e l d 7 5 1213 BV Hilversum PUBLIC TRANSPORT ON
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
On the effect of forwarding table size on SDN network utilization
IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz
Adaptive Memory Programming for the Vehicle Routing Problem with Multiple Trips
Adaptive Memory Programming for the Vehicle Routing Problem with Multiple Trips Alfredo Olivera, Omar Viera Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Herrera y Reissig
Beyond the Stars: Revisiting Virtual Cluster Embeddings
Beyond the Stars: Revisiting Virtual Cluster Embeddings Matthias Rost Technische Universität Berlin September 7th, 2015, Télécom-ParisTech Joint work with Carlo Fuerst, Stefan Schmid Published in ACM SIGCOMM
An Optimization Approach for Cooperative Communication in Ad Hoc Networks
An Optimization Approach for Cooperative Communication in Ad Hoc Networks Carlos A.S. Oliveira and Panos M. Pardalos University of Florida Abstract. Mobile ad hoc networks (MANETs) are a useful organizational
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
Cost Models for Vehicle Routing Problems. 8850 Stanford Boulevard, Suite 260 R. H. Smith School of Business
0-7695-1435-9/02 $17.00 (c) 2002 IEEE 1 Cost Models for Vehicle Routing Problems John Sniezek Lawerence Bodin RouteSmart Technologies Decision and Information Technologies 8850 Stanford Boulevard, Suite
Dynamic Vehicle Routing in MATSim
Poznan University of Technology Department of Motor Vehicles and Road Transport ZPSiTD Dynamic Vehicle Routing in MATSim Simulation and Optimization Michal Maciejewski [email protected]
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
A Branch-Cut-and-Price Approach to the Bus Evacuation Problem with Integrated Collection Point and Shelter Decisions
A Branch-Cut-and-Price Approach to the Bus Evacuation Problem with Integrated Collection Point and Shelter Decisions Marc Goerigk, Bob Grün, and Philipp Heßler Fachbereich Mathematik, Technische Universität
A Linear Programming Based Method for Job Shop Scheduling
A Linear Programming Based Method for Job Shop Scheduling Kerem Bülbül Sabancı University, Manufacturing Systems and Industrial Engineering, Orhanlı-Tuzla, 34956 Istanbul, Turkey [email protected]
New Benchmark Instances for the Capacitated Vehicle Routing Problem
New Benchmark Instances for the Capacitated Vehicle Routing Problem Eduardo Uchoa* 1, Diego Pecin 2, Artur Pessoa 1, Marcus Poggi 2, Anand Subramanian 3, Thibaut Vidal 2 1 Universidade Federal Fluminense,
Transportation. Transportation decisions. The role of transportation in the SC. A key decision area within the logistics mix
Transportation A key decision area within the logistics mix Chapter 14 Transportation in the Supply Chain Inventory Strategy Forecasting Storage decisions Inventory decisions Purchasing & supply planning
Load Planning for Less-than-truckload Carriers. Martin Savelsbergh
Load Planning for Less-than-truckload Carriers Martin Savelsbergh Centre for Optimal Planning and Operations School of Mathematical and Physical Sciences University of Newcastle Optimisation in Industry,
Nonlinear Optimization: Algorithms 3: Interior-point methods
Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris [email protected] Nonlinear optimization c 2006 Jean-Philippe Vert,
Nonlinear Algebraic Equations Example
Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities
An Approximation Algorithm for the Unconstrained Traveling Tournament Problem
An Approximation Algorithm for the Unconstrained Traveling Tournament Problem Shinji Imahori 1, Tomomi Matsui 2, and Ryuhei Miyashiro 3 1 Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku,
Optimising Patient Transportation in Hospitals
Optimising Patient Transportation in Hospitals Thomas Hanne 1 Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, [email protected] 1 Introduction
The truck scheduling problem at cross-docking terminals
The truck scheduling problem at cross-docking terminals Lotte Berghman,, Roel Leus, Pierre Lopez To cite this version: Lotte Berghman,, Roel Leus, Pierre Lopez. The truck scheduling problem at cross-docking
Proximal mapping via network optimization
L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs
Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute
Price of Anarchy in Non-Cooperative Load Balancing
Price of Anarchy in Non-Cooperative Load Balancing Urtzi Ayesta, Olivier Brun, Balakrishna Prabhu To cite this version: Urtzi Ayesta, Olivier Brun, Balakrishna Prabhu. Price of Anarchy in Non-Cooperative
Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725
Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
