WHI Formula as a New Criterion in Automatic Pipeline GMAW Process
|
|
|
- Katherine Johns
- 10 years ago
- Views:
Transcription
1 4 WHI Formula as a New Criterion in Automatic Pipeline GMAW Process Alireza Doodman Tipi and Fatemeh Sahraei Kermanshah University of Technology, Pardis, Kermanshah, Iran 1. Introduction Pipeline welding is one of the most significant applications of GMAW process. Automatic welding for pipelines has been developed from early 1970 s. In these systems the welding robot moves around the two pipe's seam and welds the pipes by arc welding machine. Depending on the pipe thickness, weld process is repeated in several passes while the seam is filled of weld mass. The automatic pipeline welding systems has been recently paid more attention [1, 2]. In order to achieve sufficient performance in the process, the input parameters must be chosen correctly [3]. Welding parameter designing is a complicated step in the GMAW process, because of the large number of parameters and complexity of dynamic behavior. This complexity is particularly intensified in automatic pipeline systems, because of the complex seam geometry, wide range of the angle variations and strict quality requirements [1]. The most important input parameters in the automatic pipeline GMAW process are: welding current, arc voltage, travel speed, wire feeding speed, Contact Tube to Workpiece Distance (CTWD), welding position (angle), gas type, pipe type/thickness and seam geometry [4, 5]. The output parameters of the process are usually defined as either mechanical properties or weld bead geometry [6]. Weld bead geometry method considers the relationships between the input parameters and weld bead dimensions (penetration, width, reinforcement height, and width to penetration ratio and dilution [3, 7, 8]. Appropriate melting of the seam walls is certainly one of the most important conditions to achieve a proper dimension in fusion zone. A fusion zone with a sufficient width is necessary to prevent from some defects like lack of Fusion (LOF) [9, 10]. Having a direct contact between the arc and seam walls and receiving enough energy to the walls led to suitable wall melting and appropriate fusion zone [11, 12]. Some criteria such as heat input are related to the total energy which is given to the weld region without considering the amount of energy required to melt the wire. Principal parameters to calculate the heat input value are: welding current, arc voltage, travel speed and welding efficiency [11, 13]. During the welding process, part of the arc energy is spent to melt the wire [12]. Seam geometry also plays an important role in the amount of arc energy that directly reaches the walls. However a more general formula is not yet introduced.
2 72 Arc Welding In this paper WHI introduced as a new criterion, which is related to the arc energy that directly reaches the walls considering the both required energy to melt the wire and seam geometry. This criterion has the capability to be used for designing the welding parameters and for welding analysis applications. Section 2 contains theoretical parts to achieve WHI criterion, which includes wire melting energy (section 2.1), WHI formula (section 2.2), and wall geometry calculations (section 2.3). In section 3 two experimental tests are performed using the fabricated automatic system [15] in order to validate the obtained results from the presented formula. Value (unit) (mm 2 ) 500 (J/kg. o C) 7800 (kg/m 3 ) (J/mm) 7.7 (J/mm 3 ) (J/mm) (J/mm) (J/mm 2 ) (J/kg) Symbols A A osc c st d st E i E st E w E wall E wd F st Nomenclature Molten area for wire (front view) Torch oscillation amplitude Specific heat for steel Steel density Heat input Energy density for steel melting Wire melting energy Wall energy WHI Heat of fusion for steel (V) (A) -- (m/s) (m/s) 27 ( o C) 1510 ( o C) (mm 3 /mm) (deg) (deg) Table 1. Variables and material properties. V I η w s T s r l l a l h l v T 0 T mst R V w W a α δ Arc voltage Welding current Arc radiation lost coefficient Wire feed rate Travel speed Wire radius Wall cross length with molten metal and arc (front view) Arc length Seam floor length (front view) Side wall length (front view) Heat of environment Melting point for steel radius of the seam shape Wire volume per travel speed Arc width Wall angle Arc angle
3 WHI Formula as a New Criterion in Automatic Pipeline GMAW Process WHI theory In this section, firstly the required energy for melting the wire is calculated and the wall length of the groove face in contact with the arc is computed as well, remaining arc energy on the seam walls is named WHI. 2.1 Wire melting energy Weld metal area (cross section, in front of view) is a function of wire radius, wire feeding speed and travel speed. The deposition rate (w s /T s ) is usually considered to be fixed for designing of welding parameters. Therefore the molten metal cross section (A) is counted as an assumed parameter in design procedure. 2 ws A r (1) T The amount of heat input over the length unit of travel axis is computed considering the radiation energy [11]. s s VI Ei (2) T 9 The mass of 1mm 3 steel is equal to kg. Therefore melting of 1mm 3 steel (with 300 o K primary temperature) needs approximately 7.7J energy according to eqn. (3) st st st mst 0 10 st st E d c T T d F (3) The volume of the molten wire poured down inside the seam along l t mm of the travel axis is obtained using eqn. (4) V w Al (4) The value of the required Energy for melting the wire poured inside the seam (versus travel axis unit (J/mm)) can be computed as below: E t E V (5) w st w 2.2 WHI formula Arc energy is spent to melt both the filler wire and the walls (eqn. 6). Therefore the remaining energy which directly contacts and melts the walls is named wall energy (E wall ). Ei Ew Ewall (6) Energy density with respect to the seam wall length is computable through dividing the energy of the wall by the seam wall length (l) (front view). Therefore WHI can be defined as the below equation. E wd Ewall (7) l
4 74 Arc Welding So WHI can be shown by welding parameters as below: E wd VI 2 ws 7.7 r Ts Ts (8) l 2.3 Wall geometry The front view of the arc and bevel for the welding of the first pass in a U-type bevel can be seen in fig.1. Fig. 1. A schematic view of the arc, melting wire area and seam walls The arc width (Fig. 1) is calculated using eqn. (10) [14]. Wa 2latan( ) (9) 2 The wall length involving with the arc edges is calculated by eqn. (10-13). Wa 2R l vd sin( ) (10) 2 l vd Wa 2R (11) 2sin( ) lr R (12) l 2l vd l r (13) For the other passes (except for the root pass), front view of the arc and seam (for U-type seam) is like Fig. 2. Seam walls length (front view) involving with the arc edges is computable using eqn. (14-15).
5 WHI Formula as a New Criterion in Automatic Pipeline GMAW Process 75 Fig. 2. A schematic view for melting area in the second pass l vu Wa lh (14) 2sin( ) l 2l vu l h (15) If there is torch oscillation amplitude (see Fig. 3) the effective arc width can be computable by eqn. (16) [15]. Wa Aosc 2latan( ) (16) 2 Fig. 3. Seam and arc with nozzle oscillation amplitude
6 76 Arc Welding If the effective arc width is too much compared to the melting wire area, some of the wall energy will be lost over the seam without any involving with the molten metal. Furthermore if the center of the oscillation and the seam centerline are not identical (see Fig. 4(left)), the fusion area in the both sides, will not be same. A schematic view and a real test result are shown in Fig. 4. In this figure the center of the oscillation and the seam centerline do not coincide, additionally, the oscillation amplitude is too much, hence Fig. 4(right) has been resulted in the experiment. Fig. 4. Unsymmetrical and extra amplitude of arc width compared to molten wire area, schematic view (left), real test result (right) 3. Experimental results 3.1 Setup The automatic pipeline welding system used in the experiments [15] has been shown in Fig. 5. The welding progresses downward semi-circularly from top (0 ) to the bottom (180 ) of the pipe on each side. The solid wire was ER70S-6(SG3), having diameter of 1 mm, the shielding gas is the mixture of Argon and CO 2 by 82/18 proportion.
7 WHI Formula as a New Criterion in Automatic Pipeline GMAW Process 77 Fig. 5. Automatic pipe line welding system in the experiments (made by Novin Sazan Co.) The pipe material is API 5L x65 HSLA steel with the thickness of 20.6 mm and the outside diameter of 32 inches. A U-type joint design is used according to fig6. Seam area is about 130mm 2, that is filled with several weld passes. Fig. 6. Joint configuration in the experiments 3.2 Experiments Ex. 1: WHI value has been chosen equal to 32.3 J/mm 2,the other parameters have been computed as the first row in Table 2 (only root pass parameters are shown). These parameters implemented on the system. Longitudinal cross section of the weld metal (front view) is shown in Fig. 7 (left), moreover root pass reinforcement (from inside the pipe) is shown in Fig. 8 (left). Ex. 1 Ex. 2 V(V) I(A) W s (mm/s) T s (mm/s) A(mm 2 ) L E i (J/mm) WHI(J/mm 2 ) Table 2. Welding parameters for two experimental tests
8 78 Arc Welding The molten base metal area is about 66mm 2. This area is highlighted in Fig. 9 (a). this area has been calculated by computer and image processing algorithms using MATLAB. Base metal molten area over to total molten area (summing of base metal and melting wire area) is defined as relative molten area, is about 34% for this example (Ex. 1). Fig. 7. Front view of the weld sections, 32.3J/mm 2 WHI and 393 J/mm heat input according to Ex. 1parameters (left); 35.2J/mm 2 WHI and 337 J/mm heat input with Ex. 2 parameters (right) Fig. 8. Back view of welds from inside the pipe; for Ex.1 (up) and for Ex. 2 (down), Ex. 2 has more penetration than Ex. 1 related to the more WHI
9 WHI Formula as a New Criterion in Automatic Pipeline GMAW Process 79 Ex. 2: WHI value has been selected equal to 35.2 J/mm 2, and Parameters are calculated according to the WHI value. Welding parameters are shown in the second row of the Table 2 (only for root pass). Comparing parameters of Ex. 1 and Ex. 2 indicates an important point: WHI increases but total heat input decreases because of the decreasing of the wire feeding rate (in Ex. 2 than Ex. 1). Cross section and back view (from inside the pipe) is shown in Fig. 7(right) and Fig. 8(right) respectively. Molten base metal area (walls molten area) is estimated to be about 105 mm 2, which is shown in Fig. 9(b). Relative molten area is also estimated to be about 45%. Because of the more WHI (despite decreasing the heat input), fusion zone and penetration has been increased. Fig. 9. Fusion zones of metal base in Ex. 1 (32.3J/mm 2 WHI) (a), and for Ex. 2 (35.2J/mm 2 ) (b) 4. Conclusion In this paper WHI was introduced as a new criterion for designing of the welding parameters and welding analysis. This criterion calculates some of the heat input that is directly given to the walls from the arc. This formula considers the effects of the both required wire melting energy and seam geometry on the input energy. It was shown that WHI has a more correlation with fusion zone area compared to the heat input formula. In the other view the obtained results can be extended to the other welding processes and other applications. However WHI has a good feature in welding parameters designing to achieve some appropriate welding properties like the fusion zone. 5. References [1] Lopes AGT (2006) Arc-Based Sensing in Narrow Groove Pipe Welding. Ph.D. Thesis, Sch. Ind. Manuf. Sci., Cranfield U. [2] Blackman SA, Dorling DV (2000) Advanced welding processes for transmission pipelines. In: 3 rd Int. Conf., Pipeline Technol. Proc. [3] Murugan N, Parmar RS (1994) Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel, J Mater Process Technol 41:
10 80 Arc Welding [4] Thomsen JS (2004) Advanced control methods for optimization of arc welding, Ph.D. Thesis, Department of Control Engineering, Aalborg University, Denmark, June [5] Connor LP (1991) Welding handbook-welding processes. 8 th edi. American Welding Society [6] Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches-a reference guide, Adv Eng Soft 39: [7] Raveendra J, Parmar RS (1987) Mathematical models to predict weld bead geometry for flux cored arc welding. Journal of Metal Constructions 19: [8] Kim IS, Son JS, Kim IG, Kim OS (2003) A study on relationship between process variable and bead penetration for robotic CO2 arc welding. Journal of Materials Processing Technology 136: [9] Mendez PF, Eagar TW (2003) Penetration and Defect Formation in High-Current arc welding, Weld J, 82(10)296s-306s [10] Okui N, Ketron D, Bordelon F, Hirata Y, Clark G (2007) A Methodology for Prediction of Fusion Zone Shape, weld J, 35s-43s [11] Lancaster JF (1986) The physics of welding. Pergamon Pub., 2 nd edi. [12] Lin ML, Eagar TW (1985) Influence of arc pressure on weld pool geometry, Weld J, s-169s [13] Lancaster JF (1993) Metallurgy of welding. Chapman & Hall pub., 5 th edi. [14] Guoxiang XU, Chuansong WU (2007) Numerical analysis of weld pool geometry in globular-transfer gas metal arc welding, Front. Mater. Sci. China, 1(1): [15] Doodman AR, Mortazavi SA (2008) A new adaptive method (AF-PID) presentation with implementation in the automatic welding robot, IEEE/ASME Int. Conf. Mechat. Emb. Sys. Appl., (MESA08).
11 Arc Welding Edited by Prof. Wladislav Sudnik ISBN Hard cover, 320 pages Publisher InTech Published online 16, December, 2011 Published in print edition December, 2011 Ever since the invention of arc technology in 1870s and its early use for welding lead during the manufacture of lead-acid batteries, advances in arc welding throughout the twentieth and twenty-first centuries have seen this form of processing applied to a range of industries and progress to become one of the most effective techniques in metals and alloys joining. The objective of this book is to introduce relatively established methodologies and techniques which have been studied, developed and applied in industries or researches. State-of-the-art development aimed at improving technologies will be presented covering topics such as weldability, technology, automation, modelling, and measurement. This book also seeks to provide effective solutions to various applications for engineers and researchers who are interested in arc material processing. This book is divided into 4 independent sections corresponding to recent advances in this field. How to reference In order to correctly reference this scholarly work, feel free to copy and paste the following: Alireza Doodman Tipi and Fatemeh Sahraei (2011). WHI Formula as a New Criterion in Automatic Pipeline GMAW Process, Arc Welding, Prof. Wladislav Sudnik (Ed.), ISBN: , InTech, Available from: InTech Europe University Campus STeP Ri Slavka Krautzeka 83/A Rijeka, Croatia Phone: +385 (51) Fax: +385 (51) InTech China Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, , China Phone: Fax:
Typical TIG-plasma solutions
Typical -plasma solutions 2228-005 2003-670 Boilers maker solutions 2004-257 1210-064 1210-067 64 3638-008 2008-400 1415-014 2000-169 2003-204 1467-003 2000-343 2000-160 Pipework solutions or plasma welded
The soot and scale problems
Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications
Overview on Welding and Ergonomics
Jannuary, 30-2014 Overview on Welding and Ergonomics Luca Costa srl, Italy [email protected] Approaching ergonomics in welding fabrication Welding fabrication involves several operations which
Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation
Weld Cracking An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction The James F. Lincoln Arc Welding Foundation Weld Cracking Several types of discontinuities may occur in welds
WELDING TECHNOLOGY DEGREES AND CERTIFICATES. Welding Technology Degree. Shielded Metal Arc Plate and Pipe (270 hours) Certificate
Area: Technical Education Dean: Dr. Trish Caldwell Phone: (916) 484-8354 Counseling: (916) 484-8572 www.arc.losrios.edu/~welding/ The American Welding Society (AWS) nationally accredits American River
Structural welding is a process by which the parts that are to be connected are heated and
CHAPTER 6. WELDED CONNECTIONS 6.1 INTRODUCTORY CONCEPTS Structural welding is a process by which the parts that are to be connected are heated and fused, with supplementary molten metal at the joint. A
Welding & Fabrication Industry Certification Programs
FALL 2013 Welding & Fabrication Industry Certification Programs Co-Sponsored by: Rochester Arc + Flame Center 125 Fedex Way, Rochester, NY 14624 www.rocafc.com Welding Industry Opportunities Welders are
Lecture: 33. Solidification of Weld Metal
Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on
A Beginner s Guide to MIG Welding
A Beginner s Guide to MIG Welding MIG Welding Names MIG welding, or MIG, is an acronym for Metal Inert Gas welding. MIG is a commonly used and accepted slang term that was appropriate when the process
WORD DEFINITION WORD (NATIONAL LANGUAGE)
WELDING GLOSSARY The Glossary has been created as part of the Migration for Development in the Western Balkans (MIDWEB) project, which received financial assistance from the European Commission IPA 2009
WERKZEUGMASCHINEN BENDING TOOLS
WRKZUGMASCHINN BNDING TOOLS Press Brakes HT Werkzeugmaschinen GmbH mmendinger Str. 21 D-79331 Teningen Germany Tel. + 49 (0) 76 41 46 09-0 Fax + 49 (0) 76 41 46 09-290 email: [email protected] Internet: www.eht.de
ADVANCED HIGH STRENGTH STEEL (AHSS) WELD PERFORMANCE STUDY FOR AUTOBODY STRUCTURAL COMPONENTS
A/SP Joining Technologies Committee Report ADVANCED HIGH STRENGTH STEEL (AHSS) PERFORMANCE STUDY FOR AUTOBODY STRUCTURAL COMPONENTS Welding Processes Performed by RoMan Engineering Services Supervised
WELDING & CUTTING MAIN EQUIPMENT
GASES DIVISION GAS WELDING & CUTTING EQUIPMENT WELDING & CUTTING MAIN EQUIPMENT GAS WELDING & CUTTING KIT The MARIGASES GAS WELDING AND CUTTING KIT is a high quality set containing all the tools and components
Understanding Plastics Engineering Calculations
Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,
EML 2322L MAE Design and Manufacturing Laboratory. Welding
EML 2322L MAE Design and Manufacturing Laboratory Welding Intro to Welding A weld is made when separate pieces of material to be joined combine and form one piece when heated to a temperature high enough
ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-
Standard Specification for Wrought High Strength Ferritic Steel Butt Welding Fittings 1. Scope :- 1.1 This specification covers wrought high strength ferritic steel butt-welding fitting of seamless and
VOLUME AND SURFACE AREAS OF SOLIDS
VOLUME AND SURFACE AREAS OF SOLIDS Q.1. Find the total surface area and volume of a rectangular solid (cuboid) measuring 1 m by 50 cm by 0.5 m. 50 1 Ans. Length of cuboid l = 1 m, Breadth of cuboid, b
Chapter 5 - Aircraft Welding
Chapter 5 - Aircraft Welding Chapter 5 Section A Study Aid Questions Fill in the Blanks 1. There are 3 types of welding:, and, welding. 2. The oxy acetylene flame, with a temperature of Fahrenheit is produced
TIG WELDING TIPS by Tom Bell
(This is a two-part document, with general tig welding first followed by one aluminum-specific.) TIG WELDING TIPS by Tom Bell 1. The bigger the rod, the easier it is to feed. Use larger diameter rods (3/32
Simulation of Transient Temperature Field in the Selective Laser Sintering Process of W/Ni Powder Mixture
Simulation of Transient Temperature Field in the Selective Laser Sintering Process of W/Ni Powder Mixture Jiwen Ren,Jianshu Liu,Jinju Yin The School of Electromechanical Engineering, East China Jiaotong
Additive manufacturing (aka 3D printing) of metallic materials Industrial applications and efficiency of technology
Additive manufacturing (aka 3D printing) of metallic materials Industrial applications and efficiency of technology MANU Future digital manufacturing technologies and systems P6 Next Generation Manufacturing
TERMS AND TERMINOLOGY FOR WELDING PROCESSES AND WELD CONFIGURATIONS
ECCC ECCC RECOMMENDATIONS - VOLUME 2 Part IIa [Issue 2] TERMS AND TERMINOLOGY FOR WELDING PROCESSES AND WELD CONFIGURATIONS blank page blank page ABSTRACT ECCC Recommendations Volume 2 Part IIa presents
Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace
China Steel Technical Report, No. 21, pp. 21-28, (2008) J. S. Shiau and S. H. Liu 21 Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace JIA-SHYAN SHIAU and SHIH-HSIEN LIU Steel and
Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window
Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window Ahsan Iqbal #1, Alireza Afshari #2, Per Heiselberg *3, Anders Høj **4 # Energy and Environment, Danish Building Research
Comparison of Mechanical Properties on 15CDV6 Steel Plates by TIG- Welding with and without copper coated filler wires
Comparison of Mechanical Properties on 15CDV6 Steel Plates by TIG- Welding with and without copper coated filler wires S Sapthagiri 1, K Jayathirtha Rao 2, K Ashok Reddy 3 and C Sharada Prabhakar 4 1,
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY
INDIAN STANDARDS (BIS) ON WELDING
** IS 82:957 Glossary of terms relating to welding and cutting of Sep 2008 metals 2 IS 83:986 Scheme of symbols for welding (revised) Sep 2008 3 IS 84:2004 Covered electrodes for manual metal arc welding
AS COMPETITION PAPER 2007 SOLUTIONS
AS COMPETITION PAPER 2007 Total Mark/50 SOLUTIONS Section A: Multiple Choice 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C 1 Section B: Written Answer Question 9. A mass M is attached to the end of a horizontal
Supercored 70NS TYPE : Metal-Cored
09000002 MIG FCW Supercored 70NS 1,2mm Hyundai 09000003 MIG FCW Supercored 70NS 1,4mm Hyundai 현대핸드북(영문)_5-수정 2013.7.24 12:51 PM 페이지205 백제2번 2540DPI 200LPI 09000024 MIG FCW Supercored 70NS 1,6mm Hyundai
Heat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 02 One Dimensional Steady State Heat Transfer Lecture No. # 05 Extended
mgr inż. Rafał Kaczmarek (MSc Eng.), dr inż. Ryszard Krawczyk (PhD (DSc) Eng.) Częstochowa University of Technology, Welding Technology Department
Rafał Kaczmarek, Ryszard Krawczyk Analysis of dimensions of test joints in the process of technology qualification according to PN-EN ISO 15614-1 in the aspect of ultrasonic testing according to Abstract:
Gas Tungsten Arc Welding GTAW (40 Hours Course)
Gas Tungsten Arc Welding GTAW (40 Hours Course) Table of Contents Gas Tungsten Arc Welding GTAW (40 Hours Course)...1 GENERAL SURVEY...1 1. SHORT DISCRIPTION OF THE MOST COMMON WELDING PROCESSES...3 1.1
RESEARCH ON SURFACE ROUGHNESS BY LASER CUT
84 RESEARCH ON SURFACE ROUGHNESS BY LASER CUT Miroslav RADOVANOVIC 1), Predrag DAŠIĆ 2) 1) University of Nis, Faculty of Mechanical Engineering, Nis, Serbia, 2) High Technical Mechanical School, Trstenik,
The Unique Accelabar Flow Meter
The Unique Accelabar Flow Meter The Accelabar is a new and unique flow meter that combines two differential pressure technologies to produce operating ranges never before attainable in a single flow meter.
EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS
JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR
TARIFF CODE and updates standard
TARIFF CODE and updates standard No HS CODE AHTN CODE PRODUCT DESCRIPTION PRODUCT TYPE STANDARDS IDENTIFIED 7207 Semi finished products of iron or non alloy steel Containing by weight less than 0.25% of
TITANIUM FABRICATION CORP.
TITANIUM FABRICATION CORP. Titanium, Zirconium, and Tantalum Clad Construction General Considerations In many applications, particularly for large pressure vessels designed for high temperature and pressure,
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
Technical Services & Capabilities
Technical Services & Capabilities Machining Welding MIG TIG Robotic TIG Friction Stir Welding Solution Heat Treat & Artificial Aging Assemblies & Fabrication Bike Frame Specialists Technical Services Product
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
Virtual Reality Welder Training
Virtual Reality Welder Training Project No. S1051 Navy ManTech Program Presenters: Allan Cote, Electric Boat Tim Gifford, VRSim Nancy Porter, EWI Project Review for ShipTech 2005 March 1, 2005 Biloxi,
Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations
Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering
Field Welding Inspection Guide
Field Welding Inspection Guide Assistance in interpretation of any specification or questions concerning field welding issues can be obtained from the Office of Materials Management, Structural Welding
P. Lu, Sh. Huang and K. Jiang
416 Rev. Adv. Mater. Sci. 33 (2013) 416-422 P. Lu, Sh. Huang and K. Jiang NUMERICAL ANALYSIS FOR THREE-DIMENSIONAL BULK METAL FORMING PROCESSES WITH ARBITRARILY SHAPED DIES USING THE RIGID/VISCO-PLASTIC
MASTER DEGREE PROJECT
MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :
Flow characteristics of microchannel melts during injection molding of microstructure medical components
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(5):112-117 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Flow characteristics of microchannel melts during
Problems in Welding of High Strength Aluminium Alloys
Singapore Welding Society Newsletter, September 1999 Problems in Welding of High Strength Aluminium Alloys Wei Zhou Nanyang Technological University, Singapore E-mail: [email protected] Pure aluminium has
Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling Channels for Block Laminated Molds
International Journal of Engineering and Advanced Technology (IJEAT ISSN: 2249 8958 Volume-4 Issue-5 June 2015 Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling
Understanding Boiling Water Heat Transfer in Metallurgical Operations
Understanding Boiling Water Heat Transfer in Metallurgical Operations Dr. Mary A. Wells Associate Professor Department of Mechanical and Mechatronics Engineering University of Waterloo Microstructural
The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011
The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011 Duncan Wilmot, Technical Manager, Cladtek International, Australia
Milling. COPYRIGHT 2008, Seco Tools AB 1/111
Milling 1/111 2/111 Milling A simple choice! Experts required? No Just follow some basic rules. 3/111 Face milling 4/111 Square shoulder milling 5/111 Disc milling 6/111 Copy milling 7/111 Plunge milling
PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE
PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE K. ASANO, S. NUNOMURA, T. MISAWA, N. OHNO and S. TAKAMURA Department of Energy Engineering and Science, Graduate School
Module 2 GEARS. Lecture 3 - INVOLUTE SPUR GEARS
Module 2 GEARS Lecture 3 - INVOLUTE SPUR GEARS Contents 3.1 Introduction 3.2 Standard tooth systems for spur gears 3.3 Profile shifted gears 3.4 Involutometry 3.5 Design of gear blanks 3.1 INTRODUCTION
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
Autogenous Laser Welding of Aluminum
Hans Leidich OEM Laser Specialist Laser Technology Center TRUMPF Inc. Why Autogenous Simpler Less hardware Easier process Faster speed Should be first approach (if doesn t work, then go to the next step)
A World Class Manufacturer of Induction Bends
A World Class Manufacturer of Induction Bends COFELY FABRICOM BENDING A leading position in bending High Flexibility and Close Tolerances As a world leading manufacturer of pipe bends, produced by induction
Non- Carbon Fiber Electrical Heating Textile Introduction:
Non- Carbon Fiber Electrical Heating Introduction: This Heating is a new generation electrical heating system which is specially designed for mobile heating, energy saving and safety orientated requirements
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.
MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are
Module 7 (Lecture 24 to 28) RETAINING WALLS
Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5
Impact of Reflectors on Solar Energy Systems
Impact of Reflectors on Solar Energy Systems J. Rizk, and M. H. Nagrial Abstract The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve
Rate of Heating Analysis of Data Centers during Power Shutdown
2011. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions, Volume 117, Part 1. For personal use only. Additional reproduction,
Butt Fusion Welding of HDPE Pipes Work Procedure
Butt Fusion Welding of HDPE Pipes Work Procedure A pipeline is as good as its weakest point. Accordingly it is not only important that quality pipes and components are used in a piping system, but also
Battery Thermal Management System Design Modeling
Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D ([email protected]) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,
2. THE TEORRETICAL OF GROUND PENETRATING RADAR:
Sixteenth International Water Technology Conference, IWTC 16 2012, Istanbul, Turkey 1 THE USE OF GROUND PENETRATING RADAR WITH A FREQUENCY 1GHZ TO DETECT WATER LEAKS FROM PIPELINES Alaa Ezzat Hasan Ministry
Open Channel & Partially Filled Pipe Ultrasonic Flow Meters
Open Channel & Partially Filled Pipe Ultrasonic Flow Meters DYNAMETERS series DMDF-OP has three types as below: DMDF-OP-A for partially filled pipe application; DMDF-OP-B for partially filled pipe, channel
11. NONDESTRUCTIVE TESTING
11. NONDESTRUCTIVE TESTING Nondestructive testing includes magnetic particle testing (MT), Liquid Dye Penetrant testing (PT), Radiographic Testing (RT) and Ultrasonic Testing (UT). The purpose of nondestructive
GMAW Aluminum Plate Annotated Instructor s Guide
GMAW Aluminum Plate Annotated Instructor s Guide Module 29401-10 Module Overview This module covers the basics of aluminum metallurgy. It also explains how to make fillet and V-groove welds on aluminum
SMARTY 160 POWER page 4-5 SMARTY 180 / 220 XL page 4-6 SMARTY TX 250 page 4-7. SMARTY TX 160 Alu page 4-8 SMARTY TX 220 Alu page 4-9
CHAPTER TIG welding Introduction pages - & - WELDING POWER SOURCES DC power sources SMARTY 60 POWER page -5 SMARTY 80 / 0 XL page -6 SMARTY TX 50 page -7 AC/DC power sources SMARTY TX 60 Alu page -8 SMARTY
Removing chips is a method for producing plastic threads of small diameters and high batches, which cause frequent failures of thread punches.
Plastic Threads Technical University of Gabrovo Yordanka Atanasova Threads in plastic products can be produced in three ways: a) by direct moulding with thread punch or die; b) by placing a threaded metal
Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert
Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number
Analysis and Optimization of Investment Castings to Reduce Defects and Increase Yield
Analysis and Optimization of Investment Castings to Reduce Defects and Increase Yield Arunkumar P 1, Anand.S.Deshpande 2, Sangam Gunjati 3 1 Associate Professor, Mechanical Engineering, KLS Gogte Institute
Carbon Cable. Sergio Rubio Carles Paul Albert Monte
Carbon Cable Sergio Rubio Carles Paul Albert Monte Carbon, Copper and Manganine PhYsical PropERTieS CARBON PROPERTIES Carbon physical Properties Temperature Coefficient α -0,0005 ºC-1 Density D 2260 kg/m3
INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS
INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural
MIT 2.810 Manufacturing Processes and Systems. Homework 6 Solutions. Casting. October 15, 2015. Figure 1: Casting defects
MIT 2.810 Manufacturing Processes and Systems Casting October 15, 2015 Problem 1. Casting defects. (a) Figure 1 shows various defects and discontinuities in cast products. Review each one and offer solutions
Mechanical Property Changes in Steel during the Pipe Making Process Brent Keil 1
381 Mechanical Property Changes in Steel during the Pipe Making Process Brent Keil 1 Abstract Welded Steel Pipe (WSP) is arguably the most widely utilized pipe material for the transmission of water throughout
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 45 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT 1.0 SCOPE 2 2.0 CONFLICTS
CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes
The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes Palacios A. and Casal J. Centre for Technological Risk Studies (CERTEC), Department of Chemical Engineering, Universitat Politècnica
POURING THE MOLTEN METAL
HEATING AND POURING To perform a casting operation, the metal must be heated to a temperature somewhat above its melting point and then poured into the mold cavity to solidify. In this section, we consider
Phenomenological aspects of a modified fragmentation of the ground material
Phenomenological aspects of a modified fragmentation of the ground material Lucjan Dabrowski, Mieczyslaw Marciniak Warsaw University of Technology, Warsaw, Poland Summary: The main point of this paper
Welder Guide Book. All-positional rutile flux cored wires for non and low alloyed steels
Welder Guide Book All-positional rutile flux cored wires for non and low alloyed steels Contents Introduction 3 Before you start welding 4 Contact tip and gas nozzle 8 Polarity and inductance 10 Welding
3.3 Welding and welded connections
3.3 Welding and welded connections Welding is the process of joining two pieces of metal by creating a strong metallurgical bond between them by heating or pressure or both. It is distinguished from other
Gas Metal Arc Welding. Product and Procedure Selection
Gas Metal Arc Welding Product and Procedure Selection Gas Metal Arc Welding The gas metal arc process is dominant today as a joining process among the world s welding fabricators. Despite its sixty years
Salzgitter Industrial Supply Chain Concept for Offshore Wind Jackets
Salzgitter Industrial Supply Chain Concept for Offshore Wind Jackets Cost Reduction Potentials in the Fabrication of Offshore Wind Jackets by Standardized Pipes and Pre-fabricated Components The facts
Chapter 16. Mensuration of Cylinder
335 Chapter 16 16.1 Cylinder: A solid surface generated by a line moving parallel to a fixed line, while its end describes a closed figure in a plane is called a cylinder. A cylinder is the limiting case
Homework solutions for test 2
Homework solutions for test 2 HW for Lecture 7 22.2 What is meant by the term faying surface? Answer. The faying surfaces are the contacting surfaces in a welded joint. 22.3 Define the term fusion weld.
Light Duty Commercial Electric Water Heater
Features Heavy Duty Construction Hydrastone cement lining provides longer tank life Copper-silicon tappings cannot rust or corrode High impact composite jacket eliminates damage during installation and
PLCM-T1 / PLCM-T2 Torch height controller
www.purelogic.ru Operating guide СОДЕРЖАНИЕ: 1. General information... 2 2. Scope of delivery... 3 3. Specifications... 3 4. The differences between T1 and T2... 4 5. Principle of operation... 6 6. Wiring
Job Ready Assessment Blueprint. Welding. Test Code: 4172 / Version: 01. Copyright 2013. All Rights Reserved.
Job Ready Assessment Blueprint Welding Test Code: 4172 / Version: 01 Copyright 2013. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information Written Assessment
GK Packing System Welding Instructions
GK Packing System Welding Instructions Roxtec GmbH Neuer Höltigbaum 1-3, 22143 Hamburg GERMANY Tel +49 (040) 657398-0, Fax +49 (040) 657398-50 EMAIL [email protected], www.roxtec.de Welding instructions
Journal bearings/sliding bearings
Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated
A Beginner s Guide to TIG Welding
A Beginner s Guide to TIG Welding TIG Welding Names TIG Welding, or TIG, is an acronym for Tungsten Inert Gas welding. TIG is a commonly used and accepted slag term. The proper terminology is Gas Tungsten
(This report is endorsed) Industrivej 20, 9900 Frederikshavn, Danmark
Spectrum Laboratories Ltd is accredited by International Accreditation New Zealand (formerly Telarc). The tests reported herein have been performed in accordance with the terms of our accreditation. This
Unmatched Metal Hardness Testing
Unmatched Metal Hardness Testing The Equostat 3 hardness tester can be connected both to the portable Equotip 3 platform and directly to a PC, with graphic user guidance Hardness Measurements made easy
A Surveillance Robot with Climbing Capabilities for Home Security
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 11, November 2013,
STUDY OF SHIELDING GASES FOR MAG WELDING
Materials Physics and Mechanics 16 (2013) 126-134 Received: March 14, 2013 STUDY OF SHIELDING GASES FOR MAG WELDING Irina Boiko, Didzis Avisans Riga Technical University, Institute of Mechanical Engineering,
