Linear Control Systems Lecture # 16 Observers and Output Feedback Control

Size: px
Start display at page:

Download "Linear Control Systems Lecture # 16 Observers and Output Feedback Control"

Transcription

1 Linear Control Systems Lecture # 16 Observers and Output Feedback Control p. 1/2

2 p. 2/2 Observers: Consider the system ẋ = Ax + Bu y = Cx + Du where the initial state x(0) is unknown, but we can measure the output y. We want to estimate the state x from the available signals u and y We assume that we know the matrices {A, B, C, D} If x(0) was known we could have estimated x by solving the equation ˆx = Aˆx + Bu, ˆx(0) = x(0) on line and we would have obtained ˆx(t) x(t) because of the uniqueness of solutions

3 p. 3/2 This can also be seen by defining the estimation error e = x ˆx. Then, e satisfies the equation ė = Ax + Bu Aˆx Bu = Ae, e(0) = 0 whose solution is e(t) 0 If x(0) is unknown, we cannot choose ˆx(0) = x(0). Hence e(0) 0 and the estimation error will be different from zero. Notice, however, that if R e λ(a) < 0 lim e(t) = 0 t Hence, we can asymptotically estimate the state x

4 p. 4/2 What if A has some eigenvalues with nonnegative real parts? or if all the eigenvalues have negative real parts, but convergence is slow? Can we use feedback to stabilize the observer? What signal can we feedback? We measure y(t) = Cx(t) + Du(t). If an estimate of the state ˆx(t) is available on line, we can use it to estimate the output by ŷ(t) = C ˆx(t) + Du(t). Then y(t) ŷ(t) = Cx(t) + Du(t) C ˆx(t) Du(t) = Ce(t)

5 p. 5/2 Consider the observer (estimator): ˆx = Aˆx + Bu + Ky ŷ where K is the observer gain (an n p matrix, where p is the number of outputs) ˆx = Aˆx + Bu + Ky C ˆx Du e(t) = x(t) ˆx(t) ė = ẋ ˆx = Ax + Bu Aˆx Bu KCx + Du C ˆx Du = (A KC)e

6 p. 6/2 Design K such that When is that possible? R e λ(a KC) < 0 (A KC) T = A T C T K T Let à = A T, B = C T, F = K T (A KC) T = à + B F There is a matrix F such that R e λ(ã + B F ) < 0 if and only if (Ã, B) is stabilizable; i.e., if (Ã, B) is controllable or any uncontrollable eigenvalue has a negative real part

7 p. 7/2 There is a matrix K such that R e λ(a KC) < 0 if and only if (A, C) is detectable; i.e., (A, C) is observable or any unobservable eigenvalue has a negative real part How would you compute K? Find F to stabilize (Ã + B F ) using any of the methods studied under state feedback. Then, take K = F T

8 p. 8/2 Output Feedback Control: Design an output feedback controller to stabilize the system Separation principle: ẋ = Ax + Bu y = Cx + Du Design a state feedback controller u = F x + v such that R e λ(a + BF ) < 0 Design an observer ˆx = Aˆx + Bu + Ky C ˆx Du where K is chosen such that R e λ(a KC) < 0 Take the output feedback controller as u = F ˆx + v

9 p. 9/2 Closed-loop system under state feedback: ẋ = (A + BF )x + Bv y = (C + DF )x + Dv The system is asymptotically stable because R e λ(a + BF ) < 0. Hence, it is BIBO stable The closed-loop transfer function from v to y is given by H cl (s) = (C + DF )(si A BF ) 1 B + D

10 p. 10/2 Closed-loop system under output feedback: ẋ = Ax + BF ˆx + Bv ˆx = Aˆx + B(F ˆx + v) + KCx + Du C ˆx Du = KCx + (A + BF KC)ˆx + Bv y = Cx + DF ˆx + Dv Change of variables: x e = I 0 I I x ˆx ẋ = Ax + BF (x e) + Bv = (A + BF )x BF e + Bv ė = (A KC)e

11 p. 11/2 ẋ = (A + BF )x BF e + Bv ė = (A KC)e y = (C + DF )x DF e + Dv ẋ ė = y = (A + BF ) BF 0 (A KC) (C + DF ) DF x e x e + Dv + B 0 v The 2n closed-loop eigenvalues are the eigenvalues of (A + BF ) and (A KC)

12 p. 12/2 Since both (A + BF ) and (A KC) are designed to have eigenvalues with negative real parts, the closed-loop system is asymptotically stable and BIBO stable To find the closed-loop transfer function from v to y, take the Laplace transform of the state and output equations assuming zero initial conditions s x(s) = (A + BF ) x(s) BF ẽ(s) + Bṽ(s) sẽ(s) = (A KC)ẽ(s) ỹ(s) = (C + DF ) x(s) DF ẽ(s) + Dṽ(s) where x(s) = L{x(t)} ẽ(s) = 0 ỹ(s) = (C +DF )(si A BF ) 1 B+Dṽ(s) The same as in state feedback

13 p. 13/2 Remarks: 1. The controller is known as Observer-based controller 2. The observer-based controller can be represented as a dynamic compensator with cascade and feedback components u = F ˆx + v, ˆx = Aˆx + Bu + K(y C ˆx Du) ˆx = (A KC)ˆx + Ky + (B KD)u x(s) = (si A + KC) 1 Kỹ(s) + (B KD)ũ(s) ũ(s) = F (si A+KC) 1 Kỹ(s)+(B KD)ũ(s)+ṽ(s)

14 p. 14/2 ũ(s) = F (si A+KC) 1 Kỹ(s)+(B KD)ũ(s)+ṽ(s) Define G u (s) = F (si A + KC) 1 (B KD), G y (s) = F (si A + KC) 1 K ũ(s) = G u (s)ũ(s) + G y (s)ỹ(s) + ṽ(s) I G u (s)ũ(s) = G y (s)ỹ(s) + ṽ(s) ũ(s) = I G u (s) 1 G y (s)ỹ(s) + ṽ(s)

15 p. 15/2 ũ(s) = I G u (s) 1 G y (s)ỹ(s) + ṽ(s) 3. The eigenvalues of (A + BF ) are chosen to meet the design specifications on the transient response and any constraints on x or u (as in state feedback). The eigenvalues of (A KC) are chosen much faster than those of (A + BF ) (farther away to the left)

16 p. 16/2 Example: Stabilization of H(s) = 1/s 2 ẋ 1 = x 2, ẋ 2 = u, y = x 1 A = , B = 0 1, C = 1 0, D = 0 (A, B) is controllable and (A, C) is observable State feedback control: u = F x + v F = f 1 f 2 A + BF = 0 1 f 1 f 2 detsi (A + BF ) = s 2 f 2 s f 1

17 p. 17/2 Desired eigenvalues: A pair of complex eigenvalues with ω n = 2 and ζ = 0.5 s 2 + 2ζω n s + ω 2 n = s2 + 2s + 4 detsi (A + BF ) = s 2 f 2 s f 1 F = 4 2 Observer: K = k 1 k 2 A KC = k 1 1 k 2 0 detsi (A KC) = s 2 + k 1 s + k 2

18 p. 18/2 Desired eigenvalues: A pair of complex eigenvalues with ω n = 10 and ζ = 0.5 s 2 + 2ζω n s + ω 2 n = s2 + 10s detsi (A KC) = s 2 + k 1 s + k 2 10 K = 100 Output feedback controller: u = 4ˆx 1 2ˆx 2 + v ˆx 1 = ˆx (y ˆx 1 ) ˆx 2 = u + 100(y ˆx 1 )

19 p. 19/2 G u = 2(s + 12) s s (1 G u ) 1 = s2 + 10s s s G y = 80(3s + 5) s s + 100

20 p. 20/2 Given the system ẋ = Ax + Bu y = Cx + Du under what conditions can we stabilize it by output feedback? Theorem: The system {A, B, C, D} can be stabilized by linear output feedback if and only if (A, B) is stabilizable and (A, C) is detectable Proof of sufficiency: If (A, B) is stabilizable and (A, C) is detectable, we have seen how to design a stabilizing observer-based controller

21 p. 21/2 Proof of necessity: Show that uncontrollable and unobservable eigenvalues cannot be moved by output feedback It is clear that uncontrollable eigenvalues cannot be moved by feedback because they cannot be reached from the input; so it does not matter whether we deal with state or output feedback. They cannot be moved Â11 Â 12 ˆB 1 Â =, ˆB = 0 Â 22 0 ż 2 = Â 22 z 2

22 p. 22/2 Consider now unobservable eigenvalues Â11 0, Ĉ = Ĉ1 0 Â 21 Â 22 ż 1 = Â 11 z 1 + ˆB 1 u ż 2 = Â 21 z 1 + Â 22 z 2 + ˆB 2 u y = Ĉ 1 z 1 + Du Set v = 0 and consider any linear dynamic controller that can be represented by ũ(s) = G(s)ỹ(s). Let {A a, B a, C a, D a } be a state-space model of G(s)

23 p. 23/2 ż c = A a z c + B a y u = C a z c + D a y u = C a z c + D a (Ĉ 1 z 1 + Du) (I D a D)u = C a z c + Ĉ 1 z 1 The matrix (I D a D) must be nonsingular for the closed-loop system to be well defined u = (I D a D) 1 C a z c + Ĉ 1 z 1 Notice that u depends only on z 1 and z c. Also ż c = z 1 + z c

24 p. 24/2 The closed-loop equation takes the form ż 1 0 ż c = 0 ż 2 Â 22 z 1 z c z 2 The unobservable eigenvalues remain as closed-loop eigenvalues

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?

Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/? Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability p. 1/? p. 2/? Definition: A p p proper rational transfer function matrix G(s) is positive

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

Linear Control Systems

Linear Control Systems Chapter 3 Linear Control Systems Topics : 1. Controllability 2. Observability 3. Linear Feedback 4. Realization Theory Copyright c Claudiu C. Remsing, 26. All rights reserved. 7 C.C. Remsing 71 Intuitively,

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Okko H. Bosgra Delft University of Technology Delft, The Netherlands Huibert Kwakernaak Emeritus Professor University of Twente Enschede, The Netherlands Gjerrit Meinsma

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems

Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.

More information

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient

More information

LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1

LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1 LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1 Henrik Niemann Jakob Stoustrup Mike Lind Rank Bahram Shafai Dept. of Automation, Technical University of Denmark, Building 326, DK-2800 Lyngby, Denmark

More information

Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference?

Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference? Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference? Samarjit Chakraborty www.rcs.ei.tum.de TU Munich, Germany Joint work with Dip Goswami*, Reinhard Schneider #, Alejandro Masrur

More information

Review of First- and Second-Order System Response 1

Review of First- and Second-Order System Response 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First- and Second-Order System Response 1 1 First-Order Linear System Transient

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

(Quasi-)Newton methods

(Quasi-)Newton methods (Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 45, No. 1, pp. 273 297 c 2006 Society for Industrial and Applied Mathematics EXPONENTIAL STABILIZATION OF WELL-POSED SYSTEMS BY COLOCATED FEEDBACK RUTH F. CURTAIN AND GEORGE

More information

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations. Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

4 Lyapunov Stability Theory

4 Lyapunov Stability Theory 4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We

More information

3.1 State Space Models

3.1 State Space Models 31 State Space Models In this section we study state space models of continuous-time linear systems The corresponding results for discrete-time systems, obtained via duality with the continuous-time models,

More information

SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I

SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I Lennart Edsberg, Nada, KTH Autumn 2008 SIXTY STUDY QUESTIONS TO THE COURSE NUMERISK BEHANDLING AV DIFFERENTIALEKVATIONER I Parameter values and functions occurring in the questions belowwill be exchanged

More information

State Feedback Stabilization with Guaranteed Transient Bounds

State Feedback Stabilization with Guaranteed Transient Bounds State Feedback Stabilization with Guaranteed Transient Bounds D. Hinrichsen, E. Plischke, F. Wirth Zentrum für Technomathematik Universität Bremen 28334 Bremen, Germany Abstract We analyze under which

More information

SECTION 19 CONTROL SYSTEMS

SECTION 19 CONTROL SYSTEMS Christiansen-Sec.9.qxd 6:8:4 6:43 PM Page 9. The Electronics Engineers' Handbook, 5th Edition McGraw-Hill, Section 9, pp. 9.-9.3, 5. SECTION 9 CONTROL SYSTEMS Control is used to modify the behavior of

More information

Controllability and Observability

Controllability and Observability Controllability and Observability Controllability and observability represent two major concepts of modern control system theory These concepts were introduced by R Kalman in 1960 They can be roughly defined

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

Model order reduction via dominant poles

Model order reduction via dominant poles Model order reduction via dominant poles NXP PowerPoint template (Title) Template for presentations (Subtitle) Joost Rommes [joost.rommes@nxp.com] NXP Semiconductors/Corp. I&T/DTF/Mathematics Joint work

More information

15 Limit sets. Lyapunov functions

15 Limit sets. Lyapunov functions 15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior

More information

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model

A Review of the Impact of Requirements on Software Project Development Using a Control Theoretic Model J. Software Engineering & Applications, 2010, 3, 852-857 doi:10.4236/jsea.2010.39099 Published Online September 2010 (http://www.scirp.org/journal/jsea) A Review of the Impact of Requirements on Software

More information

Robust output feedbackstabilization via risk-sensitive control

Robust output feedbackstabilization via risk-sensitive control Automatica 38 22) 945 955 www.elsevier.com/locate/automatica Robust output feedbackstabilization via risk-sensitive control Valery A. Ugrinovskii, Ian R. Petersen School of Electrical Engineering, Australian

More information

Control Systems with Actuator Saturation

Control Systems with Actuator Saturation Control Systems with Actuator Saturation Analysis and Design Tingshu Hu Zongli Lin With 67 Figures Birkhauser Boston Basel Berlin Preface xiii 1 Introduction 1 1.1 Linear Systems with Actuator Saturation

More information

Interactive applications to explore the parametric space of multivariable controllers

Interactive applications to explore the parametric space of multivariable controllers Milano (Italy) August 28 - September 2, 211 Interactive applications to explore the parametric space of multivariable controllers Yves Piguet Roland Longchamp Calerga Sàrl, Av. de la Chablière 35, 14 Lausanne,

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

State Observer Design for a Class of Takagi-Sugeno Discrete-Time Descriptor Systems

State Observer Design for a Class of Takagi-Sugeno Discrete-Time Descriptor Systems Applied Mathematical Sciences, Vol. 9, 2015, no. 118, 5871-5885 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.54288 State Observer Design for a Class of Takagi-Sugeno Discrete-Time Descriptor

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

7. Show that the expectation value function that appears in Lecture 1, namely

7. Show that the expectation value function that appears in Lecture 1, namely Lectures on quantum computation by David Deutsch Lecture 1: The qubit Worked Examples 1. You toss a coin and observe whether it came up heads or tails. (a) Interpret this as a physics experiment that ends

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

Controllability of Dynamical Systems: Threat Models and Reactive Security

Controllability of Dynamical Systems: Threat Models and Reactive Security Controllability of Dynamical Systems: Threat Models and Reactive Security Carlos Barreto,AlvaroA.Cárdenas, and Nicanor Quijano Department of Computer Science, University of Texas at Dallas Department of

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Feedback Control Theory

Feedback Control Theory Feedback Control Theory John Doyle, Bruce Francis, Allen Tannenbaum c Macmillan Publishing Co., 1990 Contents Preface iii 1 Introduction 1 1.1 Issues in Control System Design.............................

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

On the D-Stability of Linear and Nonlinear Positive Switched Systems

On the D-Stability of Linear and Nonlinear Positive Switched Systems On the D-Stability of Linear and Nonlinear Positive Switched Systems V. S. Bokharaie, O. Mason and F. Wirth Abstract We present a number of results on D-stability of positive switched systems. Different

More information

Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th

Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

CONTROLLER DESIGN USING POLYNOMIAL MATRIX DESCRIPTION

CONTROLLER DESIGN USING POLYNOMIAL MATRIX DESCRIPTION CONTROLLER DESIGN USING POLYNOMIAL MATRIX DESCRIPTION Didier Henrion, Centre National de la Recherche Scientifique, France Michael Šebek, Center for Applied Cybernetics, Faculty of Electrical Eng., Czech

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

Adaptive Control Using Combined Online and Background Learning Neural Network

Adaptive Control Using Combined Online and Background Learning Neural Network Adaptive Control Using Combined Online and Background Learning Neural Network Eric N. Johnson and Seung-Min Oh Abstract A new adaptive neural network (NN control concept is proposed with proof of stability

More information

14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth

14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth 14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth Daron Acemoglu MIT November 15 and 17, 211. Daron Acemoglu (MIT) Economic Growth Lectures 6 and 7 November 15 and 17, 211. 1 / 71 Introduction

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply.

Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply. Motor Control Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Operator Input CPU digital? D/A, PWM analog voltage Power supply Amplifier linear,

More information

Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

More information

Formulations of Model Predictive Control. Dipartimento di Elettronica e Informazione

Formulations of Model Predictive Control. Dipartimento di Elettronica e Informazione Formulations of Model Predictive Control Riccardo Scattolini Riccardo Scattolini Dipartimento di Elettronica e Informazione Impulse and step response models 2 At the beginning of the 80, the early formulations

More information

Scicos is a Scilab toolbox included in the Scilab package. The Scicos editor can be opened by the scicos command

Scicos is a Scilab toolbox included in the Scilab package. The Scicos editor can be opened by the scicos command 7 Getting Started 7.1 Construction of a Simple Diagram Scicos contains a graphical editor that can be used to construct block diagram models of dynamical systems. The blocks can come from various palettes

More information

/SOLUTIONS/ where a, b, c and d are positive constants. Study the stability of the equilibria of this system based on linearization.

/SOLUTIONS/ where a, b, c and d are positive constants. Study the stability of the equilibria of this system based on linearization. echnische Universiteit Eindhoven Faculteit Elektrotechniek NIE-LINEAIRE SYSEMEN / NEURALE NEWERKEN (P6) gehouden op donderdag maart 7, van 9: tot : uur. Dit examenonderdeel bestaat uit 8 opgaven. /SOLUIONS/

More information

Matlab and Simulink. Matlab and Simulink for Control

Matlab and Simulink. Matlab and Simulink for Control Matlab and Simulink for Control Automatica I (Laboratorio) 1/78 Matlab and Simulink CACSD 2/78 Matlab and Simulink for Control Matlab introduction Simulink introduction Control Issues Recall Matlab design

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: ashish.tiwari@sri.com Ashish Tiwari

More information

Iterative Methods for Solving Linear Systems

Iterative Methods for Solving Linear Systems Chapter 5 Iterative Methods for Solving Linear Systems 5.1 Convergence of Sequences of Vectors and Matrices In Chapter 2 we have discussed some of the main methods for solving systems of linear equations.

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

Network Traffic Modelling

Network Traffic Modelling University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade

More information

1 Short Introduction to Time Series

1 Short Introduction to Time Series ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Lecture 7 Circuit analysis via Laplace transform

Lecture 7 Circuit analysis via Laplace transform S. Boyd EE12 Lecture 7 Circuit analysis via Laplace transform analysis of general LRC circuits impedance and admittance descriptions natural and forced response circuit analysis with impedances natural

More information

LQ Optimal Control. Related Reading [KK]: 9.1-9.2, 10 and [AM]: 4.4, 6.4 1/60

LQ Optimal Control. Related Reading [KK]: 9.1-9.2, 10 and [AM]: 4.4, 6.4 1/60 LQ Optimal Control Stability and the Lyapunov equation Linear Quadratic Optimal Control Solution with completion of squares The algebraic Riccati equation Cheap control and asymptotic properties Robustness

More information

Lecture 18: The Time-Bandwidth Product

Lecture 18: The Time-Bandwidth Product WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Passive control. Carles Batlle. II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July 18-22 2005

Passive control. Carles Batlle. II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July 18-22 2005 Passive control theory I Carles Batlle II EURON/GEOPLEX Summer School on Modeling and Control of Complex Dynamical Systems Bertinoro, Italy, July 18-22 25 Contents of this lecture Change of paradigm in

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

More information

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2 MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

10.450 Process Dynamics, Operations, and Control Lecture Notes - 11 Lesson 11. Frequency response of dynamic systems.

10.450 Process Dynamics, Operations, and Control Lecture Notes - 11 Lesson 11. Frequency response of dynamic systems. Lesson. Frequency response of dynamic systems..0 Context We have worked with step, pulse, and sine disturbances. Of course, there are many sine disturbances, because the applied frequency may vary. Surely

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Control System Definition

Control System Definition Control System Definition A control system consist of subsytems and processes (or plants) assembled for the purpose of controlling the outputs of the process. For example, a furnace produces heat as a

More information

Impulse Response Functions

Impulse Response Functions Impulse Response Functions Wouter J. Den Haan University of Amsterdam April 28, 2011 General definition IRFs The IRF gives the j th -period response when the system is shocked by a one-standard-deviation

More information

Time-Domain Solution of LTI State Equations. 2 State-Variable Response of Linear Systems

Time-Domain Solution of LTI State Equations. 2 State-Variable Response of Linear Systems 2.14 Analysis and Design of Feedback Control Systems Time-Domain Solution of LTI State Equations Derek Rowell October 22 1 Introduction This note examines the response of linear, time-invariant models

More information

Cyber-Physical Security in Power Networks

Cyber-Physical Security in Power Networks Cyber-Physical Security in Power Networks Fabio Pasqualetti Florian Dörfler Francesco Bullo Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Lecture 1: Introduction to Dynamical Systems

Lecture 1: Introduction to Dynamical Systems Lecture 1: Introduction to Dynamical Systems General introduction Modeling by differential equations (inputs, states, outputs) Simulation of dynamical systems Equilibria and linearization System interconnections

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Real-Time Embedded Convex Optimization

Real-Time Embedded Convex Optimization Real-Time Embedded Convex Optimization Stephen Boyd joint work with Michael Grant, Jacob Mattingley, Yang Wang Electrical Engineering Department, Stanford University Spencer Schantz Lecture, Lehigh University,

More information

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

More information

Lecture 8 : Dynamic Stability

Lecture 8 : Dynamic Stability Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Lecture 5 Least-squares

Lecture 5 Least-squares EE263 Autumn 2007-08 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information