Quadratic and Linear Systems

Size: px
Start display at page:

Download "Quadratic and Linear Systems"

Transcription

1 Mathematical Models with Applications, Quarter 3, Unit 3.1 Quadratic and Linear Systems Overview Number of instruction days: 5-7 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Solve systems of quadratic and linear equations in two variables using tables, graphs, and technology. Explain the meaning of the intersection of two functions graphed on a coordinate plane. Write a system of equations to determine the solution to a real world problem. 1 Make sense of problems and persevere in solving them. Construct equations to represent a real world problem and solve the resulting equations. 4 Model with mathematics. Model with mathematics to solve real world problems involving system of equations. 5 Use appropriate tools strategically. Use graphing calculator to verify algebraic solutions to systems of equations. Essential Questions How do you interpret the intersection of two graphs in the context of a problem? How do you know if a solution of a system of equations is viable or not viable? Providence Public Schools D-1

2 Math Models, Quarter 3, Unit 3.1 Quadratic and Linear Systems (5-7 Days) Standards Common Core State Standards for Mathematical Content Algebra Reasoning with Equations and Inequalities A-REI Solve systems of equations [Linear-linear and linear-quadratic] A-REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = 3x and the circle x 2 + y 2 = 3. Represent and solve equations and inequalities graphically [Linear and exponential; learn as general principle] A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Creating Equations A-CED Create equations that describe numbers or relationships [Linear, quadratic, and exponential (integer inputs only); for A.CED.3 linear only] A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. Common Core State Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to D-2 Providence Public Schools

3 Quadratic and Linear Systems (5-7 Days) Math Models, Quarter 3, Unit 3.1 get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. Providence Public Schools D-3

4 Math Models, Quarter 3, Unit 3.1 Quadratic and Linear Systems (5-7 Days) Clarifying the Standards Prior Learning Students learned to graph points on the coordinate plane in Grade 5, and interpreted the values of coordinates in the context of the situation. In Grade 6, students learned the process of finding a solution set for an equation, and solved equations of the form x + p = q, and px=q. They learned to write inequalities and represent solutions to a simple inequality on a number line. They also learned to write equations to describe relationships between two quantities. In Grade 7, students used the properties of operations to generate equivalent linear expressions. They also learned to use algebraic equations and inequalities to solve word problems. In Grade 8, students solved linear equations in two variables, including equations with 1, 0, and infinitely many solutions, and equations in which they applied the distributive property and collected like terms. Students began to develop techniques to solve and analyze systems of equations algebraically and graphically. They learned that the intersection of the graphs of two linear equations represented the solution to a system of equations. By the end of Algebra 1, students were expected to be fluent with their use of systems of linear equations and inequalities in two variables. They solved systems of equations exactly and approximately after proving different methods for solving systems. Students represented and solved systems of equations and inequalities including linear-linear and linear-quadratic systems. They explained why the x-coordinates of the intersection point of two graphs were the solutions to the equation. Students used technology to graph two functions, make tables of values, and found successive approximations. Students graphed the solution to a system of linear inequalities as the intersection of two half-planes. They represented constraints using equations, inequalities, and systems of equations, and interpreted solutions as viable or not viable options in a modeling context. Current Learning In this unit, students solve a quadratic-linear system of equations using tables, graphs, and technology in the context of real-world problems. They explain why the coordinates of the intersection point of two graphs are the solutions to the equation. Students use technology to graph two functions and make tables of values. They represent constraints using equations, and systems of equations, and interpret solutions as viable or not viable options in a modeling context. Future Learning In Algebra II, students will graph, analyze, and create equations and represent constraints with equations and inequalities using a variety of function types, including radical, rational, polynomial and trigonometric functions. They will also represent and solve systems of equations graphically, using multiple function types. Further study of systems of equations will occur in PreCalculus, where students will represent a system of linear equations as a matrix equation on a vector. They will also use the inverse of a matrix to solve systems of linear equations, using technology for larger systems. In advanced mathematics courses, including linear algebra and differential equations, students will represent systems of multiple equations with matrices. Systems of equations, both linear and non-linear, will be essential for student success in advanced courses in physics, economics, and chemistry. D-4 Providence Public Schools

5 Quadratic and Linear Systems (5-7 Days) Math Models, Quarter 3, Unit 3.1 Additional Findings In A Research Companion to Principles and Standards for School Mathematics, Chazan and Yerushalmy discuss the cognitive difficulties that many students have in working with the complex relationships embedded in systems of equations. As an example, they describe the methods that students must use to solve a system of equations consisting of a linear equation in standard form and a circle in standard form. As students work through the solving of such a system, they must move from an equation in two variables to a function of one to enable use of the substitution algorithm, from an equation in two variables to an equation in one variable using the algorithm, to generating equivalent expressions in solving the new equation. They indicate that this complexity is common in learning about equivalence in school algebra, and that this cognitive complexity must be taken into account when approaching topics involving equivalence ( ). They also indicate that graphing technology can assist students in making sense of equivalent expressions (130). Assessment When constructing an end of unit assessment, be aware that the assessment should measure your students understanding of the big ideas indicated within the standards. The CCSS Content Standards and the CCSS Practice Standards should be considered when designing assessments. Standards based mathematics assessment items should vary in difficulty, content and type. The assessment should include a mix of items which could include multiple choice items, short and extended response items and performance based tasks. When creating your assessment you should be mindful when an item could be differentiated to address the needs of students in your class. The mathematical concepts below are not a prioritized list of assessment items and your assessment is not limited to these concepts. However, care should be given to assess the skills the students have developed within this unit. The assessment should provide you with credible evidence as to your students attainment of the mathematics within the unit. Math Models students should be provided with multiple, alternative methods to express their understandings of the concepts that follow: Solve quadratic-linear system of equations in two variables using various methods. Model quadratic-linear system of equations involving real-world situations. Interpret the intersection of the graph of a linear equation with a quadratic equation in a real world context. Providence Public Schools D-5

6 Math Models, Quarter 3, Unit 3.1 Quadratic and Linear Systems (5-7 Days) Instruction Learning Objectives Students will be able to: Solve a quadratic-linear system of equations using tables. Solve a quadratic-linear system of equations by graphing. Solve a quadratic-linear system of equations using technology. Review and demonstrate knowledge of important concepts and procedures related to a quadraticlinear system of equations. Resources Modeling with Mathematics: A Bridge to Algebra II, W.H. Freeman and Company, 2006 Section 5.6 (pp ) Section 5.6 Assignment (p. 284) Section 5.7 (pp ) Online Companion Website: TI-Nspire Teacher Software Additional Resources located in the Supplementary Unit Materials Section of the Binder: o Regents Exam Questions A2.A3: Quadratic-Linear Systems 2 o o Graphing Technology Lab Systems of Linear and Quadratic Equations education.ti.com: How many Solutions 2? Note: The district resources may contain content that goes beyond the standards addressed in this unit. See the Planning for Effective Instructional Design and Delivery section below for specific recommendations. Materials Graphing calculators, grid paper, colored pencils D-6 Providence Public Schools

7 Quadratic and Linear Systems (5-7 Days) Math Models, Quarter 3, Unit 3.1 Instructional Considerations Key Vocabulary No new vocabulary Planning for Effective Instructional Design and Delivery Reinforced vocabulary taught in previous grades or units: points of intersection, linear, quadratic, and system of equations. A critical resource to make Math Models effective is the use of tables, handouts, and assessments provided by the publisher at (or google: Math Models: A Bridge to Algebra 2 ). Also available on this website are power point presentations, lesson plans, assessments and activities. For initial use, you will be prompted to set an an instructors account using an address as the UserId. You will also be prompted for the following companion website code: BFW41INST. There are numerous resources available on the internet to support solving quadratic-linear systems of equations. For example, the Khan Academy (khanacademy.org) has video tutorials for solving systems of non-linear equations. The supplementary resources in the binder provided additional opportunities for practice using real-world scenarios. Consider having students use a Venn diagram to identify the similarities and differences between solving quadratic-linear systems and linear-linear systems. The use of graphing technology is a nonlinguistic strategy which may benefit students with modeling real-world problems involving systems of quadratic and linear equations and identifying the solution to a system of equations. The Graphing Technology Lab Systems of Linear and Quadratic Equations provides instructions for using the TI-Nspire calculator to graph and solve systems of linear and quadratic equations. You should test the provided keystrokes in the activities in order to verify that they are aligned with the current operating systems on the calculators. An additional opportunity for solving systems of equations using technology to explore systems of quadratic and linear equations is provided below. The teacher and student pages for the activities are provided in the supplementary materials section of this curriculum frameworks binder. The activity can also be found by going to education.ti.com and searching for activity titles. However, you will need to download the tns file to the students calculators. How Many Solutions 2: This activity lets students manipulate two graphs to find the number of possible intersections of a system. Students will manipulate graphs created by linear and quadratic equations and recognize that a system of two equations in two variables can have no solution, one or more solutions, or infinitely many solutions. Providence Public Schools D-7

8 Math Models, Quarter 3, Unit 3.1 Quadratic and Linear Systems (5-7 Days) Additional TI-Nspire resources can be found using the TI-Nspire Teacher Software. As you formatively and summatively assess students, a cues, questions, and advance organizers strategy can be used, since students are answering questions about content that is important. Notes D-8 Providence Public Schools

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

Modeling in Geometry

Modeling in Geometry Modeling in Geometry Overview Number of instruction days: 8-10 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Use geometric shapes and their components to represent

More information

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

More information

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

More information

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,

More information

Polynomial Operations and Factoring

Polynomial Operations and Factoring Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

More information

Overview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders

Overview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for whole-number quotients with remainders of up to four-digit dividends

More information

Overview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs

Overview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture

More information

Polynomials and Polynomial Functions

Polynomials and Polynomial Functions Algebra II, Quarter 1, Unit 1.4 Polynomials and Polynomial Functions Overview Number of instruction days: 13-15 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Prove

More information

Pearson Algebra 1 Common Core 2015

Pearson Algebra 1 Common Core 2015 A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

More information

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations. Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

Problem of the Month The Wheel Shop

Problem of the Month The Wheel Shop Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

More information

High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable. Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

Problem of the Month: Perfect Pair

Problem of the Month: Perfect Pair Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume. Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

More information

Problem of the Month: Fair Games

Problem of the Month: Fair Games Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate) New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

More information

How To Be A Mathematically Proficient Person

How To Be A Mathematically Proficient Person REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially

More information

Grades K-6. Correlated to the Common Core State Standards

Grades K-6. Correlated to the Common Core State Standards Grades K-6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for

More information

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH 1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,

More information

Problem of the Month Through the Grapevine

Problem of the Month Through the Grapevine The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

More information

Problem of the Month: William s Polygons

Problem of the Month: William s Polygons Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

More information

High School Functions Interpreting Functions Understand the concept of a function and use function notation.

High School Functions Interpreting Functions Understand the concept of a function and use function notation. Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

More information

Please start the slide show from the beginning to use links. Click here for active links to various courses

Please start the slide show from the beginning to use links. Click here for active links to various courses Please start the slide show from the beginning to use links Click here for active links to various courses CLICK ON ANY COURSE BELOW TO SEE DESCRIPTION AND PREREQUISITES To see the course sequence chart

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

CHICAGO PUBLIC SCHOOLS (ILLINOIS) MATH & SCIENCE INITIATIVE COURSE FRAMEWORK FOR ALGEBRA Course Framework: Algebra

CHICAGO PUBLIC SCHOOLS (ILLINOIS) MATH & SCIENCE INITIATIVE COURSE FRAMEWORK FOR ALGEBRA Course Framework: Algebra Chicago Public Schools (Illinois) Math & Science Initiative Course Framework for Algebra Course Framework: Algebra Central Concepts and Habits of Mind The following concepts represent the big ideas or

More information

Mathematics Curriculum Guide Precalculus 2015-16. Page 1 of 12

Mathematics Curriculum Guide Precalculus 2015-16. Page 1 of 12 Mathematics Curriculum Guide Precalculus 2015-16 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing

More information

Curriculum Alignment Project

Curriculum Alignment Project Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan

More information

Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Algebra II New Summit School High School Diploma Program

Algebra II New Summit School High School Diploma Program Syllabus Course Description: Algebra II is a two semester course. Students completing this course will earn 1.0 unit upon completion. Required Materials: 1. Student Text Glencoe Algebra 2: Integration,

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,

More information

South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

More information

Algebra I. In this technological age, mathematics is more important than ever. When students

Algebra I. In this technological age, mathematics is more important than ever. When students In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

More information

DENTAL IMPRESSIONS TARGET COMMON CORE STATE STANDARD(S) IN MATHEMATICS: N-Q.1:

DENTAL IMPRESSIONS TARGET COMMON CORE STATE STANDARD(S) IN MATHEMATICS: N-Q.1: This task was developed by high school and postsecondary mathematics and health sciences educators, and validated by content experts in the Common Core State Standards in mathematics and the National Career

More information

PCHS ALGEBRA PLACEMENT TEST

PCHS ALGEBRA PLACEMENT TEST MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If

More information

Problem of the Month: Double Down

Problem of the Month: Double Down Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

More information

PHILOSOPHY OF THE MATHEMATICS DEPARTMENT

PHILOSOPHY OF THE MATHEMATICS DEPARTMENT PHILOSOPHY OF THE MATHEMATICS DEPARTMENT The Lemont High School Mathematics Department believes that students should develop the following characteristics: Understanding of concepts and procedures Building

More information

DELAWARE MATHEMATICS CONTENT STANDARDS GRADES 9-10. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

DELAWARE MATHEMATICS CONTENT STANDARDS GRADES 9-10. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s)) Prentice Hall University of Chicago School Mathematics Project: Advanced Algebra 2002 Delaware Mathematics Content Standards (Grades 9-10) STANDARD #1 Students will develop their ability to SOLVE PROBLEMS

More information

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results

Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8 - Quadratic Expressions & Equations Brief Summary of Unit: At

More information

Unit 14: Systems of Equations and Inequalities. Learning Objectives 14.2

Unit 14: Systems of Equations and Inequalities. Learning Objectives 14.2 Unit 14 Table of Contents Unit 14: Systems of Equations and Inequalities Learning Objectives 14.2 Instructor Notes The Mathematics of Systems of Equations and Inequalities Teaching Tips: Challenges and

More information

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

More information

MATHEMATICS COURSES Grades 8-12 2015-2016

MATHEMATICS COURSES Grades 8-12 2015-2016 MATHEMATICS COURSES Grades 8-12 2015-2016 Calculus III H Calculus II H A.P. Calculus BC A.P. Statistics A.P. Calculus AB A.P. Calculus BC Algebra II H* Pre-Calculus H Calculus/Stats H A.P. Calculus AB

More information

CORE Assessment Module Module Overview

CORE Assessment Module Module Overview CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems

More information

Indiana Academic Standards Mathematics: Algebra II

Indiana Academic Standards Mathematics: Algebra II Indiana Academic Standards Mathematics: Algebra II 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra II are the result of a process designed to identify,

More information

Graphic Designing with Transformed Functions

Graphic Designing with Transformed Functions Math Objectives Students will be able to identify a restricted domain interval and use function translations and dilations to choose and position a portion of the graph accurately in the plane to match

More information

INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014

INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014 INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,

More information

Mathematics. Designing High School Mathematics Courses Based on the Common

Mathematics. Designing High School Mathematics Courses Based on the Common common core state STANDARDS FOR Mathematics Appendix A: Designing High School Mathematics Courses Based on the Common Core State Standards Overview The (CCSS) for Mathematics are organized by grade level

More information

Indiana Academic Standards Mathematics: Algebra I

Indiana Academic Standards Mathematics: Algebra I Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,

More information

Math 1B Syllabus. Course Description. Text. Course Assignments. Exams. Course Grade

Math 1B Syllabus. Course Description. Text. Course Assignments. Exams. Course Grade Course Description Math 1B Syllabus This Pre-Calculus course is designed to prepare students for a Calculus course. This course is taught so that students will acquire a solid foundation in algebra and

More information

Problem of the Month: Cutting a Cube

Problem of the Month: Cutting a Cube Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

Math at a Glance for April

Math at a Glance for April Audience: School Leaders, Regional Teams Math at a Glance for April The Math at a Glance tool has been developed to support school leaders and region teams as they look for evidence of alignment to Common

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Georgia Standards of Excellence Mathematics Standards GSE Algebra II/Advanced Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of

More information

Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

More information

Sequence of Mathematics Courses

Sequence of Mathematics Courses Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS

More information

Pre-Calculus Semester 1 Course Syllabus

Pre-Calculus Semester 1 Course Syllabus Pre-Calculus Semester 1 Course Syllabus The Plano ISD eschool Mission is to create a borderless classroom based on a positive student-teacher relationship that fosters independent, innovative critical

More information

Algebra I Credit Recovery

Algebra I Credit Recovery Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

More information

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

More information

ALGEBRA I (Created 2014) Amherst County Public Schools

ALGEBRA I (Created 2014) Amherst County Public Schools ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies

More information

Performance Assessment Task Baseball Players Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Baseball Players Grade 6. Common Core State Standards Math - Content Standards Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures

More information

Cabot School... transforming education for 21st century learners

Cabot School... transforming education for 21st century learners Cabot School... transforming education for 21st century learners William P. Tobin Mathematics Teacher (802) 563-2289 ext. 235 Email: btobin@cabotschool.org Cabot School Math Website: https://sites.google.com/a/cabotschool.org/mathematics/home

More information

MAT 096, ELEMENTARY ALGEBRA 6 PERIODS, 5 LECTURES, 1 LAB, 0 CREDITS

MAT 096, ELEMENTARY ALGEBRA 6 PERIODS, 5 LECTURES, 1 LAB, 0 CREDITS 1 LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK MATHEMATICS, ENGINEERING and COMPUTER SCIENCE DEPARTMENT FALL 2015 MAT 096, ELEMENTARY ALGEBRA 6 PERIODS, 5 LECTURES, 1 LAB, 0 CREDITS Catalog

More information

Prentice Hall MyMathLab Algebra 1, 2011

Prentice Hall MyMathLab Algebra 1, 2011 Prentice Hall MyMathLab Algebra 1, 2011 C O R R E L A T E D T O Tennessee Mathematics Standards, 2009-2010 Implementation, Algebra I Tennessee Mathematics Standards 2009-2010 Implementation Algebra I 3102

More information

Unit 5: Analyze, Solve, and Graph Linear Inequalities

Unit 5: Analyze, Solve, and Graph Linear Inequalities Unit 5 Table of Contents Unit 5: Analyze, Solve, and Graph Linear Inequalities Video Overview Learning Objectives 5.2 Media Run Times 5.3 Instructor Notes 5.4 The Mathematics of Linear Inequalities Writing,

More information

GRADE 8 MATH: TALK AND TEXT PLANS

GRADE 8 MATH: TALK AND TEXT PLANS GRADE 8 MATH: TALK AND TEXT PLANS UNIT OVERVIEW This packet contains a curriculum-embedded Common Core standards aligned task and instructional supports. The task is embedded in a three week unit on systems

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

AMSCO S Ann Xavier Gantert

AMSCO S Ann Xavier Gantert AMSCO S Integrated ALGEBRA 1 Ann Xavier Gantert AMSCO SCHOOL PUBLICATIONS, INC. 315 HUDSON STREET, NEW YORK, N.Y. 10013 Dedication This book is dedicated to Edward Keenan who left a profound influence

More information

Mathematics Courses. (All Math courses not used to fulfill core requirements count as academic electives.)

Mathematics Courses. (All Math courses not used to fulfill core requirements count as academic electives.) (All Math courses not used to fulfill core requirements count as academic electives.) Course Number Course Name Grade Level Course Description Prerequisites Who Signs for Course 27.04810 GSE Foundations

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Stephanie A. Mungle TEACHING PHILOSOPHY STATEMENT

Stephanie A. Mungle TEACHING PHILOSOPHY STATEMENT Stephanie A. Mungle TEACHING PHILOSOPHY STATEMENT I am a self-directed, enthusiastic college mathematics educator with a strong commitment to student learning and excellence in teaching. I bring my passion

More information

Math Common Core Sampler Test

Math Common Core Sampler Test High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

More information

Algebra II Unit Number 4

Algebra II Unit Number 4 Title Polynomial Functions, Expressions, and Equations Big Ideas/Enduring Understandings Applying the processes of solving equations and simplifying expressions to problems with variables of varying degrees.

More information

DRAFT. Algebra 1 EOC Item Specifications

DRAFT. Algebra 1 EOC Item Specifications DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

More information

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

More information

MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS

MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS * Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices

More information

Prentice Hall Mathematics, Algebra 1 2009

Prentice Hall Mathematics, Algebra 1 2009 Prentice Hall Mathematics, Algebra 1 2009 Grades 9-12 C O R R E L A T E D T O Grades 9-12 Prentice Hall Mathematics, Algebra 1 Program Organization Prentice Hall Mathematics supports student comprehension

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

More information

X On record with the USOE.

X On record with the USOE. Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is

More information

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

More information

Mathematics programmes of study: key stage 4. National curriculum in England

Mathematics programmes of study: key stage 4. National curriculum in England Mathematics programmes of study: key stage 4 National curriculum in England July 2014 Contents Purpose of study 3 Aims 3 Information and communication technology (ICT) 4 Spoken language 4 Working mathematically

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Problem of the Month Diminishing Return

Problem of the Month Diminishing Return The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

More information

2027 Mathematics Grade 8

2027 Mathematics Grade 8 Instructional Material Bureau Summer 2012 Adoption Review Institute Form F: Publisher Alignment Form & Review Scoring Rubric Publisher information and instructions: Corporation or Publisher: Pearson Education,

More information

Answers Teacher Copy. Systems of Linear Equations Monetary Systems Overload. Activity 3. Solving Systems of Two Equations in Two Variables

Answers Teacher Copy. Systems of Linear Equations Monetary Systems Overload. Activity 3. Solving Systems of Two Equations in Two Variables of 26 8/20/2014 2:00 PM Answers Teacher Copy Activity 3 Lesson 3-1 Systems of Linear Equations Monetary Systems Overload Solving Systems of Two Equations in Two Variables Plan Pacing: 1 class period Chunking

More information

Math Placement Test Sample Problems PRE-ALGEBRA

Math Placement Test Sample Problems PRE-ALGEBRA Math Placement Test Sample Problems The Math Placement Test is an untimed, multiple-choice, computer-based test. The test is composed of four sections: pre-algebra, algebra, college algebra, and trigonometry.

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

How To Understand And Solve Algebraic Equations

How To Understand And Solve Algebraic Equations College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

More information

Background Knowledge

Background Knowledge Background Knowledge Precalculus GEOMETRY Successful completion of the course with a grade of B or higher Solid understanding of: Right Triangles Congruence Theorems Basic Trigonometry Basic understanding

More information

096 Professional Readiness Examination (Mathematics)

096 Professional Readiness Examination (Mathematics) 096 Professional Readiness Examination (Mathematics) Effective after October 1, 2013 MI-SG-FLD096M-02 TABLE OF CONTENTS PART 1: General Information About the MTTC Program and Test Preparation OVERVIEW

More information