Problem of the Month: Cutting a Cube
|
|
|
- Claud Charles
- 9 years ago
- Views:
Transcription
1 Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems and persevere in solving them. The POM may be used by a teacher to promote problem solving and to address the differentiated needs of her students. A department or grade level may engage their students in a POM to showcase problem solving as a key aspect of doing mathematics. It can also be used schoolwide to promote a problem solving theme at a school. The goal is for all students to have the experience of attacking and solving non routine problems and developing their mathematical reasoning skills. Although obtaining and justifying solutions to the problems is the objective, the process of learning to problem solve is even more important. The Problem of the Month is structured to provide reasonable tasks for all students in a school. The structure of a POM is a shallow floor and a high ceiling, so that all students can productively engage, struggle, and persevere. The Primary Version Level A is designed to be accessible to all students and especially the key challenge for grades K 1. Level A will be challenging for most second and third graders. Level B may be the limit of where fourth and fifth grade students have success and understanding. Level C may stretch sixth and seventh grade students. Level D may challenge most eighth and ninth grade students, and Level E should be challenging for most high school students. These grade level expectations are just estimates and should not be used as an absolute minimum expectation or maximum limitation for students. Problem solving is a learned skill, and students may need many experiences to develop their reasoning skills, approaches, strategies, and the perseverance to be successful. The Problem of the Month builds on sequential levels of understanding. All students should experience Level A and then move through the tasks in order to go as deeply as they can into the problem. There will be those students who will not have access into even Level A. Educators should feel free to modify the task to allow access at some level. Overview: In the Problem of the Month, students use two and threedimensional geometry to solve problems involving cubes and nets. The mathematical topics that underlie this POM are the attributes of polygons, faces, edges, vertices, spatial visualization, counting strategies, classification and geometric solids. Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
2 The problem asks the students to examine a cube to analyze the attributes of a cube and how a cube can be cut into a flat pattern, as well as what flat patterns can be made into cubes. In the first level of the POM, students are presented with a model of a cube. Their task is to recognize and identify the attributes of a cube. In level B, students are presented with situations that involve determining the least number of cuts it takes to divide a cube into a single flat pattern or net. The students explain why it takes 7 cuts to make a cube into a net. In level C, students explain that any arbitrary 7 cuts do not determine a unique net and show multiple examples of nets that can be folded into a cube. In level D, students determine all the unique nets that fold into a cube and explain a valid process for determining all the unique nets that fold into a cube. In level E, students draw all the unique hexominoes and explain a valid process for determining all the unique hexominoes. Mathematical Concepts: Spatial visualization plays an important part in real world experiences. From the most complex structures created by designers, architects, and construction workers to arranging the furniture in a room, spatial awareness, and visualization is essential. In this POM, students explore various aspects of spatial visualization, including designs in both two and three dimensional space. This involves examining flat patterns as well as solid objects and understanding the relationship between the two objects. Students use polygons and develop understandings of their attributes both in the plane and on the surface of polyhedra. In addition to the geometric aspects of this POM, students seek to find patterns, count numbers of possibilities, and justify their answers. The mathematics involved in these aspects of the problem is often called discrete mathematics. Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
3 Problem of the Month Level A: A cube is a very interesting object. So we are going to examine it. Without holding a cube, try to picture it in your mind. How many sides (faces) does a cube have? How many corners (vertices) does a cube have? How many lines (edges) does a cube have? What can we say about the size of the sides (faces) and the lines (edges)? When you have made your guess (conjecture), then hold a cube and check (verify) your answers to the questions listed above. How might you be able to remember the parts (attributes) of a cube? Explain. Problem of the Month Page 1 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
4 Level B: A cube is like a box. You might think of it as a special type of cardboard box. We could cut up a cardboard box and make it into one large flat piece of cardboard. We often do that when we want to recycle the cardboard. The easiest way to cut a cardboard box is to cut along the lines (edges). How many cuts does it take to make the box into one flat piece? In other words, what is the least number of lines (edges) that need to be cut so that the cardboard is in one flat piece? Remember all the sides of the cardboard must remain attached in one single flat piece. What is the least number of cuts that need to be made? Explain how you determined your answer. Why do you think your answer is correct? Write a note to a friend to convince your friend that your solution will always work for every cube. Problem of the Month Page 2 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
5 Level C: When you cut a cube into one flat piece, we call that piece a net. The reason we call it a net is because we can trace the pattern of the flat piece on a piece of paper or cloth material. If we cut out the pattern, we can fold it back over the cube, surrounding it like a net. The nets that cover a cube can be cut into different patterns. One net looks like a cross. It has four faces in a column and two more faces on either side of that column. How would you cut the cube (which edges) to make the net into a cross pattern? Is there more than one way to cut the cube to make a cross? Find some different net patterns that would also cover a cube. Determine how you would have to cut the cubes to make them into new net patterns. Explain your methods. Are there ways to cut the cube so that it won t make a net? Explain your thinking. Sometimes we might think two nets are different, but if you move one, around it then looks exactly like the other net. How can you tell if two nets are different? Explain and define the difference. Problem of the Month Page 3 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
6 Level D: We want to find all the nets that can be folded into a cube. For this investigation, we will define two nets as being the same if we can turn (rotate), move (translate), or flip (reflect) the net and the two nets cover each other exactly. How many unique nets fold into a cube? Draw all possible nets that can be folded into a cube. How did you go about determining the number of nets? How do you know that you have found all the unique nets that fold into a cube? Convince a skeptic that you have found all the possible nets of a cube. Problem of the Month Page 4 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
7 Level E: There are some patterns of six squares that do not fold into a cube. For example, a pattern of six faces arranged in three columns of two squares all attached together cannot fold into a cube. We call these patterns of six attached squares hexominoes. The word is like dominoes, except instead of having just two squares, it has six squares. A hexomino has six squares, all squares must share at least one side with another square, and all the vertices of the squares must coincide. Arrangement A below is a hexomino, while B is not. A. B. Find all the configurations of hexominoes. These include all the nets that fold into cubes and all the other hexominoes that can t fold into cubes. Draw all unique hexominoes. How did you go about determining the number of unique hexominoes? How do you know that you have found all the unique hexominoes? What percentage of hexominoes are nets that fold into cubes? Convince a skeptic that you have found all unique hexominoes. Problem of the Month Page 5 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
8 Problem of the Month Primary Version Level A Materials: One large cube for the teacher to use during discussion and small cubes for every student to hold and examine in their groups. Discussion on the rug: (Teacher holds up one large cube) A cube is a very interesting object. So we are going to examine it. What does examine mean? Who does examinations? What do you think are the parts of the cube we can examine? (Teacher asks questions to have the child think about parts, especially faces and corners and maybe go on to lines or edges.) In small groups: (Each student is holding a cube) (Teacher asks the following questions. Only go on to the next question if student have success.) We are going to examine our cube. 1. How many flat sides does a cube have? 2. How many corners does a cube have? 3. How many lines or edges does a cube have? (At the end of the investigation have students either discuss or dictate a response to this summary question.) How can you remember the parts of a cube? Problem of the Month Page 6 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
9 Problem of the Month Page 7 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (
10 Problem of the Month Task Description Level A This task challenges a student to explore various aspects of a cube without looking at a cube. A student is asked to examine a cube and to determine the number of faces ( flat sides ), corners (vertices), and edges a cube has. Additionally, a student is asked to synthesize this discussion by discussing and/or writing a response to the question, How can you remember the parts of a cube? Common Core State Standards Math Content Standards Geometry Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. K.G.2 Correctly name shapes regardless of their orientations or overall size. Reason with shapes and attributes. 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three sided) versus nondefining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. Common Core State Standards Math Standards of Mathematical Practice MP.3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. MP.6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. CCSSM Alignment: Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
11 Problem of the Month Task Description Level B The problem of the month asks the student to use spatial reasoning to determine the least number of cuts necessary to make a cube flat. Additionally, a student is asked to explain how their answer was determined, how they know it is correct, and to write a letter to a friend to convince them that their solution will always work for every cube. Common Core State Standards Math Content Standards Geometry Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. K.G.2 Correctly name shapes regardless of their orientations or overall size. K.G.3 Identify shapes as two dimensional (lying in a plane, flat ) or three dimensional ( solid ). Reason with shapes and attributes. 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three sided) versus nondefining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. 2.G.1 Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. Common Core State Standards Math Standards of Mathematical Practice MP.3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. MP.6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. CCSSM Alignment: Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
12 Problem of the Month Task Description Level C The problem of the month asks the student to use spatial reasoning to determine different net patterns to cover a cube. A student will be able to explain that any arbitrary 7 cuts do not determine a unique net. Additionally, a student is asked to have an understanding to consider the similarities and differences of determined nets: what makes nets the same and what makes them different? Common Core State Standards Math Content Standards Geometry Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. K.G.2 Correctly name shapes regardless of their orientations or overall size. K.G.3 Identify shapes as two dimensional (lying in a plane, flat ) or three dimensional ( solid ). Reason with shapes and attributes. 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three sided) versus nondefining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. 2.G.1 Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. Understand congruence and similarity using physical models, transparencies, or geometry software. 8.G.1. Verify experimentally the properties of rotations, reflections, and translations Common Core State Standards Math Standards of Mathematical Practice MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. MP.6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. CCSSM Alignment: Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
13 Problem of the Month: Task Description Level D The problem of the month asks the student to use spatial reasoning to find all the unique nets that can be folded into a cube and to justify how a student knows that all of the nets have been found. A student is asked to explain a valid process for determining all the unique nets that fold into a cube. Common Core State Standards Math Content Standards Geometry Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. K.G.2 Correctly name shapes regardless of their orientations or overall size. K.G.3 Identify shapes as two dimensional (lying in a plane, flat ) or three dimensional ( solid ). Reason with shapes and attributes. 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three sided) versus non defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. 2.G.1 Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. Understand congruence and similarity using physical models, transparencies, or geometry software. 8.G.1. Verify experimentally the properties of rotations, reflections, and translations High School Geometry Geometric Measurement and Dimension Visualize relationships between two dimensional and three dimensional objects G GMD.4 Identify the shapes of two dimensional cross sections of three dimensional objects. Common Core State Standards Math Standards of Mathematical Practice MP.3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. MP.6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. CCSSM Alignment: Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
14 Problem of the Month Task Description Level E The problem of the month asks the student to use spatial reasoning to find all the configurations for hexominoes patterns of 6 squares that do not fold into a cube. A student is asked to explain a valid process for determining all the unique hexominoes and to convince a skeptic that all the unique hexominoes have been found. Common Core State Standards Math Content Standards Geometry Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. K.G.2 Correctly name shapes regardless of their orientations or overall size. K.G.3 Identify shapes as two dimensional (lying in a plane, flat ) or three dimensional ( solid ). Reason with shapes and attributes. 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three sided) versus non defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.. 2.G.1 Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. Understand congruence and similarity using physical models, transparencies, or geometry software. 8.G.1. Verify experimentally the properties of rotations, reflections, and translations High School Geometry Geometric Measurement and Dimension Visualize relationships between two dimensional and three dimensional objects G GMD.4 Identify the shapes of two dimensional cross sections of three dimensional objects. Common Core State Standards Math Standards of Mathematical Practice MP.3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. MP.6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. CCSSM Alignment: Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
15 Problem of the Month Task Description Primary Level This task challenges a student to explore various aspects of a cube. A student is asked to examine a cube and to determine the number of faces ( flat sides ), corners (vertices), and edges a cube has. Additionally, the student is asked to synthesize this discussion by discussing and/or dictating a response to the question, How can you remember the parts of a cube? Common Core State Standards Math Content Standards Geometry Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). K.G.1 Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. K.G.2 Correctly name shapes regardless of their orientations or overall size. Reason with shapes and attributes. 1.G.1 Distinguish between defining attributes (e.g., triangles are closed and three sided) versus nondefining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes. Common Core State Standards Math Standards of Mathematical Practice MP.5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. MP.6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. CCSSM Alignment: Problem of the Month This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 3.0 Unported License ( nc nd/3.0/deed.en_us).
Problem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
Problem of the Month: Fair Games
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
Problem of the Month: Perfect Pair
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
Problem of the Month Through the Grapevine
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
Problem of the Month Pick a Pocket
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
Problem of the Month: Once Upon a Time
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
Grades K-6. Correlated to the Common Core State Standards
Grades K-6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for
For example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
Standards for Mathematical Practice: Commentary and Elaborations for 6 8
Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:
Problem of the Month The Wheel Shop
Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
Problem of the Month: Double Down
Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
Problem of the Month: Circular Reasoning
Problem of the Month: Circular Reasoning The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
Problem of the Month: Digging Dinosaurs
: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of
Grade 1 Geometric Shapes Conceptual Lessons Unit Outline Type of Knowledge & SBAC Claim Prerequisite Knowledge:
Grade 1 Geometric Shapes Conceptual Lessons Unit Outline Type of Knowledge & SBAC Claim Prerequisite Knowledge: Standards: Lesson Title and Objective/Description Shape names: square, rectangle, triangle,
Overview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs
Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture
Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
How To Be A Mathematically Proficient Person
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.
Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student
Grade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,
Modeling in Geometry
Modeling in Geometry Overview Number of instruction days: 8-10 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Use geometric shapes and their components to represent
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
E XPLORING QUADRILATERALS
E XPLORING QUADRILATERALS E 1 Geometry State Goal 9: Use geometric methods to analyze, categorize and draw conclusions about points, lines, planes and space. Statement of Purpose: The activities in this
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
ISAT Mathematics Performance Definitions Grade 4
ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourth-grade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers
Warning! Construction Zone: Building Solids from Nets
Brief Overview: Warning! Construction Zone: Building Solids from Nets In this unit the students will be examining and defining attributes of solids and their nets. The students will be expected to have
CCSS-M Critical Areas: Kindergarten
CCSS-M Critical Areas: Kindergarten Critical Area 1: Represent and compare whole numbers Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such
Grade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Basic Understandings
Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying
Pearson Algebra 1 Common Core 2015
A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).
Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations
Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Analysis of California Mathematics standards to Common Core standards- Kindergarten
Analysis of California Mathematics standards to Common Core standards- Kindergarten Strand CA Math Standard Domain Common Core Standard (CCS) Alignment Comments in reference to CCS Strand Number Sense
How does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?
Middletown Public Schools Mathematics Unit Planning Organizer Subject Mathematics Grade/Course Grade 7 Unit 3 Two and Three Dimensional Geometry Duration 23 instructional days (+4 days reteaching/enrichment)
Geometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
Georgia Standards of Excellence 2015-2016 Mathematics
Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
Scaffolding Task: Angle Tangle
Fourth Grade Mathematics Unit Scaffolding Task: Angle Tangle STANDARDS FOR MATHEMATICAL CONTENT MCC4.MD.5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint,
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems
Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small
Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series
Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
Pocantico Hills School District Grade 1 Math Curriculum Draft
Pocantico Hills School District Grade 1 Math Curriculum Draft Patterns /Number Sense/Statistics Content Strands: Performance Indicators 1.A.1 Determine and discuss patterns in arithmetic (what comes next
N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to
Common Core State Standards for Mathematics for California Public Schools Kindergarten Through Grade Twelve
Common Core State Standards for Mathematics for California Public Schools Kindergarten Through Grade Twelve Adopted by the California State Board of Education August 2010 Updated January 2013 Prepublication
INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014
INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,
K-12 Louisiana Student Standards for Mathematics: Table of Contents
K-12 Louisiana Student Standards for Mathematics: Table of Contents Introduction Development of K-12 Louisiana Student Standards for Mathematics... 2 The Role of Standards in Establishing Key Student Skills
Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
Volumes of Revolution
Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students
Activity Set 4. Trainer Guide
Geometry and Measurement of Solid Figures Activity Set 4 Trainer Guide Mid_SGe_04_TG Copyright by the McGraw-Hill Companies McGraw-Hill Professional Development GEOMETRY AND MEASUREMENT OF SOLID FIGURES
Unit 8 Angles, 2D and 3D shapes, perimeter and area
Unit 8 Angles, 2D and 3D shapes, perimeter and area Five daily lessons Year 6 Spring term Recognise and estimate angles. Use a protractor to measure and draw acute and obtuse angles to Page 111 the nearest
Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold
Chapter 18 Symmetry Symmetry is of interest in many areas, for example, art, design in general, and even the study of molecules. This chapter begins with a look at two types of symmetry of two-dimensional
Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will
Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles
Dear Grade 4 Families,
Dear Grade 4 Families, During the next few weeks, our class will be exploring geometry. Through daily activities, we will explore the relationship between flat, two-dimensional figures and solid, three-dimensional
Using Algebra Tiles from Polynomials to Factoring
Using Algebra Tiles from Polynomials to Factoring For more information about the materials you find in this packet, contact: Chris Mikles (888) 808-4276 [email protected] CPM Educational Program 203, all
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
Performance Level Descriptors Grade 6 Mathematics
Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with
Explorations with Shapes Kindergarten
Ohio Standards Connections Geometry and Spatial Sense Benchmark C Sort and compare twodimensional figures and threedimensional objects according to their characteristics and properties. Indicator 1 Identify
Mathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
Indicator 2: Use a variety of algebraic concepts and methods to solve equations and inequalities.
3 rd Grade Math Learning Targets Algebra: Indicator 1: Use procedures to transform algebraic expressions. 3.A.1.1. Students are able to explain the relationship between repeated addition and multiplication.
Problem of the Month Diminishing Return
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
Building a Bridge to Academic Vocabulary in Mathematics
Building a Bridge to Academic Vocabulary in Mathematics AISD Elementary Mathematics Department How Students Develop a Repertoire of Academic English in Mathematics Developed and researched by the AISD
Polynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
Mathematics Scope and Sequence, K-8
Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K-8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count
Third Grade Shapes Up! Grade Level: Third Grade Written by: Jill Pisman, St. Mary s School East Moline, Illinois Length of Unit: Eight Lessons
Third Grade Shapes Up! Grade Level: Third Grade Written by: Jill Pisman, St. Mary s School East Moline, Illinois Length of Unit: Eight Lessons I. ABSTRACT This unit contains lessons that focus on geometric
Such As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
Discovering Math: Exploring Geometry Teacher s Guide
Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
Drawing 3-D Objects in Perspective
Mathematics Instructional Materials SAS#.1 (one per pair of students) SAS#.2 (one per pair of students) TIS#.1 (transparency) TIS#.2 (transparency) TIS#.3 (Journal prompt) Isometric Dot Paper Isometric
Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
Line Segments, Rays, and Lines
HOME LINK Line Segments, Rays, and Lines Family Note Help your child match each name below with the correct drawing of a line, ray, or line segment. Then observe as your child uses a straightedge to draw
8 th Grade Task 2 Rugs
8 th Grade Task 2 Rugs Student Task Core Idea 4 Geometry and Measurement Find perimeters of shapes. Use Pythagorean theorem to find side lengths. Apply appropriate techniques, tools and formulas to determine
High School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
DELAWARE MATHEMATICS CONTENT STANDARDS GRADES 9-10. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))
Prentice Hall University of Chicago School Mathematics Project: Advanced Algebra 2002 Delaware Mathematics Content Standards (Grades 9-10) STANDARD #1 Students will develop their ability to SOLVE PROBLEMS
McDougal Littell California:
McDougal Littell California: Pre-Algebra Algebra 1 correlated to the California Math Content s Grades 7 8 McDougal Littell California Pre-Algebra Components: Pupil Edition (PE), Teacher s Edition (TE),
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)
PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and
Geometry, Technology, and the Reasoning and Proof Standard inthemiddlegradeswiththegeometer ssketchpad R
Geometry, Technology, and the Reasoning and Proof Standard inthemiddlegradeswiththegeometer ssketchpad R Óscar Chávez University of Missouri [email protected] Geometry Standard Instructional programs from
Common Core State Standards for. Mathematics
Common Core State Standards for Mathematics Table of Contents Introduction 3 Standards for Mathematical Practice 6 Standards for Mathematical Content Kindergarten 9 Grade 1 13 Grade 2 17 Grade 3 21 Grade
Numeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
Indiana Academic Standards Mathematics: Algebra I
Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,
1. I have 4 sides. My opposite sides are equal. I have 4 right angles. Which shape am I?
Which Shape? This problem gives you the chance to: identify and describe shapes use clues to solve riddles Use shapes A, B, or C to solve the riddles. A B C 1. I have 4 sides. My opposite sides are equal.
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
5 th Grade Common Core State Standards. Flip Book
5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at
G3-33 Building Pyramids
G3-33 Building Pyramids Goal: Students will build skeletons of pyramids and describe properties of pyramids. Prior Knowledge Required: Polygons: triangles, quadrilaterals, pentagons, hexagons Vocabulary:
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
Circles in Triangles. This problem gives you the chance to: use algebra to explore a geometric situation
Circles in Triangles This problem gives you the chance to: use algebra to explore a geometric situation A This diagram shows a circle that just touches the sides of a right triangle whose sides are 3 units,
Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
STRAND: Number and Operations Algebra Geometry Measurement Data Analysis and Probability STANDARD:
how August/September Demonstrate an understanding of the place-value structure of the base-ten number system by; (a) counting with understanding and recognizing how many in sets of objects up to 50, (b)
