Thermodynamic properties of ammonia water mixtures for power-cycle applications

Size: px
Start display at page:

Download "Thermodynamic properties of ammonia water mixtures for power-cycle applications"

Transcription

1 Energy 24 (1999) Thermodynamic properties of ammonia water mixtures for power-cycle applications Feng Xu a, D. Yogi Goswami b,* a Donlee Technologies, Inc., 693 North Hills Road, York, PA 17402, USA b Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611, USA Received 28 July 1997 Abstract Ammonia water mixtures have been used as working fluids in absorption refrigeration cycles for several decades. Their use as multi-component working fluids for power cycles has been investigated recently. The thermodynamic properties required are known or may be calculated at elevated temperatures pressures. We present a new method for these computations using Gibbs free energies empirical equations for bubble dew point temperature to calculate phase equilibria. Comparisons of calculated experimental data show excellent agreement Published by Elsevier Science Ltd. All rights reserved. 1. Background Many studies have been published on vapor liquid equilibrium (VLE) the thermodynamic properties of ammonia water mixtures, including p t x y data caloric properties. For enthalpy data, see Refs. [1 3]. Ref. [4] published new values of enthalpy entropy from 70 to 370 F pressure up to 300 psia using experimental data from [2,3,5]. Ref. [6] created tables of VLE caloric properties that were used by other researchers to propose computational models [7 9]. In Ref. [10], measured data from [11] were used to give correlations for pressures of 0.2 to 110 bar temperatures of 230 to 600 K. Refs. [12 16] also presented models for calculating the thermodynamic data at elevated temperatures pressures. In the present study, a method that combines the Gibbs free energy method for mixture properties bubble dew point temperature equations for phase equilibrium is used. This method * Corresponding author. Fax: ; solar@cimar.me.ufl.edu /99/$ - see front matter 1999 Published by Elsevier Science Ltd. All rights reserved. PII: S (99)

2 526 F. Xu, D.Y. Goswami/ Energy 24 (1999) combines the advantages of the two avoids the need for iterations for phase equilibrium by the fugacity method. 2. Gibbs free energy equation for a pure component The Gibbs free energy of a pure component is given by T P T G h 0 Ts 0 C p dt v dp T (C p /T) dt, (1) T 0 P 0 T 0 where h 0, s 0, T 0 P 0 are the specific enthalpy, specific entropy, temperature pressure at the reference state. Use of empirical relations for v C p [9] leads to the following equations. For the liquid phase: G L r h L r,o T r s L r,o B 1 (T r T r,o ) (B 2 /2)(T 2 r T 2 r,o) (B 3 /3)(T 3 r T 3 r,o) B 1 T r ln(t r /T r,o ) B 2 T r (T r T r,o ) (B 3 /2)(T 2 r T 2 r,o) (A 1 A 3 T r A 4 T 2 r)(p r (2) P r,o ) (A 2 /2)(P 2 r P 2 r,o). For the gas phase: G g r h g r,o T r s g r,o D 1 (T r T r,o ) (D 2 /2)(T 2 r T 2 r,o) (D 3 /3)(T 3 r T 3 r,o) D 1 T r ln(t r /T r,o ) D 2 T r (T r T r,o ) (D 3 /2)(T 2 r T 2 r,o) T r ln(p r /P r,o ) C 1 (P r (3) P r,o ) C 2 (P r /T 3 r 4P r,o /T 3 r,o 3P r,o T r /T 4 r,o) C 3 (P r /T 11 r 12P r,o /T 11 r,o 11P r,o T r /T 12 r,o) (C 4 /3)(P 3 r/t 11 r 12P 3 r,o/t 11 r,o 11P 3 r,ot r /T 12 r,o). Here, the superscripts are L for liquid g for gas, while subscript o is for the ideal gas state. The reduced (subscript r) thermodynamic properties are T r T/T B, P r P/P B, G r G/RT B, h r h/rt B, s r s/r v r vp B /RT B. The reference values for the reduced properties are R kj/kmol K, T B 100 K P B 10 bar. The constants in Eqs. (2) (3) are given in Table Thermodynamic properties of a pure component The molar specific enthalpy, entropy volume are related to Gibbs free energy, in terms of reduced variables, by h RT B T r 2 (G T r /T r, (4) r ) P r

3 F. Xu, D.Y. Goswami/Energy 24 (1999) Table 1 Coefficients of Eqs. (2) (3) Coefficient Ammonia Water A A A A B B B C C C C D D D h L r,o h g r,o s L r,o s g r,o T r,o P r,o s R G r T r P r (5) v RT B P B G r P r T r. (6) 4. Ammonia water liquid mixtures The Gibbs excess energy for liquid mixtures allows for deviation from ideal solution behavior. The Gibbs excess energy of a liquid mixture is expressed by the relationship proposed in [9], which is limited to three terms is given by: G E r [F 1 F 2 (2x 1) F 3 (2x 1) 2 ](1 x), (7) where x is the ammonia mass fraction F 1 E 1 E 2 P r (E 3 E 4 P r )T r E 5 /T 4 E 6 /T 2 r,

4 528 F. Xu, D.Y. Goswami/ Energy 24 (1999) F 2 E 4 E 8 P 4 (E 9 E 10 P r )T r E 11 /T r E 12 /T 2 r F 3 E 13 E 14 P r E 15 /T r E 16 /T 2 r The constants for Eq. (7) are given in Table 2. The excess enthalpy, entropy volume for the liquid mixtures are given as: h E RT B T r 2 (G T E r /T r, (8) r ) P r, x s E R GE r T r P r, x (9) v E RT B P B GE r. (10) P r T r, x In addition, the enthalpy, entropy volume of a liquid mixture are given by: h L m x f h L a (1 x f )h L w h E, (11) s L m x f s L a (1 x f )s L w s E s mix, (12) s mix R[x f ln(x f ) (1 x f ) ln(1 x f )] (13) v L m x f v L a (1 x f )v L w v E, (14) Table 2 Coefficients of Eq. (7) E E E E E E E E E E E E E E E E

5 F. Xu, D.Y. Goswami/Energy 24 (1999) where subscripts a w refer to ammonia water, respectively subscript f refers to the saturated liquid condition. 5. Ammonia water vapor mixture Ammonia water vapor mixtures are often assumed to be ideal solutions. The enthalpy, entropy volume of the vapor mixture are computed by: h g m x g h g a (1 x g )h g w, (15) s g m x g s g a (1 x g )s g w s mix (16) v g m x g v g a (1 x g )v g w. (17) 6. Vapor liquid equilibrium At equilibrium, binary mixtures must have the same temperature pressure. Moreover, the partial fugacity of each component in the liquid gas mixtures must be equal: L fˆ a fˆg a, (18) L fˆ w fˆg w, (19) where fˆ is the fugacity of each component in the mixture at equilibrium. The fugacities of ammonia water in liquid mixtures are given by [17]: L fˆ a a f 0 ax a (20) L fˆ w w f 0 w(1 x) w, (21) where is the activity coefficient, f 0 is the stard-state fugacity of the pure liquid component corrected to zero pressure, is the Poynting correction factor from zero pressure to saturation pressure of the mixture x is the ammonia mass fraction in liquid phase. Assuming an ideal mixture in the vapor phase, the fugacities of the pure components in the vapor mixtures are given by g fˆ a a Py (22)

6 530 F. Xu, D.Y. Goswami/ Energy 24 (1999) g fˆ w w P(1 y), (23) where is the fugacity coefficient y is the ammonia mass fraction in vapour phase. Eqs. (18) (19) are used to calculate the boiling dew point temperatures given the pressure ammonia concentration in the liquid mixture. However, these two equations must be solved iteratively to produce the VLE properties of ammonia water mixtures. Alternatively, the bubble dew point temperatures can be calculated using the explicit equations developed in Ref. [14]. 7. Bubble point dew point temperature equations Eqs. (24) (25), developed in [14], determine the start end of the mixture phase change compute the mass fractions of ammonia water in the liquid vapor phases, respectively. This avoids the complicated method of calculating the fugacity coefficient of a component in a mixture to determine the bubble (T b ) dew point (T d ) temperatures. 7 T b T c i 1 10 (C i j 1 C ij x j )[ln(p c /P)] i (24) 6 4 T d T c (a i A ij [ln( x)] j [ln(p c /P)]) i, (25) i 1 j 1 where 4 T c T cw a i x i, (26) i 1 8 P c P cw exp( i 1 P in psia T in F. b i x j ), (27) 8. Results In this study, the Gibbs free energy method is used to calculate the properties of pure ammonia water [Eqs. (2) (6)]. The properties of the ammonia water mixture are also calculated from the Gibbs free energy method using Eqs. (7) (17). In order to determine the phase quilibrium, bubble dew points are calculated using the alternative method of Eqs. (24) (27) instead of the conventional method of equating the fugacities [Eqs. (18) (23)]. Using the alternative method

7 F. Xu, D.Y. Goswami/Energy 24 (1999) avoids the iterative solution necessary to solve Eqs. (18) (23), thereby reducing the computational time. The property data generated in this study have been compared with available experimental theoretical data in the literature. 9. Comparison of bubble dew point temperatures Fig. 1 shows that the bubble dew point temperatures generated by this study compare favorably with the data from Ref. [6]. The differences between our computed values the data are less than 0.3%. Refs. [9,10] are reported to have differences of up to 2% from these data. 10. Comparison of saturation pressure at constant temperature Figs. 2 3 show the saturation pressures of ammonia water mixtures as compared with the data from Ref. [11]. For temperatures less than 406 K, the computational results fit the experimental data well, except at saturated liquid pressures. At higher temperatures, our computed values are within 5% of the data even at pressures higher than 110 bar, while Ref. [9] has reported a difference of more than 15%. Ref. [10] reported an error of less than 5% under 110 bar higher errors over 110 bar. Fig. 1. Bubble dew point temperatures at a pressure of bar.

8 532 F. Xu, D.Y. Goswami/ Energy 24 (1999) Fig. 2. Saturation pressures of ammonia water mixtures at K. Fig. 3. Saturation pressures of ammonia water mixtures at K.

9 F. Xu, D.Y. Goswami/Energy 24 (1999) Comparison of saturated liquid vapor enthalpy 1. Saturated liquid enthalpy. The saturated liquid enthalpy of this work is compared with the data from Ref. [6], as shown in Fig. 4. The differences are less than 2% for all the data. 2. Saturated vapor enthalpy. The saturated vapor enthalpy at constant pressure is shown in Fig. 5. The agreement with the data is within 3%. Ref. [10] reported a 5% maximum difference. The mass fraction of ammonia vapor shown in this figure is the ammonia liquid mass fraction when the mixture reaches a saturated state. So, in order to compute the saturated vapor enthalpy, the ammonia vapor mass fraction must be determined first. 12. Comparison of saturated liquid vapor entropy The value of entropy is very important in predicting the performance of a turbine in a power cycle. Entropy data are also essential to the second-law analysis of thermal systems. Ref. [4] published saturated liquid vapor entropy data based on experimental data from [2,3,5]. Ref. [16] published calculated entropy. The entropy data from the present study are compared with the experimental data in Ref. [4] the computational data of Ref. [16]. 1. Saturated liquid entropy. Fig. 6 shows saturated liquid entropy data compared with those of Fig. 4. Saturated liquid enthalpy of ammonia water mixtures at bar.

10 534 F. Xu, D.Y. Goswami/ Energy 24 (1999) Fig. 5. Saturated vapor enthalpy of ammonia water mixtures at bar. Fig. 6. Entropy of saturated liquid at K.

11 F. Xu, D.Y. Goswami/Energy 24 (1999) Fig. 7. Entropy of saturated vapor at K. Ref. [4]. Our data agree with the experimental data of [4] much better than the data generated by the method of Ref. [16]. 2. Saturated vapor entropy. Fig. 7 shows an excellent agreement of our computed values of saturated vapor entropy with the data of Ref. [4]. Data computed by Ref. [16] are consistently lower. Since it was very difficult to identify saturated vapor entropy data from Ref. [16], we did not compare our results with them. 13. Conclusion Different methods for calculating the properties of ammonia water mixtures are studied. A practical accurate method is used in this study. This method uses Gibbs free energy equations for pure ammonia water properties, empirical bubble dew point temperature equations for vapor liquid equilibrium. The iterations necessary for calculating the bubble dew point temperatures by the fugacity method are avoided. Therefore, this method is much faster than using the fugacity method. The computational results have been compared with accepted experimental data in the literature show very good agreement. References [1] Jennings BH, Shannon FP. Refrig Eng 1938;44:333. [2] Zinner KZ, Gesamt Z. Kalte-Ind 1934;41:21.

12 536 F. Xu, D.Y. Goswami/ Energy 24 (1999) [3] Wucherer J, Gesamt Z. Kalte-Ind 1932;39:97. [4] Scatchard G, Epstein LF, Warburton J, Cody PJ. Refrig Eng 1947;53:413. [5] Perman EP. J Chem Soc 1901;79:718. [6] Macriss RA, Eakine BE, Ellington RT, Huebler J. Research bulletin no 34. Chicago (IL): Chicago Institute of Gas Technology, [7] Gupta CP, Sharma CP. ASME paper 75-WA/PID-2. New York (NY): ASME, [8] Schulz SCG. Proc XIIth Int Cong Refrig 1972;2:431. [9] Ziegler B, Trepp C. Int J Refrig 1984;7:101. [10] Ibrahim OM, Klein SA. ASHRAE Trans 1993;99:1495. [11] Gillespie PC, Wilding WV, Wilson GM. AIChE Symp Ser 1987;83:97. [12] Kalina AI. ASME paper 83-JPGC-GT-3. New York (NY): ASME, [13] Herold KE, Han K, Moran MJ. ASME Proc 1988;4:65. [14] El-Sayed YM, Tribus M. ASME special publication AES 1. New York (NY): ASME, 1985:89. [15] Kalina AI, Tribus M, El-Sayed YM. ASME paper 86-WA/HT-54. New York (NY): ASME, [16] Park YM, Sonntag RE. ASHRAE Trans 1992;97:150. [17] Walas SM. Phase equilibria in chemical engineering. Stoneham (MD): Butterworths, 1985.

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

Chapter 7 : Simple Mixtures

Chapter 7 : Simple Mixtures Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials

More information

Thermodynamics. Chapter 13 Phase Diagrams. NC State University

Thermodynamics. Chapter 13 Phase Diagrams. NC State University Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function

More information

THERMOPHYSICAL PROPERTIES HUMID AIR

THERMOPHYSICAL PROPERTIES HUMID AIR THERMOPHYSICAL PROPERTIES OF HUMID AIR Models and Background M. CONDE ENGINEERING, 2007 Disclaimer This document reports results of our own work, based on results published by others, in the open literature.

More information

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration? EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2016 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity

Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity Phase Equilibrium: Fugacity and Equilibrium Calculations (FEC) Phase Equilibrium: Fugacity and Equilibrium Calculations Relate the fugacity and the chemical potential (or the partial molar Gibbs free energy)

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India. International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

More information

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS Presented at Short Course on Geothermal Drilling, Resource Development and Power Plants, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January -, 0. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A.

More information

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

Mohan Chandrasekharan #1

Mohan Chandrasekharan #1 International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

More information

Thermodynamic database of the phase diagrams in copper base alloy systems

Thermodynamic database of the phase diagrams in copper base alloy systems Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Thermodynamics of Adsorption

Thermodynamics of Adsorption CTI_CHAPTER_21.qxd 6/7/24 3:31 PM Page 243 CHAPTER 21 Thermodynamics of Adsorption ALAN L. MYERS 1 Introduction The attachment of molecules to the surface of a solid by adsorption is a broad subject. This

More information

Chapter 8 Maxwell relations and measurable properties

Chapter 8 Maxwell relations and measurable properties Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate

More information

k 2f, k 2r C 2 H 5 + H C 2 H 6

k 2f, k 2r C 2 H 5 + H C 2 H 6 hemical Engineering HE 33 F pplied Reaction Kinetics Fall 04 Problem Set 4 Solution Problem. The following elementary steps are proposed for a gas phase reaction: Elementary Steps Rate constants H H f,

More information

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics International Journal of Scientific & Engineering Research Volume 2, Issue 8, August-2011 1 Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Our first foray into equilibria is to examine phenomena associated with two phases of matter achieving equilibrium in which the

More information

Physical Chemistry Laboratory I CHEM 445 Experiment 6 Vapor Pressure of a Pure Liquid (Revised, 01/09/06)

Physical Chemistry Laboratory I CHEM 445 Experiment 6 Vapor Pressure of a Pure Liquid (Revised, 01/09/06) 1 Physical Chemistry Laboratory I CHEM 445 Experiment 6 Vapor Pressure of a Pure Liquid (Revised, 01/09/06) The vapor pressure of a pure liquid is an intensive property of the compound. That is, the vapor

More information

Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets*

Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets* Int. J. Engng Ed. Vol. 16, No. 4, pp. 335±339, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets* Y. LWIN

More information

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6 Chem 420/523 Chemical hermodynamics Homework Assignment # 6 1. * Solid monoclinic sulfur (S α ) spontaneously converts to solid rhombic sulfur (S β ) at 298.15 K and 0.101 MPa pressure. For the conversion

More information

Chapter 13 - Chemical Equilibrium

Chapter 13 - Chemical Equilibrium Chapter 1 - Chemical Equilibrium Intro A. Chemical Equilibrium 1. The state where the concentrations of all reactants and products remain constant with time. All reactions carried out in a closed vessel

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

Lecture 3: Models of Solutions

Lecture 3: Models of Solutions Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

More information

Gibbs Free Energy and Chemical Potential. NC State University

Gibbs Free Energy and Chemical Potential. NC State University Chemistry 433 Lecture 14 Gibbs Free Energy and Chemical Potential NC State University The internal energy expressed in terms of its natural variables We can use the combination of the first and second

More information

A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures

A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures R2-1 A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures W. Vance Payne and Piotr A. Domanski National Institute of Standards and Technology Building Environment

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO 2 FLUID AND CONVENTIONAL REFRIGERANTS ABSTRACT 1.

COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO 2 FLUID AND CONVENTIONAL REFRIGERANTS ABSTRACT 1. COMPARISON INVESTIGATION ON THE HEAT TRANSFER CHARACTERISTICS FOR SUPERCRITICAL CO FLUID AND CONVENTIONAL REFRIGERANTS JUNLAN YANG (a), YITAI MA (b), SHENGCHUN LIU (b), XIANYANG ZENG (b) (a) Department

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 56 2011 Issue 2 DOI: 10.2478/v10172-011-0034-8

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 56 2011 Issue 2 DOI: 10.2478/v10172-011-0034-8 A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 56 2011 Issue 2 DOI: 10.2478/v10172-011-0034-8 G. WNUK EXPERIMENTAL STUDY ON THERMODYNAMICS OF THE Cu-Ni-Sn- LIQUID ALLOYS BADANIA

More information

Fugacity, Activity, and Standard States

Fugacity, Activity, and Standard States Fugacity, Activity, and Standard States Fugacity of gases: Since dg = VdP SdT, for an isothermal rocess, we have,g = 1 Vd. For ideal gas, we can substitute for V and obtain,g = nrt ln 1, or with reference

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

A simple and unified algorithm to solve fluid phase. equilibria using either the gamma-phi or the phi-phi. approach for binary and ternary mixtures

A simple and unified algorithm to solve fluid phase. equilibria using either the gamma-phi or the phi-phi. approach for binary and ternary mixtures A simple and unified algorithm to solve fluid phase equilibria using either the gamma-phi or the phi-phi approach for binary and ternary mixtures Romain PRIVAT,a, Jean-Noël JAUBERT a and Yannick PRIVAT

More information

( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures

( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures 4870 Ind. Eng. Chem. Res. 1998, 37, 4870-4875 Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures João A. P. Coutinho Centro de Investigagão

More information

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6 Spring 2003 Page 1 of 6 2-30 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3

More information

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21 Chem 8 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.1, 5.15, 5.17, 5.21 5.2) The density of rhombic sulfur is 2.070 g cm - and that of monoclinic sulfur is 1.957 g cm -. Can

More information

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA joost.j.brasz@carrier.utc.com I K Smith and N Stosic

More information

Chapter 7 Energy and Energy Balances

Chapter 7 Energy and Energy Balances CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

More information

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units 2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units ANSI/AHRI Standard 540 (formerly ARI Standard 540) IMPORTANT SAFETY RECOMMENDATIONS ARI does not

More information

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

More information

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 2 Phase equilibria Many industrial processes involve several phases in equilibrium gases, liquids, solids and even different crystalline forms of the solid state. Predicting the number of phases present

More information

Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling

Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling Computers and Chemical Engineering 31 (2007) 712 721 Optimal operation of simple refrigeration cycles Part I: Degrees of freedom and optimality of sub-cooling Jørgen Bauck Jensen, Sigurd Skogestad Department

More information

Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

More information

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

More information

Heat and mass transfer resistance analysis of membrane distillation

Heat and mass transfer resistance analysis of membrane distillation Journal of Membrane Science 282 (2006) 362 369 Heat and mass transfer resistance analysis of membrane distillation A.M. Alklaibi, Noam Lior University of Pennsylvania, Department of Mechanical Engineering

More information

Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications

Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications Evaluation of HFO-1234yf as a Potential Replacement for R-134a in Refrigeration Applications Thomas J. Leck DuPont Fluorochemicals Wilmington, Delaware 3rd IIR Conference on Thermophysical Properties and

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

4. Introduction to Heat & Mass Transfer

4. Introduction to Heat & Mass Transfer 4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity

More information

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/pc Petroleum & Coal 51 (2) 100-109, 2009 STEADY-STATE AND DYNAMIC SIMULATION OF CRUDE OIL DISTILLATION USING ASPEN PLUS AND ASPEN DYNAMICS

More information

Modelling the Drying of Porous Coal Particles in Superheated Steam

Modelling the Drying of Porous Coal Particles in Superheated Steam B. A. OLUFEMI and I. F. UDEFIAGBON, Modelling the Drying of Porous Coal, Chem. Biochem. Eng. Q. 24 (1) 29 34 (2010) 29 Modelling the Drying of Porous Coal Particles in Superheated Steam B. A. Olufemi *

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 19 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The first law of thermodynamics can be given as. A) E = q + w B) =

More information

Define the notations you are using properly. Present your arguments in details. Good luck!

Define the notations you are using properly. Present your arguments in details. Good luck! Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also

More information

PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1

PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1 catalyst 2 5 g ¾¾¾¾ 2 4 g 2 g DH298 = rxn DS298 C H OH( ) C H ( ) + H O( ) 45.5 kj/mol ; = 126 J/(K mol ) ethanol ethene water rxn 1 atm 760 torr PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1 (0.08206

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

We will study the temperature-pressure diagram of nitrogen, in particular the triple point. K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING

GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING GLYCOLS IN NATURAL GAS EXPERIMENTS, MODELLING AND TRACKING Andrea Carolina Machado Miguens 1, Even Solbraa 1, Anita Bersås Hansen 1, Torbjørn Vegard Løkken 1, Toril Haugum 1, Svein Solvang 2 Statoil ASA

More information

Dynamic Models Towards Operator and Engineer Training: Virtual Environment

Dynamic Models Towards Operator and Engineer Training: Virtual Environment European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Dynamic Models Towards Operator and Engineer Training:

More information

Exergoeconomic optimization of thermodynamic systems using Particle Swarm Intelligence

Exergoeconomic optimization of thermodynamic systems using Particle Swarm Intelligence Budapest University of Technology and Economics Faculty of Mechanical Engineering Department of Energy Engineering Exergoeconomic optimization of thermodynamic systems using Particle Swarm Intelligence

More information

How To Calculate The Performance Of A Refrigerator And Heat Pump

How To Calculate The Performance Of A Refrigerator And Heat Pump THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

Formula for Viscosity of Glycerol-Water Mixture. Nian-Sheng Cheng. School of Civil and Environmental Engineering, Nanyang Technological University,

Formula for Viscosity of Glycerol-Water Mixture. Nian-Sheng Cheng. School of Civil and Environmental Engineering, Nanyang Technological University, Citation: Cheng, N. S. (2008). Formula for viscosity of glycerol-water mixture. Industrial and Engineering Chemistry Research, 47, 3285-3288. Formula for Viscosity of Glycerol-Water Mixture Nian-Sheng

More information

k L a measurement in bioreactors

k L a measurement in bioreactors k L a measurement in bioreactors F. Scargiali, A. Busciglio, F. Grisafi, A. Brucato Dip. di Ingegneria Chimica, dei Processi e dei Materiali, Università di Palermo Viale delle Scienze, Ed. 6, 9018, Palermo,

More information

Vapor Pressure Measurement of Supercooled Water

Vapor Pressure Measurement of Supercooled Water 1871 Vapor Pressure Measurement of Supercooled Water N. FUKUTA AND C. M. GRAMADA Department of Meteorology, University of Utah, Salt Lake City, Utah (Manuscript received 6 June 2002, in final form 25 February

More information

Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com

Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

TWO-PHASE FLOW IN A POROUS MEDIA TEST-CASES PERFORMED WITH TOUGH2

TWO-PHASE FLOW IN A POROUS MEDIA TEST-CASES PERFORMED WITH TOUGH2 TWO-PHASE FLOW IN A POROUS MEDIA TEST-CASES PERFORMED WITH TOUGH2 Paris 23 rd September 2010 E. Treille, J. Wendling Andra C.TR.AEAP.1000xx AGENCE NATIONALE POUR LA GESTION DES DÉCHETS RADIOACTIFS Tough2

More information

OVERVIEW. Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink. Key Features:

OVERVIEW. Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink. Key Features: A COMPANY WITH ENERGY Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink OVERVIEW Thermolib Expands the MATLAB /Simulink Suite with tools to design, model and simulate complex thermodynamic

More information

Everest. Leaders in Vacuum Booster Technology

Everest. Leaders in Vacuum Booster Technology This article has been compiled to understand the process of Solvent Recovery process generally carried out at low temperatures and vacuum. In many chemical processes solute is to be concentrated to high

More information

Phase Diagrams & Thermodynamics

Phase Diagrams & Thermodynamics Phase Diagrams & Thermodynamics A phase diagram is a graphical representation of the equilibrium state of a system using the intensive variables T and i while p is kept constant. The equilibrium may be

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

Absorption with chemical reaction: evaluation of rate promoters effect on CO 2 absorption in hot potassium carbonate solutions

Absorption with chemical reaction: evaluation of rate promoters effect on CO 2 absorption in hot potassium carbonate solutions 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 007 Elsevier B.V. All rights reserved. 1 Absorption with chemical reaction: evaluation of rate

More information

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1 Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

Thermodynamical aspects of the passage to hybrid nuclear power plants

Thermodynamical aspects of the passage to hybrid nuclear power plants Energy Production and Management in the 21st Century, Vol. 1 273 Thermodynamical aspects of the passage to hybrid nuclear power plants A. Zaryankin, A. Rogalev & I. Komarov Moscow Power Engineering Institute,

More information

1.3 Saturation vapor pressure. 1.3.1 Vapor pressure

1.3 Saturation vapor pressure. 1.3.1 Vapor pressure 1.3 Saturation vaor ressure Increasing temerature of liquid (or any substance) enhances its evaoration that results in the increase of vaor ressure over the liquid. y lowering temerature of the vaor we

More information

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1 Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element

More information

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions

More information

Energy Procedia Energy 00 Procedia (2011) 000 000 14 (2012) 56 65

Energy Procedia Energy 00 Procedia (2011) 000 000 14 (2012) 56 65 Available online at www.sciencedirect.com Available online at www.sciencedirect.com Energy Procedia Energy 00 Procedia (2011) 000 000 14 (2012) 56 65 Energy Procedia www.elsevier.com/locate/procedia ICAEE

More information

Equilibrium. Ron Robertson

Equilibrium. Ron Robertson Equilibrium Ron Robertson Basic Ideas A. Extent of Reaction Many reactions do not go to completion. Those that do not are reversible with a forward reaction and reverse reaction. To be really correct we

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt

CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing

More information

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Romanian International Conference on Chemistry and Chemical Engineering RICCCE XIV

Romanian International Conference on Chemistry and Chemical Engineering RICCCE XIV Phase Equilibria Database and Calculation Program for Pure Component Systems and Mixtures Dan Geană, Liviu Rus Department of Applied Physical Chemistry and Electrochemistry, Polytechnic University of Bucharest,

More information

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

State Institute for Nitrogen Industry (GIAP),12 84 Donetskaya Street, 109652 Moscow, Russia b

State Institute for Nitrogen Industry (GIAP),12 84 Donetskaya Street, 109652 Moscow, Russia b Energy 28 (2003) 55 97 www.elsevier.com/locate/energy The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes

More information

Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles

Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles Energy Conservation: Heat Transfer Design Considerations Using Thermodynamic Principles M. Minnucci, J. Ni, A. Nikolova, L. Theodore Department of Chemical Engineering Manhattan College Abstract Environmental

More information

OPTIMIZATION OF DIAMETER RATIO FOR ALPHA-TYPE STIRLING ENGINES

OPTIMIZATION OF DIAMETER RATIO FOR ALPHA-TYPE STIRLING ENGINES OPTIMIZATION OF DIAMETER RATIO FOR ALPHA-TYPE STIRLING ENGINES VLAD MARIO HOMUTESCU* DAN-TEODOR BĂLĂNESCU* * Gheorghe Asachi Technical University of Iassy Department of of ermotechnics ermal Engines and

More information

THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL

THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 39-44, Article ID: IJMET_07_02_005 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information