Electromagnetism - Lecture 5. Capacitors & Electrostatic Energy

Size: px
Start display at page:

Download "Electromagnetism - Lecture 5. Capacitors & Electrostatic Energy"

Transcription

1 Electromagnetism - Lecture 5 Capacitors & Electrostatic Energy Examples of Capacitors Calculations of Capacitance Electrostatic Energy Introduction of Dielectrics General Result for Electrostatic Energy Density 1

2 Capacitors A capacitor is formed from two conductors with equal and opposite surface charges +σ and σ separated by an insulating gap. Capacitance C is the ratio of the total charge Q on each conductor to the potential difference V across the gap: C = Q V = σa V The unit of capacitance is the Farad F = C/V Practical capacitors are between pf and µf 2

3 Parallel Plate Capacitor The electric field for infinite plates is obtained from Gauss s Law or by using the superposition of two uniform fields There is a uniform field in the gap of width d: E gap = σ ɛ 0 ˆd The field outside the plates is zero! The potential difference and capacitance are: V = Ed = Qd C = Q Aɛ 0 V = Aɛ 0 d Note that C is a purely geometric property of the plates! 3

4 Notes: Diagrams: 4

5 Cylindrical Capacitor Two concentric conducting cylinders of length l and radii a and b, carry line charges +λ and λ Use Gauss s Law assuming l a, b: E gap = There is no field for r < a or r > b! λ 2πɛ 0 rˆr The potential difference and capacitance are: V = b a E.dr = C = Q V = Again C is a purely geometric property Q 2πɛ 0 l ln(b/a) 2πɛ 0l ln(b/a) 5

6 Energy Stored in a Capacitor Work is done to assemble charges ±Q on capacitor plates Q W = V dq = C dq This work is stored as electrostatic energy U E = 1 2 For a parallel plate capacitor: Q 2 C = 1 2 QV = 1 2 CV 2 U E = ɛ 0AV 2 2d This can be written in terms of the electric field between the plates: U E = ɛ 0(Ad)E 2 2 6

7 Notes: Diagrams: 7

8 Electrostatic Energy Density Electrostatic Energy is stored in a capacitor through the creation of the Electric field in the gap The energy density of an electric field is proportional to the square of its amplitude: du E dτ = 1 2 ɛ 0 E 2 A useful exercise is to prove this gives the correct electrostatic energy for a cylindrical capacitor 8

9 Electrostatic Energy of Nucleus A Uranium nucleus has Z = 92 protons and N = 146 neutrons uniformly distributed over a radius R m Electric field of nucleus: E(r < R) = Zer Ze ˆr E(r > R) = 4πɛ 0 R3 4πɛ 0 r ˆr 2 Total electrostatic energy by integration over energy density: du E = 1 2 ɛ 0 E 2 dτ U E = R 0 ( ) 2 Zer 4πɛ 0 R 3 2πɛ 0 r 2 dr + R ( ) 2 Ze 4πɛ 0 r 2 2πɛ 0 r 2 dr U E = (Ze)2 40πɛ 0 R + (Ze)2 8πɛ 0 R = J = 730MeV 9

10 Energy of Nuclear Fission A symmetric U fission creates two Pd daughter nuclei Note that fission actually prefers to be asymmetric! Nuclear radii obey R A 1/3 where A = Z + N Electrostatic energy of daughter nuclei compared to 238 U: ( ) U E UE = 2 = 0.63U 4(0.5) 1/3 E = 460MeV Predicted release of electrostatic energy in fission is 270 MeV Observed release is about 200 MeV 10

11 Notes: Diagrams: 11

12 Dielectrics in Capacitors Capacitance depends on the insulating material in the gap C = ɛ r C 0 where C 0 is the result for a vacuum ɛ r 1 is the dielectric constant of the material Energy stored in capacitor is increased by dielectric material: U = 1 2 CV 2 = ɛ r U 0 Electrostatic energy density is proportional to ɛ r du E dτ = 1 2 ɛ rɛ 0 E 2 12

13 Simple Model for Dielectrics If an electric dipole is placed between the capacitor plates it aligns itself with the electric field in the gap p E Potential energy of dipole: U = p.e The energy stored between the plates is increased by this amount In dielectric materials the atoms or molecules become polarized with intrinsic electric dipole moments pointing in the direction of the external field. This will be explained in more detail in a later lecture 13

14 Proof of Electrostatic Energy Density A set of n 1 charges at positions r j gives a potential at r i : V (r i ) = 1 4πɛ 0 n 1 j=1 Q j r i r j Work done to bring up a charge Q i from infinity to point r i : W i = Q i V (r i ) = Q i 4πɛ 0 n 1 j=1 Q j r i r j The total energy stored in the system of n charges is: U E = 1 4πɛ 0 n i=1 j<i Q i Q j r i r j = 1 8πɛ 0 n i=1 n j=1 Generalize to a double integral over the charge density ρ: U E = 1 8πɛ 0 ρ(ri )ρ(r j ) r i r j dτ idτ j Q i Q j r i r j 14

15 Notes: Diagrams: 15

16 Perform one integral over dτ to get the potential V : U E = 1 2 ρ(r)v (r)dτ Then use Poisson s equation to eliminate the other ρ: U E = ɛ 0 2 V 2 V dτ Now the tricky bit - integrate this by parts: 0 V.( V )dτ = [V ( V )] 0 0 ( V )( V )dτ Apply the boundary conditions V ( ) = 0 and V (0) = 0: U E = ɛ 0 2 ( V ) 2 dτ = ɛ 0 2 This proof comes from Jackson P E 2 dτ 16

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS

CHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F

Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

Q24.1 The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b

Q24.1 The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b Q24.1 The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to 2Q, while keeping the conductors in the same positions.

More information

Electric Fields in Dielectrics

Electric Fields in Dielectrics Electric Fields in Dielectrics Any kind of matter is full of positive and negative electric charges. In a dielectric, these charges cannot move separately from each other through any macroscopic distance,

More information

Exam 2 Practice Problems Part 1 Solutions

Exam 2 Practice Problems Part 1 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z

More information

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

potential in the centre of the sphere with respect to infinity.

potential in the centre of the sphere with respect to infinity. Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 2006-09-27, kl 16.00-22.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

How to transform, with a capacitor, thermal energy into usable work.

How to transform, with a capacitor, thermal energy into usable work. How to transform, with a capacitor, thermal energy into usable work. E. N. Miranda 1 CONICET CCT Mendoza 55 Mendoza, Argentina and Facultad de Ingeniería Universidad de Mendoza 55 Mendoza, Argentina Abstract:

More information

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2

More information

Exam 1 Practice Problems Solutions

Exam 1 Practice Problems Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

More information

Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings 1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011 Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Energy in Electrical Systems. Overview

Energy in Electrical Systems. Overview Energy in Electrical Systems Overview How can Potential Energy be stored in electrical systems? Battery Stored as chemical energy then transformed to electrical energy on usage Water behind a dam Water

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form

Lecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form Lecture 5 Electric Flux and Flux ensity, Gauss Law in Integral Form ections: 3.1, 3., 3.3 Homework: ee homework file LECTURE 5 slide 1 Faraday s Experiment (1837), Flux charge transfer from inner to outer

More information

HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW7 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 24.P.021 (a) Find the energy stored in a 20.00 nf capacitor

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field Quick Review Motion of Charged Particles in an Electric Field Gauss s Law (Ch. 24, Serway) Conductors in Electrostatic Equilibrium (Ch. 24) Homework

More information

ELECTRIC FIELDS AND CHARGE

ELECTRIC FIELDS AND CHARGE 1 E1 ELECTRIC FIELDS AND CHARGE OBJECTIVES Aims In studying this chapter you should aim to understand the basic concepts of electric charge and field and their connections. Most of the material provides

More information

Capacitors in Circuits

Capacitors in Circuits apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively

More information

INVESTIGATION OF ELECTRIC FIELD INTENSITY AND DEGREE OF UNIFORMITY BETWEEN ELECTRODES UNDER HIGH VOLTAGE BY CHARGE SIMULATIO METHOD

INVESTIGATION OF ELECTRIC FIELD INTENSITY AND DEGREE OF UNIFORMITY BETWEEN ELECTRODES UNDER HIGH VOLTAGE BY CHARGE SIMULATIO METHOD INVESTIGATION OF ELECTRIC FIELD INTENSITY AND DEGREE OF UNIFORMITY BETWEEN ELECTRODES UNDER HIGH VOLTAGE BY CHARGE SIMULATIO METHOD Md. Ahsan Habib, Muhammad Abdul Goffar Khan, Md. Khaled Hossain, Shafaet

More information

Episode 126: Capacitance and the equation C =Q/V

Episode 126: Capacitance and the equation C =Q/V Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference

More information

CHAPTER 24 GAUSS S LAW

CHAPTER 24 GAUSS S LAW CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is

More information

Charges, voltage and current

Charges, voltage and current Charges, voltage and current Lecture 2 1 Atoms and electrons Atoms are built up from Positively charged nucleus Negatively charged electrons orbiting in shells (or more accurately clouds or orbitals) -

More information

19 ELECTRIC POTENTIAL AND ELECTRIC FIELD

19 ELECTRIC POTENTIAL AND ELECTRIC FIELD CHAPTER 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD 663 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD Figure 19.1 Automated external defibrillator unit (AED) (credit: U.S. Defense Department photo/tech. Sgt. Suzanne

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

As customary, choice (a) is the correct answer in all the following problems.

As customary, choice (a) is the correct answer in all the following problems. PHY2049 Summer 2012 Instructor: Francisco Rojas Exam 1 As customary, choice (a) is the correct answer in all the following problems. Problem 1 A uniformly charge (thin) non-conucting ro is locate on the

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Chapter 18. Electric Forces and Electric Fields

Chapter 18. Electric Forces and Electric Fields My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ ------------------------------------------------------------------- Chapter 18 Electric Forces and Electric Fields

More information

Capacitance and Ferroelectrics

Capacitance and Ferroelectrics Ram Seshadri MRL 2031, x6129 seshadri@mrl.ucsb.edu; http://www.mrl.ucsb.edu/ seshadri/teach.html Capacitance and Ferroelectrics A voltage V applied across a capacitor of caacitance C allows a quantity

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Electric Energy and Potential

Electric Energy and Potential Electric Energy and Potential 15 In the last chapter we discussed the forces acting between electric charges. Electric fields were shown to be produced by all charges and electrical interactions between

More information

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy . The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

More information

Solution. Problem. Solution. Problem. Solution

Solution. Problem. Solution. Problem. Solution 4. A 2-g ping-pong ball rubbed against a wool jacket acquires a net positive charge of 1 µc. Estimate the fraction of the ball s electrons that have been removed. If half the ball s mass is protons, their

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Chapter 6. Current and Resistance

Chapter 6. Current and Resistance 6 6 6-0 Chapter 6 Current and Resistance 6.1 Electric Current... 6-2 6.1.1 Current Density... 6-2 6.2 Ohm s Law... 6-5 6.3 Summary... 6-8 6.4 Solved Problems... 6-9 6.4.1 Resistivity of a Cable... 6-9

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2011 Question 1 2 Mark Physics

More information

Lecture 14 Capacitance and Conductance

Lecture 14 Capacitance and Conductance Lecture 14 Capacitance and Conductance ections: 6.3, 6.4, 6.5 Homework: ee homework file Definition of Capacitance capacitance is a measure of the ability of the physical structure to accumulate electrical

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance - Mutual Inductance - Self-Inductance and Inductors - Magnetic-Field Energy - The R- Circuit - The -C Circuit - The -R-C Series Circuit . Mutual Inductance - A changing current in

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

Experiments on the Basics of Electrostatics (Coulomb s law; Capacitor)

Experiments on the Basics of Electrostatics (Coulomb s law; Capacitor) Experiments on the Basics of Electrostatics (Coulomb s law; Capacitor) ZDENĚK ŠABATKA Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague The physics textbooks

More information

Electromagnetic waves

Electromagnetic waves Chapter 8 lectromagnetic waves David Morin, morin@physics.harvard.edu The waves we ve dealt with so far in this book have been fairly easy to visualize. Waves involving springs/masses, strings, and air

More information

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Science Tutorial TEK 6.9C: Energy Forms & Conversions Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

More information

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Fundamentals of Electromagnetic Fields and Waves: I

Fundamentals of Electromagnetic Fields and Waves: I Fundamentals of Electromagnetic Fields and Waves: I Fall 2007, EE 30348, Electrical Engineering, University of Notre Dame Mid Term II: Solutions Please show your steps clearly and sketch figures wherever

More information

Electric Field Mapping Lab 3. Precautions

Electric Field Mapping Lab 3. Precautions HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

Measurement of Capacitance

Measurement of Capacitance Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Electrolysis Patents No. 16: Last updated: 30th September 2006 Author: Patrick J. Kelly The major difficulty in using Stan s low-current Water Fuel Cell (recently

More information

C;Ri.N. (<b &>o3s8: Université Louis Pasteur de Strasbourg. Institut National de Physique Nucléaire et de Physique des Particules t...

C;Ri.N. (<b &>o3s8: Université Louis Pasteur de Strasbourg. Institut National de Physique Nucléaire et de Physique des Particules t... (o3s8: C;Ri.N CWMB 7»-fi CO i\ ANGULAR ASSÏMBTRIBS IN A SHIELDED -^ PAIR LINE CO CJ H.-FANMarri, C.A. GMCIA CANAL «nd H. VUCETICH o \. CHRKE DE «CH.1RCHES KKXEAIRES UHIVERSITB LOUIS PASTEUR STRASBOURG

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Inductors and Capacitors Energy Storage Devices

Inductors and Capacitors Energy Storage Devices Inuctors an Capacitors Energy Storage Devices Aims: To know: Basics of energy storage evices. Storage leas to time elays. Basic equations for inuctors an capacitors. To be able to o escribe: Energy storage

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207.

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

More information

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

Problem 1 (25 points)

Problem 1 (25 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

The Gamma Match. 1 Equal Size Elements

The Gamma Match. 1 Equal Size Elements The Gamma Match The gamma match was originally invented as a means of feeding vertical monopole antennas for medium wave broadcasts, which were earthed at the base for lightning protection (see Figure

More information

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada,

More information

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

PHYSICS HIGHER SECONDARY SECOND YEAR VOLUME - I. Revised based on the recommendation of the Textbook Development Committee. Untouchability is a sin

PHYSICS HIGHER SECONDARY SECOND YEAR VOLUME - I. Revised based on the recommendation of the Textbook Development Committee. Untouchability is a sin PHYSICS HIGHER SECONDARY SECOND YEAR VOLUME - I Revised based on the recommendation of the Textbook Development Committee Untouchability is a sin Untouchability is a crime Untouchability is inhuman TAMILNADU

More information

Supercapacitors. Advantages Power density Recycle ability Environmentally friendly Safe Light weight

Supercapacitors. Advantages Power density Recycle ability Environmentally friendly Safe Light weight Supercapacitors Supercapacitors also called ultracapacitors and electric double layer capacitors (EDLC) are capacitors with capacitance values greater than any other capacitor type available today. Capacitance

More information

Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards.

The content is based on the National Science Teachers Association (NSTA) standards and is aligned with state standards. Literacy Advantage Physical Science Physical Science Literacy Advantage offers a tightly focused curriculum designed to address fundamental concepts such as the nature and structure of matter, the characteristics

More information