A new look at Newton-Cartan gravity
|
|
|
- Maud Leonard
- 9 years ago
- Views:
Transcription
1 A new look at Newton-Cartan gravity Eric Bergshoeff Groningen University Memorial Meeting for Nobel Laureate Professor Abdus Salam s 90th Birthday NTU, Singapore, January
2
3 Einstein (1905/1915) Élie Cartan (1923) Einstein achieved two things in 1915: He made gravity consistent with special relativity He used an arbitrary coordinate frame formulation
4 Geometry Riemann (1867) Einstein used Riemannian geometry General relativity Cartan used NC geometry NC gravity Newton-Cartan (NC) gravity is Newtonian gravity in arbitrary frame
5 why non-relativistic gravity?
6 gauge-gravity duality Motivation Liu, Schalm, Sun, Zaanen, Holographic Duality in Condensed Matter Physics (2015) Christensen, Hartong, Kiritsis Obers and Rollier ( ) condensed matter physics Son (2013), Can, Laskin, Wiegmann (2014), Gromov, Abanov (2015) Hořava-Lifshitz gravity, flat-space holography, etc. Hořava (2009); Hartong, Obers (2015); Duval, Gibbons, Horvathy, Zhang (2014) non-relativistic strings/branes Gomis, Ooguri (2000); Gomis, Kamimura, Townsend (2004)
7 How do we construct (Non-)relativistic Gravity? (1) gauging a (non-)relativistic algebra (2) taking a non-relativistic limit (3) using a nonrelativistic version of the conformal tensor calculus
8 Outline NC Gravity from gauging Bargmann
9 Outline NC Gravity from gauging Bargmann The Schrödinger Method
10 Outline NC Gravity from gauging Bargmann The Schrödinger Method NC Gravity with Torsion
11 Outline NC Gravity from gauging Bargmann The Schrödinger Method NC Gravity with Torsion Future Directions
12 Outline NC Gravity from gauging Bargmann The Schrödinger Method NC Gravity with Torsion Future Directions
13 Einstein Gravity In the relativistic case free-falling frames are connected by the Poincare symmetries: space-time translations: δx µ = ξ µ Lorentz transformations: δx µ = λ µ ν x ν In free-falling frames there is no gravitational force in arbitrary frames the gravitational force is described by an invertable Vierbein field e µ A (x) µ = 0,1,2,3; A=0,1,2,3
14 Non-relativistic Gravity In the non-relativistic case free-falling frames are connected by the Galilean symmetries: time translations: δt = ξ 0 space translations: δx i = ξ i i = 1,2,3 spatial rotations: Galilean boosts: δx i = λ i j x j δx i = λ i t In free-falling frames there is no gravitational force
15 Newtonian gravity versus Newton-Cartan gravity in frames with constant acceleration (δx i = 1 2 ai t 2 ) the gravitational force is described by the Newton potential Φ( x) Newtonian gravity in arbitrary frames the gravitational force is described by a temporal Vierbein τ µ (x), spatial Vierbein e µ a (x) plus a vector m µ (x) µ = 0,1,2,3; a=1,2,3 Newton-Cartan (NC) gravity
16 The Galilei Algebra versus the Bargmann algebra Einstein gravity follows from gauging the Poincare algebra The Galilei algebra is the contraction of the Poincare algebra does NC gravity follow from gauging the Galilei algebra? Can NC gravity be obtained by taking the non-relativistic limit of Einstein gravity? No! one needs Bargmann instead of Galilei and Poincare U(1)!
17 Gauging the Bargmann algebra cp. to Chamseddine and West (1977) [J ab,p c ] = 2δ c[a P b], [J ab,g c ] = 2δ c[a G b], [G a,h] = P a, [G a,p b ] = δ ab Z, a = 1,2,...,d symmetry generators gauge field parameters curvatures time translations H τ µ ζ(x ν ) R µν (H) space translations P a a e µ ζ a (x ν ) R a µν (P) Galilean boosts G a a ω µ λ a (x ν ) R a µν (G) spatial rotations J ab ab ω µ λ ab (x ν ) R ab µν (J) central charge transf. Z m µ σ(x ν ) R µν (Z)
18 Imposing Constraints R µν a (P) = 0, R µν (Z) = 0 : solve for spin-connection fields R µν (H) = [µ τ ν] = 0 τ µ = µ τ : foliation of Newtonian spacetime ( zero torsion ) R µν ab (J) 0 : restriction on-shell R 0(a,b) (G) 0 : Poisson equation on-shell
19 The Final Result The independent NC fields {τ µ,e µ a,m µ } transform as follows: δτ µ = 0, δe µ a = λ a be µ b +λ a τ µ, δm µ = µ σ +λ a e µ a The spin-connection fields ω µ ab and ω µ a are functions of e,τ and m There are two Galilean-invariant metrics: τ µν = τ µ τ ν, h µν = e µ ae ν bδ ab
20 The NC Equations of Motion Taking the non-relativistic limit of the Einstein equations Rosseel, Zojer + E.B. (2015) τ µ e ν ar µν a (G) = 0 e ν ar µν ab (J) = 0 after gauge-fixing and assuming flat space the first NC e.o.m. becomes Φ = 0 note: there is no action that gives rise to these equations of motion
21 Outline NC Gravity from gauging Bargmann The Schrödinger Method NC Gravity with Torsion Future Directions
22 The Relativistic Conformal Method Conformal = Poincare + D (dilatations) + K µ (special conf. transf.) conformal gravity gauging of conformal algebra δb µ = Λ a K(x)e µ a, f µ a = f µ a (e,ω,b) Poincare invariant CFT of real scalar
23 An example P : e 1 L = 1 κ 2 R STEP 1 STEP 2 (e µ A ) P = κ 2 D 2 ϕ(eµ A ) C δϕ = Λ D ϕ, with δ(e µ A ) C = Λ D (e µ A ) C (e µ A ) C = δ µ A µ ξ ν +Λ νµ +Λ D δ µ ν = 0 make redefinition ϕ = φ 2 D 2, D > 2 CFT : L = 4 D 1 D 2 φ φ with δφ = ξµ µ φ 1 2 (D 2)Λ Dφ
24 from CFT back to P CFT : L φ φ δφ = ξ µ µ φ+wλ D φ STEP 1 replace derivatives by conformal-covariant derivatives e 1 L = 4 D 1 D 2 φ C φ STEP 2 gauge-fix dilatations by imposing φ = 1 κ P : e 1 L = 1 κ 2 R
25 Three Different Invariants 1. Kinetic terms Example: L φ φ e 1 L = R includes all CFT s with time derivatives 2. Potential terms Example: cosmological constant (κ = 1) e 1 L = Λ L = Λφ 2, w = D 2 3. Curvature terms Example: Weyl tensor squared e 1 L φ 2D 4 D 2 ( C µν AB ) 2 D 4
26 The Schrödinger Method The contraction of the conformal Algebra is the Galilean Conformal Algebra (GCA) which has no central extension! z = 2 Schrödinger = Bargmann + D (dilatations) + K (special conf.) [H,D] = zh, [P a,d] = P a z = 1: conformal algebra, z 2 : no special conf. transf.
27 Schrödinger Gravity Hartong, Rosseel + E.B. (2014) Gauging the z = 2 Schrödinger algebra we find that the independent gauge fields {τ µ,e µ a,m µ } transform as follows: δτ µ = 2Λ D τ µ, δe µ a = Λ a be µ b +Λ a τ µ +Λ D e µ a, δm µ = µ σ +Λ a e µ a The time projection τ µ b µ of b µ transforms under K as a a shift while the spatial projection b a e a µ b µ is dependent b a (e,τ) represents (twistless) torsion!
28 SFT s versus Galilean Invariants the Schrödinger action for a complex scalar Ψ with weights (w,m) SFT : S = dtd d xψ ( i 0 1 2M a a )Ψ is invariant under the rigid Schrödinger transformations δψ = ( b 2λ D t +λ K t 2) 0 Ψ+ ( b a λ ab x b λ a t λ D x a +λ K tx a) a Ψ +w ( λ D λ K t ) Ψ+iM ( σ λ a x a λ Kx 2) Ψ for w(ψ) = d/2 The corresponding Galilean invariant G has inconsistent E.O.M. s
29 Outline NC Gravity from gauging Bargmann The Schrödinger Method NC Gravity with Torsion Future Directions
30 Case 1: zero torsion: b a = 0 Schrödinger method also works at level of E.O.M. s foliation constraint : µ (τ ν ) G ν (τ µ ) G = 0, Gal E.O.M. : (τ µ ) G (e ν a) G R µν a (G) = 0, (e ν a) G R µν ab (J) = 0. Schrödinger method leads to (Ψ = ϕe iχ ) SFT : 0 0 ϕ = 0 and a ϕ = 0 with w = 1
31 Case 2: twistless torsion: b a 0 foliation constraint is conformal invariant use the second compensating scalar χ to restore Schrödinger invariance: 0 0 ϕ 2 M ( 0 a ϕ) a χ+ 1 M 2( a b ϕ) a χ b χ = 0 Φ+ ˆτ µ µ K +K ab K ab 8Φb b 2ΦD b 6b a D a Φ = 0 plus e ν ar µν ab (J) = 0 Afshar, Mehra, Parekh, Rollier + E.B. (2015)
32 Outline NC Gravity from gauging Bargmann The Schrödinger Method NC Gravity with Torsion Future Directions
33 New developments and Extensions relation to Hořava-Lifshitz gravity Hartong and Obers (2015) Afshar, Mehra, Parekh, Rollier + E.B. (2015) extension to z 2 and Galilean conformal symmetries matter-coupled NC gravity non-relativistic supergravity localization techniques Andringa, Rosseel, Sezgin + E.B. (2013) Knodel, Lisbao, Liu (2015)
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Russell L. Herman and Gabriel Lugo University of North Carolina Wilmington, Wilmington, NC Abstract We describe the
Noncritical String Theory
Noncritical String Theory Sander Walg Master s thesis Supervisor: Prof. Dr. Jan de Boer University of Amsterdam Institute for Theoretical Physics Valckenierstraat 65 1018 XE Amsterdam The Netherlands August
A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)
A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) Outline 1. ADM formulation & EFT formalism. Illustration: Horndeski s theories 3. Link with observations Based on
PHY1020 BASIC CONCEPTS IN PHYSICS I
PHY1020 BASIC CONCEPTS IN PHYSICS I Jackson Levi Said 14 lectures/tutorials/past paper session Project on one of the interesting fields in physics (30%) Exam in January/February (70%) 1 The Course RECOMMENDED
Testing dark matter halos using rotation curves and lensing
Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences
Localization of scalar fields on Branes with an Asymmetric geometries in the bulk
Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg
3-rd lecture: Modified gravity and local gravity constraints
3-rd lecture: Modified gravity and local gravity constraints Local gravity tests If we change gravity from General Relativity, there are constraints coming from local gravity tests. Solar system tests,
Special Theory of Relativity
June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition
The Einstein field equations
The Einstein field equations Part I: the right-hand side Atle Hahn GFM, Universidade de Lisboa Lisbon, 21st January 2010 Contents: 1 Einstein field equations: overview 2 Special relativity: review 3 Classical
Einstein s theory of relativity
Department of Mathematics, Institute of Origins, December 5, 2008 Overview UCL Institute of Origins Origins UCL has established the Institute of Origins to promote world leading research in topics related
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2
It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2 by Peter Galison The Einstein Equation of General Relativity
Is Quantum Mechanics Exact?
Is Quantum Mechanics Exact? Anton Kapustin Simons Center for Geometry and Physics Stony Brook University This year Quantum Theory will celebrate its 90th birthday. Werner Heisenberg s paper Quantum theoretic
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
The Essence of Gravitational Waves and Energy
The Essence of Gravitational Waves and Energy F. I. Cooperstock Department of Physics and Astronomy University of Victoria P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada) March 26, 2015 Abstract We discuss
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Fundamental ideas and problems of the theory of relativity
A LBERT E INSTEIN Fundamental ideas and problems of the theory of relativity Lecture delivered to the Nordic Assembly of Naturalists at Gothenburg* July 11, 1923 If we consider that part of the theory
STRING THEORY: Past, Present, and Future
STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining
Elasticity Theory Basics
G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
Orbital Dynamics in Terms of Spacetime Angular Momentum
Chapter 4 Orbital Dynamics in Terms of Spacetime Angular Momentum by Myron W. Evans 1 and H. Eckardt 2 Alpha Institute for Advanced Study (AIAS) (www.aias.us, www.atomicprecision.com) Abstract Planar orbital
General Relativity. Matthias Bartelmann Institut für Theoretische Astrophysik Universität Heidelberg
General Relativity Matthias Bartelmann Institut für Theoretische Astrophysik Universität Heidelberg Contents 1 Introduction 1 1.1 The Idea behind General Relativity........... 1 1.2 Fundamental Properties
Advanced Topics in Physics: Special Relativity Course Syllabus
Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY *
PEDAGOGY: THE BUBBLE ANALOGY AND THE DIFFERENCE BETWEEN GRAVITATIONAL FORCES AND ROCKET THRUST IN SPATIAL FLOW THEORIES OF GRAVITY * Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected]
Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.
June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a
How Gravitational Forces arise from Curvature
How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate
DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding
A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant
A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong
Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
World of Particles Big Bang Thomas Gajdosik. Big Bang (model)
Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)
The de Sitter and anti-de Sitter Sightseeing Tour
Séminaire Poincaré 1 (2005) 1 12 Séminaire Poincaré The de Sitter and anti-de Sitter Sightseeing Tour Ugo Moschella Dipartimento di Fisica e Matematica Università dell Insubria, 22100 Como INFN, Sezione
Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS
Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement
arxiv:hep-th/0605275v1 29 May 2006
Second Order Noncommutative Corrections to Gravity Xavier Calmet 1 and Archil Kobahidze 2 1 Univeité Libre de Bruxelles arxiv:hep-th/0605275v1 29 May 2006 Service de Physique Théorique, CP225 Boulevard
Kaluza-Klein for Kids. William O. Straub Pasadena, California 91104 June 27, 2014
Kaluza-Klein for Kids William O. Straub Pasadena, California 91104 June 27, 2014 Abstract A very elementary overview of the original Kaluza-Klein theory is presented, suitable for undergraduates who want
Generally Covariant Quantum Mechanics
Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). ([email protected], www.aias.us, www.atomicprecision.com) Dedicated to the Late
Newton s Laws of Motion, Reference Frames and Inertia
Newton s Laws of Motion, Reference Frames and Inertia Chris O Loughlin 2 December 2011 Abstract The validity of Newton s Laws of Motion depends on the type of reference frame they act in. They are valid
CURRICULUM VITAE. Name: Nihat Sadik Deger Date and Place of Birth: February 6 1972, Ankara, Turkey
CURRICULUM VITAE PERSONAL INFORMATION Name: Nihat Sadik Deger Date and Place of Birth: February 6 1972, Ankara, Turkey CONTACT INFORMATION Address: Bogazici University Department of Mathematics Phone:
Structure formation in modified gravity models
Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
Which Symmetry? Noether, Weyl, and Conservation of Electric Charge
Which Symmetry? Noether, Weyl, and Conservation of Electric Charge Katherine Brading St. Hugh s College Oxford, OX2 6LE [email protected] 1 Introduction The idea of connecting conservation
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
General Relativity. Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012
1 General Relativity Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012 Contents 1 Introduction 1 1.1 Non euclidean geometries............................ 1 1.2 How does the metric tensor transform
Gravitational lensing in alternative theories of gravitation
UNIVERSITY OF SZEGED FACULTY OF SCIENCE AND INFORMATICS DEPARTMENT OF THEORETICAL PHYSICS DOCTORAL SCHOOL OF PHYSICS Gravitational lensing in alternative theories of gravitation Abstract of Ph.D. thesis
Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry
Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad
SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY
SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY New College of Florida, 5700 Tamiami Trail, Sarasota, FL 34243, USA E-mail: [email protected] To date, a significant effort has been made
Gravitation and Newton s Synthesis
Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass
CARTAN S GENERALIZATION OF LIE S THIRD THEOREM
CARTAN S GENERALIZATION OF LIE S THIRD THEOREM ROBERT L. BRYANT MATHEMATICAL SCIENCES RESEARCH INSTITUTE JUNE 13, 2011 CRM, MONTREAL In many ways, this talk (and much of the work it reports on) owes its
Substantivalist and Relationalist Approaches to Spacetime
Substantivalist and Relationalist Approaches to Spacetime Oliver Pooley Oriel College, Oxford 6 February 2012 Contents 1 Introduction 2 2 Newton s Bucket 3 3 The Puzzle of Galilean Invariance 7 3.1 Spacetime
On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix
Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature
Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30
Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is
ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY
1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell
Online Courses for High School Students 1-888-972-6237
Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
Gauge theories and the standard model of elementary particle physics
Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most
A Primer on Index Notation
A Primer on John Crimaldi August 28, 2006 1. Index versus Index notation (a.k.a. Cartesian notation) is a powerful tool for manipulating multidimensional equations. However, there are times when the more
Part I. Student Laboratory Manuals
Part I Student Laboratory Manuals 1 GK 4. The Gravitational Constant G 4.1 Introduction Gravitation, or gravity, is one of the four fundamental interactions of nature 1, giving rise to attractive forces
arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013
Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
Torque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.
MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,
Perfect Fluids: From Nano to Tera
Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,
A tentative theory of large distance physics
hep-th/0204131 RUNHETC-2002-12 A tentative theory of large distance physics Daniel Friedan Department of Physics and Astronomy Rutgers, The State University of New Jersey Piscataway, New Jersey, USA and
6 J - vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems
Attitude Control and Dynamics of Solar Sails
Attitude Control and Dynamics of Solar Sails Benjamin L. Diedrich A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University
Extrinsic geometric flows
On joint work with Vladimir Rovenski from Haifa Paweł Walczak Uniwersytet Łódzki CRM, Bellaterra, July 16, 2010 Setting Throughout this talk: (M, F, g 0 ) is a (compact, complete, any) foliated, Riemannian
Let s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
This page intentionally left blank
This page intentionally left blank A First Course in General Relativity Second Edition Clarity, readability, and rigor combine in the second edition of this widely used textbook to provide the first step
Introduction to String Theory
Introduction to String Theory Winter term 015/16 Timo Weigand Institut für Theoretische Physik, Universität Heidelberg Digitalisierung des Skripts: Max Kerstan, Christoph Mayrhofer Contents Literature
arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000
arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 Lagrangians and Hamiltonians for High School Students John W. Norbury Physics Department and Center for Science Education, University of Wisconsin-Milwaukee,
University of Cambridge Part III Mathematical Tripos
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2006 and 2007 Quantum Field Theory University of Cambridge Part III Mathematical Tripos Dr David Tong Department of Applied Mathematics and
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
4.2 Free Body Diagrams
CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about
Kevin James. MTHSC 102 Section 1.5 Exponential Functions and Models
MTHSC 102 Section 1.5 Exponential Functions and Models Exponential Functions and Models Definition Algebraically An exponential function has an equation of the form f (x) = ab x. The constant a is called
Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation:
Newton s Laws & Gravitation Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: F G = GMm 2 r G is the gravitational
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Euclidean quantum gravity revisited
Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,
APPLICATIONS OF TENSOR ANALYSIS
APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER
Chapter 10: Linear Kinematics of Human Movement
Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship
Introduction to General Relativity
Chapter 8 Introduction to General Relativity 8.1 The Problem After 1905 and the success of the Special Theory of Relativity, Einstein turned his attention to the problem of making the other known fundamental
Big Bang Cosmology. Big Bang vs. Steady State
Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion
Binary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves
Intro Motivations Binary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves Dr. Jennifer Seiler (NASA GSFC) Gravity Theory Seminars University of Maryland College Park
