Newton s Three Laws. d dt F = If the mass is constant, this relationship becomes the familiar form of Newton s Second Law: dv dt

Size: px
Start display at page:

Download "Newton s Three Laws. d dt F = If the mass is constant, this relationship becomes the familiar form of Newton s Second Law: dv dt"

Transcription

1 Newton s Three Lws For couple centuries before Einstein, Newton s Lws were the bsic principles of Physics. These lws re still vlid nd they re the bsis for much engineering nlysis tody. Forml sttements of Newton s Three Lws re given below. Informl eplntions of Newton s Three Lws re given below ech forml sttement. Newton s First Lw: An object t rest tends to sty t rest nd n object in motion tends to sty in motion with the sme speed nd in the sme direction unless cted upon by n unblnced eternl force. Inerti is property of mtter tht resists chnges in motion. If mss is not moving, it will sty tht wy until n unblnced eternl force strts to move it; if mss is in motion, it will sty in motion with the sme speed nd direction until n unblnced eternl force chnges its motion chrcteristics (friction could slow it down, or force could ccelerte its motion). For emple, let us consider hockey puck on the ice (ssume the ice is perfectly level nd frictionless). If the puck is plced down on the ice, it will sty motionless until someone hits it with stick or skte becuse of its inerti. Also due to inerti, when slpped, the puck will tend to move in stright line with constnt speed until n eternl force (such s nother plyer, or the golie, or the net) chnges its motion. As second emple of Newton s First Lw, consider cr ccelerting from stoplight. As the cr ccelertes from zero motion, your body tends to push bck into the set due to its inerti (trying to remin t rest). Also, s the cr is brked from high speed bck to stopping, your body is flung forwrd due to its inerti in motion. Hopefully you hve your setbelt on, or else Newton s First Lw could hve bd consequences. Newton s Second Lw: The ccelertion of n object s produced by net force F is directly proportionl to the mgnitude of the net force, in the sme direction s the net force, nd inversely proportionl to the mss m of the object: F = m. A resultnt eternl force F cting on body will ccelerte tht body in the direction of F, with ccelertion = F/m. Accelertion is the second time rte of chnge of position, lso the first time rte of chnge of velocity; ccelertion is to velocity wht velocity is to position. Newton s originl sttement of the Second Lw ws tht the resultnt eternl force F is equl to the time rte of chnge of momentum (mv, mss times velocity): F = d dt ( mv) If the mss is constnt, this reltionship becomes the fmilir form of Newton s Second Lw: dv F = m = m dt

2 Before Newton developed his Second Lw, the previling belief ws tht force ws proportionl to velocity: F = mv. This ppered to be true for the motion of horse-drwn crts, since friction domintes this problem. Newton revolutionized engineering mechnics; his lws were unchllenged until Einstein s Reltivity work. Newton s Lws re still the bsis for most engineering dynmics tody. Newton s Third Lw: For every ction, there is n equl nd opposite rection. This lw is fmilir in everydy situtions; force cnnot be pplied to n object unless something resists the rection of tht force. In order to wlk cross the floor, you must push bck on the floor with your foot; then, ccording to Newton s Third Lw, the floor pushes forwrd on your foot, which propels you forwrd. This, of course, requires friction to work. If free-floting stronut were to throw bsebll, there is nothing to resist the throwing force, so s the bsebll ccelertes in the direction of throwing, the stronut would ccelerte bckwrds, with force equl nd opposite to the throwing force. The stronut would ccelerte t much smller level (by Newton s Second Lw) since her mss is much greter thn the bsebll s mss. The recoil of gun during firing is nother emple of Newton s Third Lw. As finl emple, if person ttempts to jump to dock from smll silbot, they my end up lnding in wter if they do not understnd Newton s Third Lw: similr to the stronut emple, the jumping force of the humn on the bot will tend to push the bot bckwrds; the equl nd opposite force of the bot on the humn will propel tht person towrd the dock, but since the bot moves bckwrds, the person my end up wet. The sme problem eists for lrge silbots, ecept with lrger bot inerti, it is less noticeble.

3 Newton s st Lw Emple: Block on frictionless surfce To demonstrte in softwre Newton s First Lw (the lw of inerti) we consider point-mss block free to slide on frictionless, perfectly flt XY plne. Grvity is norml to this plne, in the Z direction, nd hence grvity does not enter into this problem due to our frictionless surfce ssumption (ecept for the fct tht grvity keeps the block in the XY plne). When the block is plced t rest on the plne with no net unblnced eternl force, it will remin t rest due to the block s property of inerti. The user cn then strt motion by pushing on the block with the hptic interfce try single X or Y directions first, but both cn occur t once. The user feels the inerti, which is the block s resistnce to chnge in motion. Once the block is in motion, if the force is removed, it will tend to remin in motion t the velocity (speed nd direction) obtined when the force stopped. A reverse force is required to return the block to rest. The user feels the block s inerti in motion, gin resisting chnge in motion. With the frictionless ssumption, it is not esy to return the moving block to rest with the joystick. For the simulted motion when force is pplied, we use Newton s nd Lw F = m to solve for the resulting ccelertion. The free-body digrm (FBD) is simple in this cse, shown for one direction X below: W F m The resulting ccelertion is simply = F /m, while the force is pplied (for Y motion, y = F y /m). We cn use kinemtics to determine the resulting motion; we strt with the known, constnt ccelertion nd integrte twice (the constnts of integrtion re zero if we strt from rest nd mesure the displcement from the initil position). The left epressions re for the motion when the force is pplied; the right epressions re for the constnt velocity motion phse when the force hs been removed. The below epressions re for X motion, but pply eqully (independently but simultneously) to Y motion. v F () t = m () t = 0 () t = t v() t = vc t () t = + v t () t = 0 C In the right epressions bove, v C is the constnt velocity chieved t the instnt the force is removed: v C () t = tmax, where t MAX is the time when the force is removed. Also, 0 is the displcement chieved in the first motion phse, t MAX 0 =. N

4 Inertil force is defined to be F0 = m in the X direction (similr for Y). Here force is in quotes since it hs units of force, N, but it is not true force, rther n effect of ccelertion tht cn be felt. Inertil force gives the user the feel of the mss s inerti during the simultion. User inputs: Forces F nd F y vi the hptic interfce (directions commnded by user, mgnitudes ll ssumed to be 0 N). Computer sets: Visulize: m = 0 kg point mss in motion, plus kinemtics plots for, v, ; lso y, v y, y Numericl Disply: Nothing. User Feels: Block inertil forces F0 = m in X nd F0 y = my in Y; feels nothing during constnt velocity motions. Emple: When the user pushes with F = 0 N nd F y = 0 for three seconds (t MAX = 3 sec), followed by F = F y = 0 for three more seconds, the numericl results re: First motion phse: = m/s Second motion phse: v C = 3 m/s, 0 = 4.5 m The ssocited kinemtics plots vs. time re shown below:

5 v time Kinemtics Plots for motion in the X direction, Newton s First Lw Simultion In the first three seconds when the constnt force is pplied to the block, the resulting constnt ccelertion (from Newton s Second Lw) is = m/s ; in this motion rnge, the block velocity increses linerly nd the block s position increses prboliclly. In the remining three seconds of motion, the constnt force hs been removed so there is constnt velocity (v C = 3 m/s, the mimum vlue from the first three seconds) ccording to Newton s Second Lw. In the constnt velocity motion rnge, ccelertion is zero, nd position linerly increses from its previous ending vlue of 0 = 4.5 m. You cn see tht the position chnges by 3 m every sec, which is the constnt velocity of 3 m/s.

6 Newton s nd Lw Emple: Two-mss ccelertion In this softwre simultion, two msses re connected by n idel cble (mssless, perfectly stiff) s shown in the digrm. For this point-mss problem, we ignore the pulley rottionl inerti. The system is relesed from rest nd we wish to clculte the resulting system motion using Newton s nd Lw. The dynmic coefficient of friction between m nd the motion surfce is µ. The free-body digrms, one for ech point mss, re shown following the system digrm. Y m X y m W T F f m T m N W For ech free-body digrm, we pply Newton s nd Lw, F = ma i i. For mss, this vector eqution yields one eqution in the X nd one in the Y direction; for mss, only one eqution, in the Y direction, results: X : T F f Y : N W = m = m y Y : W T = m y

7 The sme cble tension T is pplied to ech mss, by Newton s 3 rd Lw (since we re not considering pulley dynmics). The friction force is F f = µ N, opposing the direction of motion; N is the norml force of the motion surfce cting on mss. The weight forces re W ccelertion vectors re: i = m g, i=,. The i A = y = 0 A = y = 0 Tht is, mss does not ccelerte in the Y direction nd mss does not ccelerte in the X direction; lso, since the point msses re connected by n idel cble, their ccelertions re the sme: = y =. Using this informtion, the bove three dynmics equtions of motion become: T µn = m N m g = 0 m g T = m Substituting the Y eqution ( N = m g ) into the X eqution for mss yields: T = ( + µ g) m. Further substituting this cble tension for T in the Y eqution for mss, we cn solve for the system ccelertion : ( m µ m ) g = m + m Hving solved for the ccelertion using Newton s nd Lw, we cn use kinemtics to determine the resulting motion; we strt with the known, constnt ccelertion nd integrte twice (the right epressions ssume zero initil conditions since the system ws relesed from rest nd we cn mesure the displcements from the initil loctions): v () t = () t = () t = v 0 + t v() t = t () t = t 0 + v y0t + () t t = The Y ccelertion, velocity, nd displcement epressions for mss re identicl, where the positive indictes downwrd motion here, strting from the initil displcement of zero. Note: If µ m m, the bove eqution for predicts tht the ccelertion is zero (for =) or negtive (for >). In this cse there will be no motion since the combintion of µ nd m re too lrge for the given m. User sets: msses m nd m, plus dynmic coefficient of friction µ: 0 m 0 0 m 0 0 µ

8 Computer sets: Visulize: g = 9.8 m/s, in the Y direction. point msses in motion, plus kinemtics plots for, v, (sme s y). Numericl Disply:, T, F f User Feels: Inertil forces m or m (user chooses), opposite to direction. Emple: When the user enters m = 0 kg, m = 5 kg nd µ = 0. 5, the numericl results re: =.9 m/s ; T = 37.6 N; F f = -4.7 N The ssocited kinemtics plots vs. time re (this simultion ws run for n X (nd Y) displcement of 0 f m, with finl time of t 0 f = = =. 96 sec): v time Kinemtics Plots for m in the X direction (identicl to m in the Y direction) The resulting constnt ccelertion (from Newton s Second Lw) is =.9 m/s ; the block velocity increses linerly from zero nd the block s position increses prboliclly. The sme ect plots pply to Y motion, where the displcement is down, mesured from the initil loction of the second mss.

9 Comprehension Assignment: Once you get the feel for this simultion, run the progrm severl times to collect nd plot dt: for fied vlue of the dynmic coefficient of friction µ, vry the mss rtio m /m over its llowble rnge nd determine the resulting ccelertion. Plot vs. m /m. Repet these plots for vrious vlues of µ over its llowble rnge. Discuss the trends you see do the results mke sense physiclly?

10 Newton s 3 rd Lw Emples There re two simultions in the softwre to demonstrte Newton s Third Lw. The first one is simply liner spring tht my be compressed (or etended) vi the hptic interfce. The user then feels the equl nd opposite force of the virtul spring pushing (or pulling) on the hnd. A liner spring obeys Hooke s lw: F = K, where K is the spring constnt (N/m) nd is the mount the spring is stretched from its neutrl position. As the user moves the joystick to compress the virtul spring, the spring feels the force nd moves ccordingly. At the sme time, force pushes on the user s hnd, of the sme mgnitude, but reversed in direction. Thus, the force of the user cting on the spring is equl nd opposite to the force of the spring cting on the user. This equl nd opposite force eists whether the user compresses or etends the spring. Try it nd you will see nd feel the effects of Newton s Third Lw. The second simultion involves projectile fired from cnnon on the wter in ttempt to hit trget on lnd. There re two cnnons; one is rigid bse, fied to dock whose pilings re sunk deep into bedrock under the wter. The second is cnnon mounted to free-floting bot. Both cnnons hve the sme shooting ngle nd the sme initil muzzle velocity, clculted to successfully hit the trget from fied-bsed cnnon. Try the first, fied-bsed, cnnon nd you will see the trget is hit. By Newton s Third Lw, there will be n equl nd opposite rection force from the cnnon bck on its bse. When the bse is fied, this rection force will be resisted successfully, in this cse by the fied pilings. When you try the second, bot-mounted cnnon you will see the cnnon projectile flls short of the trget. In this cse, the equl nd opposite rection force from firing the cnnon cuses the bot to move wy from the shore. Unless new cnnon ngle nd muzzle velocity is clculted for this cse, the projectile will fll short of the trget due to Newton s Third Lw.

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Version 001 Summer Review #03 tubman (IBII20142015) 1

Version 001 Summer Review #03 tubman (IBII20142015) 1 Version 001 Summer Reiew #03 tubmn (IBII20142015) 1 This print-out should he 35 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Concept 20 P03

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

SOLUTIONS TO CONCEPTS CHAPTER 5

SOLUTIONS TO CONCEPTS CHAPTER 5 1. m k S 10m Let, ccelertion, Initil velocity u 0. S ut + 1/ t 10 ½ ( ) 10 5 m/s orce: m 5 10N (ns) 40000. u 40 km/hr 11.11 m/s. 3600 m 000 k ; v 0 ; s 4m v u ccelertion s SOLUIONS O CONCEPS CHPE 5 0 11.11

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply? Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3. The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

Project 6 Aircraft static stability and control

Project 6 Aircraft static stability and control Project 6 Aircrft sttic stbility nd control The min objective of the project No. 6 is to compute the chrcteristics of the ircrft sttic stbility nd control chrcteristics in the pitch nd roll chnnel. The

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

SPH simulation of fluid-structure interaction problems

SPH simulation of fluid-structure interaction problems Diprtimento di ingegneri idrulic e mientle SPH simultion of fluid-structure interction prolems C. Antoci, M. Gllti, S. Siill Reserch project Prolem: deformtion of plte due to the ction of fluid (lrge displcement

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

How To Network A Smll Business

How To Network A Smll Business Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

** Dpt. Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand

** Dpt. Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand Modelling nd Simultion of hemicl Processes in Multi Pulse TP Experiment P. Phnwdee* S.O. Shekhtmn +. Jrungmnorom** J.T. Gleves ++ * Dpt. hemicl Engineering, Ksetsrt University, Bngkok 10900, Thilnd + Dpt.hemicl

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

t 3 t 4 Part A: Multiple Choice Canadian Association of Physicists 1999 Prize Exam

t 3 t 4 Part A: Multiple Choice Canadian Association of Physicists 1999 Prize Exam Cndin Assocition of Physicists 1999 Prize Exm This is three hour exm. Ntionl rnking nd prizes will be bsed on student s performnce on both sections A nd B of the exm. However, performnce on the multiple

More information

ORBITAL MANEUVERS USING LOW-THRUST

ORBITAL MANEUVERS USING LOW-THRUST Proceedings of the 8th WSEAS Interntionl Conference on SIGNAL PROCESSING, ROBOICS nd AUOMAION ORBIAL MANEUVERS USING LOW-HRUS VIVIAN MARINS GOMES, ANONIO F. B. A. PRADO, HÉLIO KOII KUGA Ntionl Institute

More information

v T R x m Version PREVIEW Practice 7 carroll (11108) 1

v T R x m Version PREVIEW Practice 7 carroll (11108) 1 Version PEVIEW Prctice 7 crroll (08) his print-out should he 5 questions. Multiple-choice questions y continue on the next colun or pge find ll choices before nswering. Atwood Mchine 05 00 0.0 points A

More information

How To Set Up A Network For Your Business

How To Set Up A Network For Your Business Why Network is n Essentil Productivity Tool for Any Smll Business TechAdvisory.org SME Reports sponsored by Effective technology is essentil for smll businesses looking to increse their productivity. Computer

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

Project Recovery. . It Can Be Done

Project Recovery. . It Can Be Done Project Recovery. It Cn Be Done IPM Conference Wshington, D.C. Nov 4-7, 200 Wlt Lipke Oklhom City Air Logistics Center Tinker AFB, OK Overview Mngement Reserve Project Sttus Indictors Performnce Correction

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Understanding Basic Analog Ideal Op Amps

Understanding Basic Analog Ideal Op Amps Appliction Report SLAA068A - April 2000 Understnding Bsic Anlog Idel Op Amps Ron Mncini Mixed Signl Products ABSTRACT This ppliction report develops the equtions for the idel opertionl mplifier (op mp).

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Section 1: Crystal Structure

Section 1: Crystal Structure Phsics 927 Section 1: Crstl Structure A solid is sid to be crstl if toms re rrnged in such w tht their positions re ectl periodic. This concept is illustrted in Fig.1 using two-dimensionl (2D) structure.

More information

Rate and Activation Energy of the Iodination of Acetone

Rate and Activation Energy of the Iodination of Acetone nd Activtion Energ of the Iodintion of Acetone rl N. eer Dte of Eperiment: //00 Florence F. Ls (prtner) Abstrct: The rte, rte lw nd ctivtion energ of the iodintion of cetone re detered b observing the

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Distributions. (corresponding to the cumulative distribution function for the discrete case). Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

TITLE THE PRINCIPLES OF COIN-TAP METHOD OF NON-DESTRUCTIVE TESTING

TITLE THE PRINCIPLES OF COIN-TAP METHOD OF NON-DESTRUCTIVE TESTING TITLE THE PRINCIPLES OF COIN-TAP METHOD OF NON-DESTRUCTIVE TESTING Sung Joon Kim*, Dong-Chul Che Kore Aerospce Reserch Institute, 45 Eoeun-Dong, Youseong-Gu, Dejeon, 35-333, Kore Phone : 82-42-86-231 FAX

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany

g(y(a), y(b)) = o, B a y(a)+b b y(b)=c, Boundary Value Problems Lecture Notes to Accompany Lecture Notes to Accompny Scientific Computing An Introductory Survey Second Edition by Michel T Heth Boundry Vlue Problems Side conditions prescribing solution or derivtive vlues t specified points required

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Design Example 1 Special Moment Frame

Design Example 1 Special Moment Frame Design Exmple 1 pecil Moment Frme OVERVIEW tructurl steel specil moment frmes (MF) re typiclly comprised of wide-flnge bems, columns, nd bem-column connections. Connections re proportioned nd detiled to

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .01 Hydrodynics Reding #.01 Hydrodynics Prof. A.H. Techet Added Mss For the cse of unstedy otion of bodies underwter or unstedy flow round objects, we ust consider the dditionl effect (force) resulting

More information

All pay auctions with certain and uncertain prizes a comment

All pay auctions with certain and uncertain prizes a comment CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

4. DC MOTORS. Understand the basic principles of operation of a DC motor. Understand the operation and basic characteristics of simple DC motors.

4. DC MOTORS. Understand the basic principles of operation of a DC motor. Understand the operation and basic characteristics of simple DC motors. 4. DC MOTORS Almost every mechnicl movement tht we see round us is ccomplished by n electric motor. Electric mchines re mens o converting energy. Motors tke electricl energy nd produce mechnicl energy.

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Uplift Capacity of K-Series Open Web Steel Joist Seats. Florida, Gainesville, FL 32611; email: psgreen@ce.ufl.edu

Uplift Capacity of K-Series Open Web Steel Joist Seats. Florida, Gainesville, FL 32611; email: psgreen@ce.ufl.edu Uplift Cpcity of K-Series Open Web Steel Joist Sets Perry S. Green, Ph.D, M.ASCE 1 nd Thoms Sputo, Ph.D., P.E., M.ASCE 2 1 Assistnt Professor, Deprtment of Civil nd Costl Engineering, University of Florid,

More information

Week 7 - Perfect Competition and Monopoly

Week 7 - Perfect Competition and Monopoly Week 7 - Perfect Competition nd Monopoly Our im here is to compre the industry-wide response to chnges in demnd nd costs by monopolized industry nd by perfectly competitive one. We distinguish between

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Lectures 8 and 9 1 Rectangular waveguides

Lectures 8 and 9 1 Rectangular waveguides 1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Rotating DC Motors Part I

Rotating DC Motors Part I Rotting DC Motors Prt I he previous lesson introduced the simple liner motor. Liner motors hve some prcticl pplictions, ut rotting DC motors re much more prolific. he principles which eplin the opertion

More information

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University SYSTEM FAULT AND Hrry G. Kwtny Deprtment of Mechnicl Engineering & Mechnics Drexel University OUTLINE SYSTEM RBD Definition RBDs nd Fult Trees System Structure Structure Functions Pths nd Cutsets Reliility

More information

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers Redistributing the Gins from Trde through Non-liner Lump-sum Trnsfers Ysukzu Ichino Fculty of Economics, Konn University April 21, 214 Abstrct I exmine lump-sum trnsfer rules to redistribute the gins from

More information

Data replication in mobile computing

Data replication in mobile computing Technicl Report, My 2010 Dt repliction in mobile computing Bchelor s Thesis in Electricl Engineering Rodrigo Christovm Pmplon HALMSTAD UNIVERSITY, IDE SCHOOL OF INFORMATION SCIENCE, COMPUTER AND ELECTRICAL

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

EE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form- example shown

EE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form- example shown EE247 Lecture 4 Ldder type filters For simplicity, will strt with ll pole ldder type filters Convert to integrtor bsed form exmple shown Then will ttend to high order ldder type filters incorporting zeros

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information