The relationship between biomass burning aerosols, cloud condensation nuclei and cloud stucture in Amazonia
|
|
|
- Penelope Page
- 10 years ago
- Views:
Transcription
1 3 rd LBA Science Conference, Brasilia, July 2004 The relationship between biomass burning aerosols, cloud condensation nuclei and cloud stucture in Amazonia * Crystal collection * Coalescence Diffusion Crystal shattering * * * * SO 4 - SO 2 Nucleation Evaporation Collection Paulo Artaxo, Meinrat O. Andreae, Daniel Rosenfeld, Goran Frank, Pascal Guyon, Luciana V. Rizzo, Theotonio Pauliquevis, Maria A. F. Silva Dias and many others
2 Control of radiation balance and precipitation Rain Rain Cloud Condensation Nuclei Water vapor Vegetation emitting terpenes, primary aerosol particles and water vapor
3 Isopreno (gas) 2-methilthertiol (partículas) From Clayes et al., Science March 2004) Natural Production of CCN in Amazonia 1) Primary biogenic particles 2) Secondary organic aerosol from terpenes and isoprene 3) Coated soil dust (?) 4) Sulfates and nitrates (?)
4 Natural and polluted clouds in Amazonia Naturally: low CCN ( #/cc) Large droplets (>30 microns) Rapid development to large droplets Low reflectivity clouds Polluted: High CCN (>3000 #/cc) Small droplets: (<15 microns) Supressed coalescence Clouds with high albedo
5 Polluted clouds, Suppressed rain, Strong updraft Maritime: Clean, Fast rain, Suppressed updraft 0 o C 0 o C Cloud drop Rain drop Ice crystal Ice precipitation Updraft Cloud drop Rain drop Ice crystal Ice precipitation Updraft
6 Vertical transport inside and outside stratiform clouds mixing convective mass-flux compensating subsidence cloud base entraining air
7 Variabilidade interanual e interdecadal da precipitação na Amazônia Marengo, 2003
8 Intensity of daily precipitation as a percentage of total amount Climatology of the intensity of daily precipitation as a percentage of total amount in 10 mm/day categories for different temperature regimes, based on 51, 37, and 12 worldwide stations, respectively: blue bars, 3 C to 19 C; pink bars, 19 C to 29 C; dark red bars, 29 C to 35 C. By selection, all stations have the same seasonal mean precipitation amount of 230 ± 5 mm. As temperatures and the associated water-holding capacity of the atmosphere (15) increase, more precipitation falls in heavy (more than 40 mm/day) to extreme (more than 100 mm/day) daily amounts. (Science 302, 1719, 2003)
9 CCN in biomass burning aerosols: Example of levoglucosan Is a cellulose combustion product at temp>300 o c. It serves as a biomass burning tracer. Is a sugar, highly soluble It is emitted in high quantities.
10 Large scale cloud formation suppression Terra and Aqua satellite images of the east Amazon basin, 11 August (A) The clouds (Terra, 10:00 local time) are beginning to form. (B) The clouds (Aqua, 13:00 local time) are fully developed and cover the whole Amazon forest except for the smoke area. The boundary between forest and Cerrado region is marked in white on both images, and the seashore is marked in green. (From Ilan et al., Science March 2004)
11 Fração de cobertura de nuvens baixas e aerossóis na Amazônia Cloud fraction as function of aerosol optical depth (OD), a measure of the extinction of a beam of light when it passes through a column of atmosphere. The cloud fraction decreases almost linearly with increasing OD. The red and blue curves denote the average of 23 granules in the east and 27 granules in the west of the Amazon, respectively. The estimated error for each point appears as error bars. On average, the cloud fraction decreases to less than 1/8 of the cloud fraction in clean conditions when OD 1. (From Ilan et al., Science March 2004)
12 Aerosol size distribution in Rondônia 10-fold increase in CCN in Rondônia Dados de A. Vestin e E. Switlicki, Lund, SMOCC 2002
13 Continental Scale Biomass Burning Plumes
14 Low Troposphere and Long Distance Transport of PM 2.5 Source: Saulo Freitas and Karla Longo, INPE/CPTEC
15
16 Aerosol Optical Thickness in São Paulo Aerosol optical thickness (500 nm) AOT (500 nm) - São Paulo - daily averages AOT (500 nm) in São Paulo April/02 to Mar/ abril maio junho julho agosto setembro outubro novembro dezembro janeiro fevereiro Data April 2002 to March 2003 março Andrea Castanho and Carlos Pires
17 Aerosol Optical Thickness in São Paulo AOT (500 nm) in São Paulo and fire counts in Amazonia April/02 to Mar/ AOT (500 nm) - São Paulo - daily average Amazonia hot spots - daily totals (x4000) Aerosol optical thickness (500 nm) abril maio junho julho agosto setembro outubro novembro dezembro janeiro fevereiro Data April 2002 to March 2003 março
18 Modeling the distribution of smoke using high resolution RAMS + GOES fire spots+ emission factors Source: Saulo Freitas and Karla Longo
19 Effect of smoke aerosols and clouds over the CO2 flux in Amazonia Please see poster from Paulo Henrique Oliveira Relative irradiance (fr)-aerosol optical thickness (AOT)/Dry season Abracos Hill-Rondônia Air temperature (Tair)- Relative irradiance (fr) Dry season fr AOT(nm) Tair ( C) fr Net ecosystem exchange of CO 2 (NEE)-Relative irradiance(fr) 10 Annual effects Net ecosystem exchange of CO 2 (NEE)- Relative irradiance (fr) Dry season NEE (µmol /m 2 s) NEE(µmol /m 2 s) Aerosol effect Cloud effect fr Aerosol effect Clouds effect fr
20 Aerosols,, CCN and clouds final points LBA is finding and studying several processes that are critically important for the hydrological cycle in Amazonia In the wet season, it appears that the vegetation itself controls part of the ingredients: CCN and water vapor In the dry season there is no question now that heavy smoke inhibit cloud formation There are indications that these effects are not constrained only for the Amazon region, but has effects far from Amazonia.??? How this is reflected in the precipitation pattern???
T.A. Tarasova, and C.A.Nobre
SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro
Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
Critical Radius and Supersaturation. Condensed Water Molecules. Cloud Droplet Nucleation. Bubbles. Clouds. Change in number of liquid molecules
Condensed Water Molecules Change in number of liquid molecules Critical Radius and Supersaturation Integrate then find maximum Cloud Droplet Nucleation particle activation - process by which droplets (several
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
A quick look at clouds: what is a cloud, what is its origin and what can we predict and model about its destiny?
A quick look at clouds: what is a cloud, what is its origin and what can we predict and model about its destiny? Paul DeMott Colorado State University A look at clouds: what is a cloud, what is its origin
Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems
Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties
An Introduction to Twomey Effect
An Introduction to Twomey Effect Guillaume Mauger Aihua Zhu Mauna Loa, Hawaii on a clear day Mauna Loa, Hawaii on a dusty day Rayleigh scattering Mie scattering Non-selective scattering. The impact of
Climatology of aerosol and cloud properties at the ARM sites:
Climatology of aerosol and cloud properties at the ARM sites: MFRSR combined with other measurements Qilong Min ASRC, SUNY at Albany MFRSR: Spectral irradiances at 6 six wavelength passbands: 415, 500,
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012
Aerosol affects on the microphysics of precipitation development in tropical and sub-tropical convective clouds using dual-polarization radar and airborne measurements. Roelof Bruintjes, Sarah Tessendorf,
Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada
Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.
J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar
Chapter 8, Part 1. How do droplets grow larger? Cloud Droplets in Equilibrium. Precipitation Processes
Chapter 8, Part 1 Precipitation Processes How do droplets grow larger? Cloud contain water droplets, but a cloudy sky does not always mean rain. Cloud Droplets in Equilibrium In equilibrium water molecules
NOAA Climate Reanalysis Task Force Workshop College Park, Maryland 4-5 May 2015
Arlindo da Silva [email protected] Global Modeling and Assimilation Office, NASA/GSFC With contributions from Peter Colarco, Anton Darmenov, Virginie Buchard, Gala Wind, Cynthia Randles, Ravi Govindaradju
Cloud Drop Size Models - A Review
Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds E. Freud, D. Rosenfeld, M. O. Andreae, A. A. Costa, P. Artaxo To cite this version: E.
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Clouds, Fog, & Precipitation
firecatching.blogspot.com Kids.brittanica.com Clouds and fog are physically the same just location is different Fog is considered a stratus cloud at or near the surface What does one see when looking at
Asia-Pacific Environmental Innovation Strategy (APEIS)
Asia-Pacific Environmental Innovation Strategy (APEIS) Integrated Environmental Monitoring IEM) Dust Storm Over-cultivation Desertification Urbanization Floods Deforestation Masataka WATANABE, National
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Safe Operating Procedure
Safe Operating Procedure (Revised 11/11) OPACITY OF EMISSIONS FROM COMBUSTION SOURCES (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) The University
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Let s Make a Cloud. Objective Demonstrate the combination of three natural elements, to form a cloud: water vapor, smoke and air pressure.
Let s Make a Cloud Related Subject: Climate and Weather Group Size: 10-15 Length of Activity: 45 minutes Objective Demonstrate the combination of three natural elements, to form a cloud: water vapor, smoke
Harvard wet deposition scheme for GMI
1 Harvard wet deposition scheme for GMI by D.J. Jacob, H. Liu,.Mari, and R.M. Yantosca Harvard University Atmospheric hemistry Modeling Group Februrary 2000 revised: March 2000 (with many useful comments
Water, Phase Changes, Clouds
TUESDAY: air & water & clouds Water, Phase Changes, Clouds How can freezing make something warmer? 'warm air can hold more water' why? How do clouds form? The (extraordinary) properties of Water Physical
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Fog and Cloud Development. Bows and Flows of Angel Hair
Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson
Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page
Aerosols @ HALO Ulrich Pöschl
Aerosols @ HALO Ulrich Pöschl Max Planck Institute for Chemistry Mainz, Germany www.mpch-mainz.mpg.de/~poeschl [email protected] Outline Research Motivation background & challenges HALO - Why & How? opportunities
Satellite Products and Dissemination: Visualization and Data Access
Satellite Products and Dissemination: Visualization and Data Access Gregory Leptoukh GES DISC, NASA GSFC Dana Ostrenga GES DISC, NASA GSFC Introduction The Goddard Earth Sciences Data and Information Services
Air Quality Modeling and Simulation
Air Quality Modeling and Simulation A Few Issues for HPCN Bruno Sportisse CEREA, Joint Laboratory Ecole des Ponts/EDF R&D INRIA/ENPC CLIME project TeraTech, 20 June 2007 B. Sportisse Air Quality Modeling
Expert Panel Assessment. Snowy Precipitation Enhancement Trial (SPET) Executive Summary
Expert Panel Assessment Snowy Precipitation Enhancement Trial (SPET) Executive Summary In Summary Snowy Hydro Ltd proposes to undertake a six year cloud seeding trial in the Snowy Mountains region of New
Phosphorus and Sulfur
Global Change Instruction Program Phosphorus and Sulfur The Important Nutrient Phosphorus Phosphorus is a key nutrient, fueling organic productivity on land and in water. A portion of its cycle is shown
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Outline of RGB Composite Imagery
Outline of RGB Composite Imagery Data Processing Division, Data Processing Department Meteorological Satellite Center (MSC) JMA Akihiro SHIMIZU 29 September, 2014 Updated 6 July, 2015 1 Contents What s
Idaho Power Company s
Idaho Power Company s Cloud Seeding Program Shaun Parkinson, PhD, PE Presentation Overview What is cloud seeding? How we know cloud seeding works Perceptions IPC s cloud seeding program Payette Upper Snake
How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology 21.03.2006. Energy flux onto a unit surface:
Principles of snow melt How does snow melt? We need energy to melt snow/ ice. GEO443 snow hydrology 21.3.26 E = m L h we s K = ρ h = w w we f E ρ L L f f Thomas V. Schuler [email protected] E energy
Saharan Dust Aerosols Detection Over the Region of Puerto Rico
1 Saharan Dust Aerosols Detection Over the Region of Puerto Rico ARLENYS RAMÍREZ University of Puerto Rico at Mayagüez, P.R., 00683. Email:[email protected] ABSTRACT. Every year during the months
The climate cooling potential of different geoengineering options
The climate cooling potential of different geoengineering options Tim Lenton & Naomi Vaughan (GEAR) initiative School of Environmental Sciences, University of East Anglia, Norwich, UK www.gear.uea.ac.uk
Education and Outreach Lesson Plan
Education and Outreach Lesson Plan Visit our online activities collection http://education.arm.gov/ Grade levels K 2 Common Covering Clouds Common Covering Clouds Approximate Time 1 1/2 hours, or two 45-minute
II. Related Activities
(1) Global Cloud Resolving Model Simulations toward Numerical Weather Forecasting in the Tropics (FY2005-2010) (2) Scale Interaction and Large-Scale Variation of the Ocean Circulation (FY2006-2011) (3)
Solutions to the questions from chapter 1 and 2 in GEF4310 - Cloud Physics
Solutions to the questions from chapter 1 and 2 in GEF4310 - Cloud Physics [email protected] Problem 1 (related to figure 1.10) What is the typical size and concentration of a... a) CCN particle?
The Balance of Power in the Earth-Sun System
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE!
FOR SUBSCRIBERS ONLY! - TRIAL PASSWORD USERS MAY NOT REPRODUCE AND DISTRIBUTE PRINTABLE MATERIALS OFF THE SOLPASS WEBSITE! 1 NAME DATE GRADE 5 SCIENCE SOL REVIEW WEATHER LABEL the 3 stages of the water
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10
In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding
Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements
Faculty of Physics and Earth Sciences Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements Tobias Zinner Evi Jäkel, Sandra Kanter, Florian Ewald, Tobias Kölling
AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES
AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES Question 4 Some scientists estimate that by 2025 over 60 percent of the global human population will live in urban areas. Urban residents experience a variety
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Contrails, contrail cirrus and hole-punch clouds
Contrails, contrail cirrus and hole-punch clouds Philip R.A. Brown, Andy Heymsfield, Jean-Francois Gayet Cloud Microphysics Instrumentation Workshop, Seaside, OR, 25-27 June 2010 Issues Aviation impacts
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
Climate Control and Ozone Depletion. Chapter 19
Climate Control and Ozone Depletion Chapter 19 Global Warming and Global Cooling Are Not New Over the past 4.5 billion years the climate has been altered by Volcanic emissions Changes in solar input Movement
Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe [email protected] Director of Meteorology
Glaciogenic Cloud Seeding to Increase Orographic Precipitation Bruce A. Boe [email protected] Director of Meteorology Weather Modification, Inc. Fargo, North Dakota, USA www.weathermodification.com Content
CHUVA. by CHUVA Science Team. 4 th CHUVA Planning Meeting 13 December 2010 San Francisco, CA. Rachel I. Albrecht [email protected].
CHUVA Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM (GlobAl Precipitation Measurement) by CHUVA Science Team Rachel I. Albrecht
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Cloud Correction and its Impact on Air Quality Simulations
Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
Optimum Solar Orientation: Miami, Florida
Optimum Solar Orientation: Miami, Florida The orientation of architecture in relation to the sun is likely the most significant connection that we can make to place in regards to energy efficiency. In
Estimating glaciation temperature of deep convective clouds with remote sensing data
Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042753, 2010 Estimating glaciation temperature of deep convective clouds with remote sensing data Tianle Yuan, 1,2
Solar system studies with the SMA. Arielle MOULLET, Mark GURWELL and the SMA team
Solar system studies with the SMA Arielle MOULLET, Mark GURWELL and the SMA team The solar system at mm wavelengths Thermal continuum emission from surfaces on bodies with little/no atmosphere : Mars,
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
NOAA flight planning support and satellite aerosol and cloud retrieval validation during TORERO
NOAA flight planning support and satellite aerosol and cloud retrieval validation during TORERO R. Bradley Pierce and Andrew Heidinger NOAA/NESDIS/STAR Allen Lenzen 1, Todd Schaack 1, Ryan Spackman 2,
Night Microphysics RGB Nephanalysis in night time
Copyright, JMA Night Microphysics RGB Nephanalysis in night time Meteorological Satellite Center, JMA What s Night Microphysics RGB? R : B15(I2 12.3)-B13(IR 10.4) Range : -4 2 [K] Gamma : 1.0 G : B13(IR
Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere
Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product
CALIPSO, CloudSat, CERES, and MODIS Merged Data Product Seiji Kato 1, Sunny Sun-Mack 2, Walter F. Miller 2, Fred G. Rose 2, and Victor E. Sothcott 2 1 NASA Langley Research Center 2 Science and Systems
WEATHER AND CLIMATE practice test
WEATHER AND CLIMATE practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What role does runoff play in the water cycle? a. It is the process in
The Rundown on Rainmaking
21 April 2011 The Rundown on Rainmaking Brooke Jones Researcher FDI Global Food and Water Crises Research Programme Summary Australia s susceptibility to drought has affected its farming capacity in the
The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe
The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe Suhung Shen NASA Goddard Space Flight Center/George Mason University Gregory Leptoukh, Tatiana Loboda,
2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
The Surface Energy Budget
The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface
Tools for Viewing and Quality Checking ARM Data
Tools for Viewing and Quality Checking ARM Data S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Mission Research Corporation (MRC) is developing software tools
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
Temperature affects water in the air.
KEY CONCEPT Most clouds form as air rises and cools. BEFORE, you learned Water vapor circulates from Earth to the atmosphere Warm air is less dense than cool air and tends to rise NOW, you will learn How
Problematiche ed incertezze nell uso di modelli a supporto delle decisioni: esperienze con il sistema modellistico MINNI
Problematiche ed incertezze nell uso di modelli a supporto delle decisioni: esperienze con il sistema modellistico MINNI F.Monforti, G. Pace, T.Pignatelli, G.Vialetto, L.Vitali, G.Zanini ENEA, Bologna
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
