# Making a Shaker (or Forever) Flashlight. Grade 9 Activity Plan

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Making a Shaker (or Forever) Flashlight Grade 9 Activity Plan 1

2 Making a Shaker (or Forever) Flashlight Objectives: 1. To apply knowledge of electromagnetic induction to generate power for the flashlight. 2. To be familiar with some basic circuit elements and their functions. 3. To understand how a shaker flashlight works by making one. Key words/concepts: power, generator, electricity, magnet, coil, charge, AC, DC, rectifier, diode, electromagnetic induction, capacitors, Electromotive force. Take-home product: shaker flashlight 2

3 Segment Detail African Proverb and Cultural Relevance (5 min.) Do good because of tomorrow. Ghana Pre-test (10 min.) Introduce a Shaker Flashlight. (Pass it around) What is a magnet? How does it work? Show a magnetic field. Background (10 min.) Introduce students to components of the shaker flashlight and outline their functions. Focus on circuit parameters. Activity 1 (10 min.) Make an AC generator Introduce simplified equations: wire loops + metal rod + magnet = Induced current. Activity 2 (15 min.) Activity 3 (20 min.) Introduce full-wave rectifiers and their uses, guide students into building their own. Assemble the components of the flashlight and test them. Post-test (20 min.) Reassemble and discuss exercise. Ask and answer questions. Similarities and Differences between AC and DC. Similarities and Differences between Electromagnets and AC Generators. Suggested interpretation of proverb: This lesson teaches about the parts of the forever flashlight, one in particular being the capacitor. It stores energy created from shaking the flashlight, used to power the light bulb at a later time. In a sense, the capacitor does "good" (a good job) for "tomorrow" (a later time) 3

4 Cultural relevance Cap B. Collins Just as we will each try to make a Forever Flashlight, the first portable flashlight ever to be invented was by Cap B. Collins. He invented the first portable pocket flashlight that burns without batteries and was patented in His device was comprised of two cylindrical tubular sections, one being the handle section and the other, a generator section. A generator comprised spaced end plates, bars, pole pieces, shaft, bar magnets, and gear unit. A lamp supported in a reflector was at the end of the section. Wires connected the generator to the center contact of the lamp bulb. 4

5 BACKGROUND INFORMATION Magnetic field is the space around a magnet throughout which magnetic force exists. An electromagnet is a device that uses an electric current to produce a concentrated magnetic field. This is different from an induced current which is created by crossing a magnet over a wire loop. Electromagnetic induction is the production of electric field or current due to change in magnetic flux. DC stands for direct current. This means a constant amount of voltage is emitted over time. Until a DC battery is exhausted, it will output the same amount of voltage. AC stands for alternating current. This is the type of current used in the flashlights in this lesson as well as many other electronics, like televisions and radios. AC is different from DC in that the current switches, or alternates, from one direction to the other. AC is also special because the voltage can be readily changed, thus making it more suitable for long-distance transmission than DC. Many electrical devices like light bulbs only require that the electrons move. They don't care if the electrons flow through the wire or simply move back-andforth. Thus a light bulb can be used with either AC or DC electricity. A diode is a component that restricts the direction of movement of charge carriers. Essentially, it allows electric current to flow in one direction, but blocks it in the opposite direction. Circuits that require current flow in only one direction will typically include one or more diodes in the circuit design. Rectifiers are constructed from diodes and are used to convert AC into DC. A capacitor is an electrical device that stores the power that is generated while shaking energy. They are used in electrical circuits as energy-storage devices. We are using a super-capacitor, these can be used in place of rechargeable batteries. The capacitance (C) of a capacitor is a measure of the amount of charge (Q) stored on each plate for a given potential difference or voltage (V) which appears between the plates. The frequency is measured in cycles per second, and is expressed in units of Hertz (Hz). Throughout the world, AC electricity operates between 50 and 60 Hz. Electromotive force or (EMF) is the potential difference produced by electromagnetic induction LED or light emitting diode, is a small light bulb that fits easily into an electric circuit. It is illuminated by the movement of electrons in a semiconductor material. Ammeters measure current. Voltmeters measure potential difference. The multimeters in this lesson can be switched to measure either. 5

6 Activity 1: Making an AC Generator Purpose: To apply knowledge of electromagnetic induction to generate power for the flashlight Suggested format: students should have their individual set ups but encourage them to work in groups. Items 1 PVC pipe (12cm each) 132cm Insulated wire (75m each) Sand paper 5 Clear tape 1 1 x 1 /8 Neodymium (rare earth) magnet 11 Multi-meter 1 Plugs 22 Alligator clips 22 Saw (for cutting pipe) 1 Procedure: 1. Cut a piece of pipe, 12cm long, and seal one end of it with a plug. a. Make the plug by round-taping a small crumpled piece of paper to cushion the magnets when they hit the ends. 2. Attach one end of the insulated wire to the side of the cap on the pipe. 3. Make loops around the pipe with the insulated wire. 4. After fully winding all the wire around the pipe, attach the end to the side of the cap. 5. Sand of insulating material from the ends of the wire 6. Place the Neodymium magnet in the pipe and seal the other end with another plug. 7. Using alligator clips, connect both ends of wire to a multi-meter. 8. Shake the pipe with the magnets inside of it to generate electric current and voltage. 9. At this point it should become apparent the flashlight uses AC electricitythe magnet or polarity is being alternated from end to end. 10. Turn the multi-meter to the 200mA to measure current generated and then to 20V to measure voltage generated. Pre-wrap the pipes with the insulated wire. Video: Quantity (for mentor and 10 students) 825m 6

7 Activity 2: Making a Full-Wave Rectifier Purpose: To be familiar with some circuit elements and their functions Suggested format: although every student should have individual set-ups, encourage students to work in groups. Item Quantity (for mentor and 10 students) Diode (4 for each person) 44 Bristol board 1 sheet Diode /coil Procedure: 1. Cut about 1.5 x1.5 of the hard paper 2. Using a push pin, punch a hole on the 4 corners (such that if lines are drawn connecting hole to hole a square will be drawn.) 3. Push the diode leads into the holes, taking note of their polarity and direction (all bands on all diodes should face the direction shown in the circuit diagram.) Every hole should have two leads from two different diodes. 4. Link up the two leads in each hole. 5. Follow the diagram in order to make sure polarity is right. 7

8 Activity 3: Completing the- shaker flashlight Purpose: To understand how a shaker flashlight works by assembling one Item Quantity (10 students) LED 10 Switch 10 Super Capacitor 5,5V /2 PVC cap (2 x 5 = 10) 20 Plastic Straws 10 The major components of a flashlight are: 1. Hand Generator: an AC generator 2. Full Wave Bridge Rectifier: made up of diodes and it rectifies polarity. 3. Super-capacitor: stores electric charge. 4. Switch 5. LED: a diode that emits light. Now that an AC generator and a Full-wave rectifier bridge have been made, assemble a complete circuit consisting of the AC generator, Bridge Rectifier, Capacitor, Switch and LED as shown in the circuit diagram above. Remember to follow circuit diagram. 1. Using the AC generator as a base, connect the 2 ends of the coil to the input points of the Bridge Rectifier. 2. Using a wire, connect the positive output of the Rectifier to the positive terminal of the capacitor and one terminal of the switch. 3. Connect the free point of the switch to the positive LED terminal. 4. Using another wire, connect the negative output of the Rectifier to the negative terminal of the capacitor and the positive terminal of the LED. 8

9 Post-Test Have students answer the following 7 questions. Each answer they provide will give them a letter for the bonus answer. IF they answer the bonus question before finishing the first seven questions, they can backtrack and the letters from the bonus answer can be placed in their corresponding positions. Questions 1. What does LED stand for? 2. What type of current always emits a constant voltage? 3. This machine can measure current or potential difference (in addition to measuring other parameters). 4. What electrical household item uses both AC and DC electricity? 5. An advantage of AC over DC is that it can easily be changed to different levels of. 6. In North America, AC electricity alternates back and forth 60 times per second. In Europe, AC electricity alternates back and forth 50 times per second. That means Canada s AC electricity has a higher than England. 7. What component of the shaker flashlight stores power? Bonus: What is needed in building a regular Flashlight?

10 Answers: 1. L I G H T E M I T T I N G D I O D E 5 2. D I R E C T C U R R E N T 3 3. M U L T I - M E T E R 6 4. L I G H T B U L B 1 5. V O L T A G E 2 6. F R E Q U E N C Y 7 7. C A P A C I T O R 4 Bonus B A T T E R Y

11 Useful links This page contains the diagram used in the lesson showing the electric symbols. This page compares alternating and direct current. Includes applications of both. This site explains how shaker, or faraday, flashlights work. Includes a diagram as well as gives background information on these AC operating systems work. Explains the components of LED bulbs as well as applications This page fully explains AC as well as compares and contrasts AC to DC 11

### Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

### Build A Simple Electric Motor (example #1)

PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

### How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

### Magnetism and Electromagnetic Induction Generators and Transformers

PHSC 101 Lab Magnetism and Electromagnetic Induction Generators and Transformers Objectives: - Explore a magnetic field. - Demonstrate electromagnetic induction with a magnet and a coil of wire. - Demonstrate

### A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices Part PatD38: Last updated: 12th March 2010 Author: Patrick J. Kelly This patent application covers a device which is claimed to have a substantially greater output

### Electromagnetic Laboratory Stations

Electromagnetic Laboratory Stations The following laboratory exercises are designed to help you study magnetic fields produced by magnets and current carrying wires, and study other well-known electromagnetic

### Copper and Electricity: Generation

PHYSICS Copper and Electricity: Generation (Electromagnetic Induction) 16-18 YEARS Below are different sections of this e-source, for quick navigation. Electricity from Movement What is Induction? Flux

### The full wave rectifier consists of two diodes and a resister as shown in Figure

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

### 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.

Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic

### Magnet, Coil, and Meter: Generating Electricity

Magnet, Coil, and Meter: Generating Electricity Outcomes: 1. Understand that electricity is not a source of energy, but a means of transporting energy. 2. Understand that electrical current is generated

### Properties of electrical signals

DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

### Assembling your 3phase turbine Kit

Assembling your 3phase turbine Kit Turbine Kit Parts List 1 1 Stator ( slotted thingy) 2 2 Blade mounts ( triangular plastic) 3 1 8 inch x ¼ inch threaded rod 4 2 ¼ inch standard nuts 5 1 ¼ inch nyloc

### Building an Electric Motor

Activity 5 Building an Electric Motor Activity 5 Building an Electric Motor GOALS In this activity you will: Construct, operate, and explain a DC motor. Appreciate accidental discovery in physics. Measure

### How Does it Flow? Electricity, Circuits, and Motors

How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move

### 9 2339A The Three Basics of Electric Circuits: Voltage, Current, and Resistance

PROGRESS RECORD Study your lessons in the order listed below. Electronics Technology and Advanced Troubleshooting I & II Number of Lessons: 118 Completion Time: 36 months 1 2330A Current and Voltage 2

### How Does a Generator Work?

How Does a Generator Work? Clifford Power Systems is one of the largest full service generator providers in the United States. Our generator experts specialize in equipment, service, parts and rental of

### Electromagnetic Induction - A

Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

### In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

### The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

### Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

### Shining a Light. Design & Technology. Year 9. Structure of an electric torch. Shining a Light

Looking at electronic circuits and what is meant by current, voltage, and resistance. Shining a Light Have you ever taken an electric torch to pieces to find out how it works? Look at the diagram below

### Electrical Machines II. Week 1: Construction and theory of operation of single phase transformer

Electrical Machines II Week 1: Construction and theory of operation of single phase transformer Transformers Overview A transformer changes ac electric power at one frequency and voltage level to ac electric

### LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

### Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

Q.(a) Draw one line from each circuit symbol to its correct name. Circuit symbol Name Diode Light-dependent resistor (LDR) Lamp Light-emitting diode (LED) (3) Figure shows three circuits. The resistors

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

### APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EE100 Basics of Electrical SAMPLE QUESTION PAPER Maximum Marks 100 Part- A (10 questions) Attempt all the questions 10*4=40 1. We have two identical 10 V electromotive

### 2. The resistance to the flow of electrons in a material is measured in units called: a. amperes. b. ohms. c. volts. d. watts.

As with the Chapter Review Tests and the Final Exam, the tests your understanding of the materials underlying the learning objectives. After you ve reviewed your answers to the Chapter Review Tests, try

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Ch. 20 Electric Circuits

Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting

### 8.2. Electric Current. Did You Know? 8-2A. Lighting It Up. Words to Know. Find Out ACTIVITY. Safety. Materials. What Did You Find Out?

8.2 Electric Current Current electricity is the flow of charged particles in a complete circuit. The unit for measuring electric current is the ampere (A), which is defined as one coulomb of charge passing

### Unit 6 Transformers. Lead-in. Basic principles. Task 1. Task 2. What applications of transformers do you know?

Unit 6 Transformers Lead-in What applications of transformers do you know? Basic principles Task 1 Match the words and phrases with the translations. 1. magnetic field 2. induced voltage 3. conductors

### Line Reactors and AC Drives

Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

### Electrical Domestic Appliances (EDA)

14 Electrical Domestic Appliances (EDA) Paper-I Theory 40 Practical - 60 Unit. I : Current Electricity: Electricity as a source of energy, definition of resistance, voltage, current, power, energy and

### DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

### Analog Electronics. Module 1: Semiconductor Diodes

Analog Electronics s PREPARED BY Academic Services Unit August 2011 Applied Technology High Schools, 2011 s Module Objectives Upon successful completion of this module, students should be able to: 1. Identify

### Magnets and the Magnetic Force

Magnets and the Magnetic Force We are generally more familiar with magnetic forces than with electrostatic forces. Like the gravitational force and the electrostatic force, this force acts even when the

### ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

### Series & Parallel Circuits Challenge

Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

### ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC

Circuitry, Formulas & Electricity Ch5 Bushong RT 244 12 Lect # 3 1 RT 244 WEEK 10 rev 2012 2 LECTURE # 3 ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC BUSHONG CH. 4 & 5 REF: CARLTONS CH 3, 4 & 5 &

### Electric Motors and Generators

Electric Motors and Generators Motors run a tremendous number of devices, from toy trains to refrigerators, from air conditions to cars. What is inside a motor and how do they work? How are motors related

### MOTIONLESS ELECTRIC GENERATOR DESIGN BASED ON PERMANENT MAGNETS AND MAGNETIC AMPLIFIER

12/28/2009 MOTIONLESS ELECTRIC GENERATOR DESIGN BASED ON PERMANENT MAGNETS AND MAGNETIC AMPLIFIER FEDERALLY SPONSOR RESEARCH Not Applicable BACKGROUND - Field [0001] This application relates to motionless

### 1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)

1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,

### Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

### ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

### APPLICATION NOTE - 017

APPLICATION NOTE - 017 PWM Motor Drives Theory and Measurement Considerations Pulse Width Modulated (PWM) power electronic techniques represent a large and increasing proportion of modern power electronics.

### NZQA registered unit standard version 4 Page 1 of 5

Page 1 of 5 Title Apply electromagnetic theory to a range of problems Level 2 Credits 5 Purpose This unit standard covers knowledge of electromagnetism theory and is intended for people working in or intending

### Investigating Electrical Energy Workshop. QUT Extreme Engineering

Investigating Electrical Energy Workshop QUT Extreme Engineering Investigating Electrical Energy Introduction This workshop is designed for grades 6-7, to give them some hands-on experience in building

### CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism

CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use non-programmable calculators.

### Lab 4 - Capacitors & RC Circuits

Lab 4 Capacitors & RC Circuits L41 Name Date Partners Lab 4 Capacitors & RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

### Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

### CPO Electric Motor Equipment Module

CPO Electric Motor Equipment Module Equipment Includes: 5 switch plates 1 electric motor body with permanent turn-crank 1 ew high-output electromagnet motor modules (Black) 1 electromagnet generator modules

### Inductors & Inductance. Electronic Components

Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

### Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

### DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

### DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Understanding the Alternator

http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

### Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

Replace That Bad Diode A common problem in any restoration is fixing and replacing inoperative or missing electrical components. If the exact part cannot be located then the restorer is forced to improvise.

### Activity 9b Electrical Generator PHYS 010. To demonstrate a basic electric motor using common lab materials

Name: Date: Partners: Part 1. The Generator Effect. Purpose: To demonstrate a basic electric motor using common lab materials Materials: 1. 6 rare earth magnets 2. 1 AA battery 3. Masking tape or scotch

### Alternating Current and Direct Current

K Hinds 2012 1 Alternating Current and Direct Current Direct Current This is a Current or Voltage which has a constant polarity. That is, either a positive or negative value. K Hinds 2012 2 Alternating

### Objectives 200 CHAPTER 4 RESISTANCE

Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

### Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

### 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.

Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north

### 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:

### Objectives for the standardized exam

III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

### I. R. D. T INSTITUTE OF RESEARCH DEVELOPMENT AND TRAINING

I. R. D. T INSTITUTE OF RESEARCH DEVELOPMENT AND TRAINING SYLLABUS SIX MONTHS FULL TIME Repair and Maintenance of Electrical gadgets EFFECTIVE FROM:- UNDER DEVELOPMENT Prepared By: Curriculum Development

### MAGNETIC EFFECTS OF ELECTRIC CURRENT

CHAPTER 13 MAGNETIC EFFECT OF ELECTRIC CURRENT In this chapter, we will study the effects of electric current : 1. Hans Christian Oersted (1777-1851) Oersted showed that electricity and magnetism are related

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### Resistors in Series and Parallel

Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

### BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### Series and Parallel Circuits

Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

Breadboard Electronics LED flasher Your Activity Make an LED flasher using a timer chip Material 1 Small solderless breadboard 2 5mm Red LEDs 1 Resistor, 10 K-Ω (brown, black, 1 9V Battery orange) 3 Resistor,

### Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response

Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all

### TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

### Fall 12 PHY 122 Homework Solutions #10

Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### The Ideal Transformer. Description and Circuit Symbol

The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,

### Motor/Transformer Winding Repair

Workshop Practice Title and topics of HKSE 1 03.1.1.01.1 Fundamentals of specific trade Workshop organisation, industrial safety, quality assurance, introduction to accident prevention 2 03.1.1.21.1 Preparation

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### Single Transistor FM Transmitter Design

Single Transistor FM Transmitter Design In telecommunications, frequency modulation (FM) conveys information over a carrier wave by varying its frequency. FM is commonly used at VHF radio frequencies for

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### Chapter 4: DC Generators

Chapter 4: DC Generators Creating an AC Voltage The voltage produced in a DC generator is inherently AC and only becomes DC after rectification Consider an AC generator, consisting of a coil on the rotor

### Using and Wiring Light Emitting Diodes (LEDs) for Model Railroads

Using and Wiring Light Emitting Diodes (LEDs) for Model Railroads LEDs have many useful applications in Model railroading, including: Locomotive headlights Rear-end warning lights for cabooses and passenger

### Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,

1 EMI & AC 1. Derive an expression for the impendance of a coil in AC ciruit. A current of 1.1 A flows through a coil when connected to a 110 V DC. When 110 V AC of 50 Hz is applied to the same coil, only

### Chapter 22 Further Electronics

hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

Copyright 2014 Edmentum - All rights reserved. Science Physics Electromagnetic Blizzard Bag 2014-2015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### CHAPTER 19: DC Circuits. Answers to Questions

HAPT 9: D ircuits Answers to Questions. The birds are safe because they are not grounded. Both of their legs are essentially at the same voltage (the only difference being due to the small resistance of

### MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

### Electric Generators and Motors

Electric Generators and Motors Reading Quiz: Look at the demonstration of the large electromagnet. Observe what happens (spark) when the switch is opened. What best explains this? A) The battery voltage

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one