Subatomic Particles. Nuclear Energy. Mass and Energy. Chemistry in Context: Chapter 7: Fires of Nuclear Fission

Size: px
Start display at page:

Download "Subatomic Particles. Nuclear Energy. Mass and Energy. Chemistry in Context: Chapter 7: Fires of Nuclear Fission"

Transcription

1 Nuclear Energy Chemistry in Context: Chapter 7: Fires of Nuclear Fission Assignment: All the problems with blue codes or answers on Page , the first nuclear power plant near Pittsburgh, PA. Seabrook plant first proposed in 1972, construction began in 1976, and operating license granted in /5 your electricity is generated by nuclear power 103 nuclear plants in US; 9 nuclear plants have closed since 1990 due to perceived risk. Mass and Energy E = mc 2 Where E = energy released, m = mass lost, and c = 3.0 x 10 8 m/s. Since c 2 =9.0 x m 2 /s 2 and 1 Joule is equal to 1 kg-m 2 /s 2, a tremendous amount of energy can be obtained from a very small amount of mass. 1 kg of U-235 with 0.1 % mass loss results in the production of 9.0 x Joules or the energy equivalent to tons of TNT. Subatomic Particles Electrons (Negatively charged particles outside nucleus; discovered by Thomson) Nucleons held together by very strong nuclear force Protons (Positively charged particles inside the nucleus; discovered by Rutherford) Neutrons (Neutral particles inside the nucleus; discovered by Chadwick)

2 History of Nuclear Fission 1938, Hahn and Strassmann found Ba atoms when bombarding U with neutrons Lise Meitner and Otto Frisch hypothesized that the U atoms were splitting to form atoms of lighter elements such as Ba in a nuclear fission process. Energy given off fission is described by Einstein s equation; mass of products less than mass of reactants; mass loss = energy! Neither mass nor energy is individually conserved; matter is a concentrated form of energy. Equations for Nuclear Reactions Mass number of an element is equal to the sum of protons (p) and neutrons (n). Atomic nuclei of heavier elements or higher atomic number tend to undergo nuclear reactions or decay due to the high p:n ratio. Balancing equations for nuclear reactions involves making sure that the sums of subscripts (charges) and superscripts (mass number) on both sides of the equation are equal. Decay Series of Radioactive Elements Transmutation of elements occur by nuclear emission of α or β particles that change the atomic number by 2 and +1, respectively. Nuclear Fission vs. Fusion Fission in which a large nucleus splits into smaller nuclei and neutrons is associated with loss of nuclear mass or release of a vast amount of energy in nuclear reactors. Fusion involves smaller nuclei combine to form larger nuclei with a greater release of energy. Sun and stars rely on fusion to achieve high temperature ~ 100 million degrees. Fusion produce ionized gas of electrons, protons and other nuclei. Advantages of fusion include low cost, abundance of deuterium, and no waste problems

3 Chain Fig reaction (i.e. exponential increase of neutrons) can occur spontaneously if a critical mass (~15 kg) of U-235 is available. Figure 7.5 on Page 291 How does this work? Each neutron hits a U-235 nucleus and causes its fission or splitting into lighter nuclei along with the production of 2-3 neutrons. The chain reaction of successive fission events lead to loss of mass (0.1 %) which is related to energy release (E=mc 2 ) Note that the Kr-Ba pathway releases 3 neutrons whereas the Rb-Cs and Xe-Sr pathways release 2 neutrons each. Nuclear Fuel UO 2 Fuel Pellets and Fuel Rod Assembly 200 UO 2 pellets of the size of pencil eraser are packed into metal tubes that are assembled into fuel assembly Critical mass of U-235 needed is about 33 pounds (15 kg). Plutonium or americium are used to generate neutrons needed to initial the fission as follows: 238 Pu 234 U + 4 He; 4 He + 9 Be 12 C + 1 n Fig. 7.1 on Page 284 Fig. 7.7 on Page 293

4 Coal and nuclear power plants are similar except for water being heated by energy from coal combustion as opposed to nuclear fission. How is fission controlled? Control rods made of cadmium, silver, indium serve as neutron absorbers to prevent uncontrollable chain reaction of the fission process. The fuel bundles and control rods are bathed in a primary coolant solution of boric acid in water to provide heat transfer and to absorb neutrons via borons and slow down the speed of neutrons. Contains boric acid, neutron absorber Fig. 7.6 on Page 292 Seabrook Nuclear Power Plant Fig. 7.2 Figure 7.12 Page 297 Natural waters does not come in contact with nuclear materials 400-ton reaction vessel with 44-ft wall of 8-in carbon steel; 4.5 ft thick inner concrete walls of containment and 15in outer wall.

5 Figure 7.8 on Page 293 Chernobyl Nuclear Accident Cooling towers Nuclear reactor Figure 7.9 on Page 295 Chernobyl Nuclear Accident Cooling water stopped as part of a safety test ; reactor temperature rose quickly. Due to insufficient number of graphite control rods and steam pressure to deliver coolant, a power surge led to the meltdown of reactor core and burning of graphite rods. Water sprayed on rods led to the production of hydrogen gas that exploded upon reaction with oxygen in the air Fig. 7.10: Chernobyl Reactor 4 In 1986, an explosion blew off the 4000-ton steel plate covering the reactor at the Chernobyl plant and spewed radioactive products in the vicinity.

6 What happened at Chernobyl? 2 H 2 O + C 2 H 2 + CO 2 2 H 2 + O 2 2 H 2 O + Energy Explosion spewed radioactive materials into the atmosphere across Ukraine, Belarus, and Scandinavia Tragic outcomes include several outright deaths, deaths of 31 firefighters due to acute radiation sickness, 190 patients with acute radiation sickness, and 200,000 liquidators, who buried the most hazardous waste and constructed the sarcophagus. Chernobyl closed in Could nuclear mishaps happen here? More regulations and different plant designs in the U. S. Three Mile Island Lost coolant, partial meltdown. Disasters result from the complex interplay of faulty plant design, human error, and political instability. Radioactivity Radioactivity is a spontaneous process of nuclei undergoing a change in atomic number or elemental identity by emitting particles or rays (transmutation). Nuclei continue to decay till stable nucleus is produced (Z [atomic number] < 83). Exceptions are Technetium (Z = 43) and Promethium (Z = 61). Radioactivity: History Discovered in 1896 by Antoine Henri Becquerel who noticed the radiation of a uranium sample on a photographic plate. Marie Curie applied the term Radioactivity and discovered 2 other radioactive elements, Radium and Polonium. Ernest Rutherford identified 2 types of radiation, namely the alpha (α) and the beta (β) particles.

7 Radioactive Emissions Page 301 Gamma ray is a form of electromagnetic radiation that is even more energetic than the X-ray discovered by Wilhelm Roentgen Penetration Powers of Nuclear Radiation Beta (β) particle is a form of high speed electron with a 1 charge. Alpha particle (α) is a helium nucleus with +2 charge. Gamma ray (γ) is a highly energetic photon with no mass and no charge. β = -1 o e 4 He α = 2 Nuclear Bomb vs. Nuclear Power Rapid and uncontrolled fission in a bomb compared to the slow and controlled energy release and use of control rods. Bomb uses highly enriched U-235 (>90%) relative to the 3-5% U-235. Separation of U-235 and U-238 is achieved by the diffusion of UF 6 at 56 C at Paducah, KY. Nuclear Fuel for Weapons Processing of U-235 is too complex and costly for use in nuclear weapons. Pu-239, which can be extracted from spent nuclear fuel with U-238, is a more likely fissionable material in bombs. Nuclear reaction in breeder reactor is: 1 n U 239 Pu e (Hanford, WA) PuO 2 is easily inhaled, causing lung cancer and damage to bone and liver via its solubility in blood; Nagasaki bomb is based on Pu-239.

8 Measurement of radioactivity Rate of emission of decay particles in counts per minute (cpm) can be measured by a Geiger counter. 1 Curie = 3.7 x disintegrations/sec Disintegrations refer to α, β, or γ emission Typically measured as mci, µci, and pci Radiation Doses and Health Alpha, beta, gamma, neutrons, x-rays are ionizing radiation that can damage living cells (white blood cells or bone marrow) or induce DNA transformation or cancer. One RAD is the absorption of 0.01 Joule of radiant energy per kg of tissue. Physiological damage is measured by rem or Roentgen equivalent applied to mammals. REM = n x (Number of Rads) where n = 10 for α and neutrons and n = 1 for β, γ, and X-rays. 1 Sv (sievert) = 100 rem; 1 µsv = 1 x 10-6 Sv = 0.10 mrem Table 7.2 Page 284 Radioactive Decay Nuclide refers to a nucleus with a unique atomic number and mass number Radionuclide decays spontaneously as follows: A B + b where A is a parent nuclide, B is a daughter nuclide, and b is the emitted radiation. The rate of decay is given by the half-life or the time required for the level of radioactivity to fall to ½ of its initial value.

9 Figure 7.15, 7.16, &7.17 Page 303 Table 7.4 Page 305 Applications of Radionuclides Smoke detectors - Americium-241 as an α emitter Food irradiation to kill harmful microbes Medical diagnosis and cancer treatment I-131 used to treat thyroid cancer and hyperthyroidism 85 Sr, 99 Tc, 197 Hg, and 123 I are used for diagnosis Research: Studies chemical reaction pathways and distribution of pollutants using radioactive labels Dating of archaeological objects by C-14 1 C-14 radionuclide for every C-12 atoms; C-14 concentration decreases by ½ every 5730 years. High-Level Nuclear Waste (HLW) HLW or mixed waste is hazardous due its radioactivity and toxicity; it consists of radioactive materials from the reprocessing of spent nuclear fuel. The harmful characteristics of HLW depend on the fission products, their half-lives, the type of radiation, and accumulation in the food chain

10 Spent fuel rods containing U-238, I-131, Cs-137, and Sr-90 are kept under onsite pools of water with neutron absorbers. Figure 7.20 Page 310 Active management Fig Figure 7.18 on Page 293 Burial of low-level nuclear wastes Figure 7.22 Page 312 Special glasses or ceramics are used to enclose high level nuclear wastes and then packed into metal canister for burial in repository (e.g. vitrification of Pu239)

11 Underground Disposal of Nuclear Waste Fig Figure 7.17 on Page 291 Ideal repository will be at least 1000 ft underground and 1000 ft above water table; the host rock formation should ideally be salt, basalt, tuff, and granite. Table 7.7 Page 318 Coal-fired power plants release more radioactivity than nuclear plants due to the vast amounts of coal consumed that contain both thorium and uranium. Usage of Nuclear Power in Various Countries The extent of usage of nuclear power is dependent upon the people s perception of nuclear risk and the existing resources for energy production Figure 7.25 Page 317

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle? 1. In the general symbol cleus, which of the three letters Z A X for a nu represents the atomic number? 2. What is the mass number of an alpha particle? 3. What is the mass number of a beta particle? 4.

More information

22.1 Nuclear Reactions

22.1 Nuclear Reactions In the Middle Ages, individuals called alchemists spent a lot of time trying to make gold. Often, they fooled people into believing that they had made gold. Although alchemists never succeeded in making

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Chapter 17: Radioactivity and Nuclear Chemistry

Chapter 17: Radioactivity and Nuclear Chemistry Chapter 7: Radioactivity and Nuclear Chemistry Problems: -20, 24-30, 32-46, 49-70, 74-88, 99-0 7.2 THE DISCOVERY OF RADIOACTIVITY In 896, a French physicist named Henri Becquerel discovered that uranium-containing

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Radioactivity & Particles

Radioactivity & Particles Radioactivity & Particles Introduction... 2 Atomic structure... 2 How are these particles arranged?... 2 Atomic notation... 4 Isotopes... 4 What is radioactivity?... 5 Types of Radiation: alpha, beta and

More information

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals Environmental Health and Safety Radiation Safety Module 1 Radiation Safety Fundamentals Atomic Structure Atoms are composed of a variety of subatomic particles. The three of interest to Health Physics

More information

Lesson 43: Alpha, Beta, & Gamma Decay

Lesson 43: Alpha, Beta, & Gamma Decay Lesson 43: Alpha, Beta, & Gamma Decay The late 18s and early 19s were a period of intense research into the new nuclear realm of physics. In 1896 Henri Becquerel found that a sample of uranium he was doing

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

Nuclear Waste A Guide to Understanding Where We've Been and Where We're Going

Nuclear Waste A Guide to Understanding Where We've Been and Where We're Going Nuclear Waste A Guide to Understanding Where We've Been and Where We're Going National Conference of State Legislatures The presentation was created by the National Conference of State Legislatures and

More information

Unit 1 Practice Test. Matching

Unit 1 Practice Test. Matching Unit 1 Practice Test Matching Match each item with the correct statement below. a. proton d. electron b. nucleus e. neutron c. atom 1. the smallest particle of an element that retains the properties of

More information

HOW DOES A NUCLEAR POWER PLANT WORK?

HOW DOES A NUCLEAR POWER PLANT WORK? HOW DOES A NUCLEAR POWER PLANT WORK? O n t a r i o P o w e r G e n e r a t i o n P U T T I N G O U R E N E R G Y T O U S G O O D E O N T A R I O P O W E R G E N E R A T I O N What a Nuclear Reactor Does

More information

Antoine Henri Becquerel was born in Paris on December 15, 1852

Antoine Henri Becquerel was born in Paris on December 15, 1852 Discovery Antoine Henri Becquerel was born in Paris on December 15, 1852 Summit Environmental Technologies, Inc. Analytical Laboratories 3310 Win Street Cuyahoga Falls, Ohio 44223 Fax: 1-330-253-4489 Call

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

NOTES ON The Structure of the Atom

NOTES ON The Structure of the Atom NOTES ON The Structure of the Atom Chemistry is the study of matter and its properties. Those properties can be explained by examining the atoms that compose the matter. An atom is the smallest particle

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Radiation and the Universe Higher Exam revision questions and answers

Radiation and the Universe Higher Exam revision questions and answers Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

More information

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation David Wang STS.092 Plutonium vs. Uranium: The Road Less Traveled In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation treaties, where the news, everyday,

More information

Industrial tracers - Finding leaks and blockages

Industrial tracers - Finding leaks and blockages Cancer Treatment Alpha radiation is used to treat various forms of cancer. This process, called unsealed source radiotherapy, involves inserting tiny amounts of radium-226 into cancerous organs. The alpha

More information

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and

More information

The Physics of Energy sources Nuclear Reactor Practicalities

The Physics of Energy sources Nuclear Reactor Practicalities The Physics of Energy sources Nuclear Reactor Practicalities B. Maffei Bruno.maffei@manchester.ac.uk www.jb.man.ac.uk/~bm Nuclear Reactor 1 Commonalities between reactors All reactors will have the same

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2011. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2011 Question 1 2 Mark Physics

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Submarines and Aircraft Carriers: The Science of Nuclear Power

Submarines and Aircraft Carriers: The Science of Nuclear Power ! Submarines and Aircraft Carriers: The Science of Nuclear Power Science Topic: Physics and Social Science Grades: 9th 12th Essential Questions: How does a nuclear reactor work? What are the benefits and

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

Energy Conversion Efficiency. Before we discuss energy conversion efficiency, let us briefly get familiarized with various forms of energy first.

Energy Conversion Efficiency. Before we discuss energy conversion efficiency, let us briefly get familiarized with various forms of energy first. Energy and Environment-1: Fossil Fuels and Nuclear Energy Objectives Key words and Concepts Energy Conversion Efficiency Fossil Fuels Nuclear Energy Cold Fusion? Summary Objectives: 1. Gain real understanding

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

NUCLEI. Chapter Thirteen. Physics 13.1 INTRODUCTION 13.2 ATOMIC MASSES AND COMPOSITION OF NUCLEUS

NUCLEI. Chapter Thirteen. Physics 13.1 INTRODUCTION 13.2 ATOMIC MASSES AND COMPOSITION OF NUCLEUS Chapter Thirteen NUCLEI 13.1 INTRODUCTION In the previous chapter, we have learnt that in every atom, the positive charge and mass are densely concentrated at the centre of the atom forming its nucleus.

More information

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES Chapter NP-1 Nuclear Physics Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES 1.1 CHEMICAL AND PHYSICAL PROPERTIES 2.0 COMPOSITION OF ATOMS 2.1 ATOMIC STRUCTURE

More information

A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-let standard.

A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-let standard. Radiological Protection For practical purposes of assessing and regulating the hazards of ionizing radiation to workers and the general population, weighting factors are used. A radiation weighting factor

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

UNESCO - EOLSS SAMPLE CHAPTER

UNESCO - EOLSS SAMPLE CHAPTER ENVIRONMENTAL EFFECTS OF NUCLEAR POWER GENERATION A. S. Paschoa Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Brazil Keywords: Environmental effects, nuclear energy, nuclear

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2 North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Natural and Man-Made Radiation Sources

Natural and Man-Made Radiation Sources Natural and Man-Made Radiation Sources All living creatures, from the beginning of time, have been, and are still being, exposed to radiation. This chapter will discuss the sources of this radiation, which

More information

A Guide for an HPS Chapter Presenting the Boy Scouts of America Nuclear Science Merit Badge

A Guide for an HPS Chapter Presenting the Boy Scouts of America Nuclear Science Merit Badge A Guide for an HPS Chapter Presenting the Boy Scouts of America Nuclear Science Merit Badge [NOTE: Teachers K-12 may request classroom assistance from the Health Physics Society (HPS) using the Teachers

More information

Nuclear Energy: the Good, the Bad, and the Debatable

Nuclear Energy: the Good, the Bad, and the Debatable : the Good, the Bad, and the Debatable Learn more about nuclear technology, its benfits, and its dangers. Classroom Material Written by: Dr. Lana Aref Editing and Content Development by: Dr. Lana Aref,

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

5.1 Evolution of the Atomic Model

5.1 Evolution of the Atomic Model 5.1 Evolution of the Atomic Model Studying the atom has been a fascination of scientists for hundreds of years. Even Greek philosophers, over 2500 years ago, discussed the idea of there being a smallest

More information

ABSORPTION OF BETA AND GAMMA RADIATION

ABSORPTION OF BETA AND GAMMA RADIATION ABSORPTION OF BETA AND GAMMA RADIATION The purpose of this experiment is to understand the interaction of radiation and matter, and the application to radiation detection and shielding Apparatus: 137 Cs

More information

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms, Ions and Molecules The Building Blocks of Matter Atoms, Ions and Molecules The Building Blocks of Matter Chapter 2 1 Chapter Outline 2.1 The Rutherford Model of Atomic Structure 2.2 Nuclides and Their Symbols 2.3 Navigating the Periodic Table 2.4 The

More information

3 Atomic Structure 15

3 Atomic Structure 15 3 Atomic Structure 15 3.1 Atoms You need to be familiar with the terms in italics The diameter of the nucleus is approximately 10-15 m and an atom 10-10 m. All matter consists of atoms. An atom can be

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

medical diagnostics caesium-137 naturally occurring radio nuclides in the food radon in indoor air potassium in the body

medical diagnostics caesium-137 naturally occurring radio nuclides in the food radon in indoor air potassium in the body Summary The radiation environment to which the population of Sweden is exposed is dominated by medical investigations and background radiation from the ground and building materials in our houses. That

More information

Review for Atomic Theory Quiz #1

Review for Atomic Theory Quiz #1 Review for Atomic Theory Quiz #1 Practice Multiple Choice Questions: 1. Which of the following is/are quantitative physical property(s) of matter? a) mass c) density b) volume d) all of the above 2. Which

More information

Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel

Fukushima 2011. Fukushima Daiichi accident. Nuclear fission. Distribution of energy. Fission product distribution. Nuclear fuel Fukushima 2011 Safety of Nuclear Power Plants Earthquake and Tsunami Accident initiators and progression Jan Leen Kloosterman Delft University of Technology 1 2 Nuclear fission Distribution of energy radioactive

More information

Medical Physics and Radioactivity

Medical Physics and Radioactivity Medical Physics and Radioactivity Radioactivity Unstable nucleus Electromagnetic wave particle Atoms which emit electromagnetic radiation or a particle by the spontaneous transformation of their nucleus

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS

SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS SECTION TWO PACKAGING, TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS LEARNING OBJECTIVES By the end of this section, participants will be able to: Identify three types of packaging for radioactive

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Copyright Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc. Section 4. Early Ideas About Matter pages 02 05 Section 4. Assessment page 05. Contrast the methods

More information

GCSE Additional Science Physics Contents Guide

GCSE Additional Science Physics Contents Guide GCSE Additional Science Contents Guide Copyright Boardworks Ltd 2007 Boardworks Ltd The Gallery 54 Marston Street Oxford OX4 1LF 08703 50 55 60 enquiries@boardworks.co.uk www.boardworks.co.uk 04-07 contains

More information

Nuclear Science Merit Badge Workbook

Nuclear Science Merit Badge Workbook Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. The work space provided for each requirement should be used by the Scout to make notes for discussing

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

Nuclear Power: A Good Choice. Faith Sam Issues in Science and Technology 3303 Dr. Demers

Nuclear Power: A Good Choice. Faith Sam Issues in Science and Technology 3303 Dr. Demers Nuclear Power: A Good Choice Faith Sam Issues in Science and Technology 3303 Dr. Demers Outline History France as a good example How nuclear power is created Negative sides Why nuclear power is a good

More information

Chapter 16. 16.1 The Nucleus and Radioactivity. 16.2 Uses of Radioactive Substances. 16.3 Nuclear Energy

Chapter 16. 16.1 The Nucleus and Radioactivity. 16.2 Uses of Radioactive Substances. 16.3 Nuclear Energy Chapter 16 Nuclear Chemistry tan is going to visit his son Fred at the radiology department of a local research hospital, where Fred has been recording the brain activity of kids with learning differences

More information

Nuclear Power: Villain or Victim?

Nuclear Power: Villain or Victim? Nuclear Power: Villain or Victim? OUR MOST MISUNDERSTOOD SOURCE OF ELECTRICITY SECOND EDITION Max W. Carbon Emeritus Professor of Nuclear Engineering University of Wisconsin-Madison 1997, 2006 Max W. Carbon.

More information

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels Jon Carmack Deputy National Technical Director Fuel Cycle Technology Advanced Fuels Program February 27, 2011 The Evolution of Nuclear Power

More information

Answers to Review Questions for Atomic Theory Quiz #1

Answers to Review Questions for Atomic Theory Quiz #1 Answers to Review Questions for Atomic Theory Quiz #1 Multiple Choice Questions: 1. c 7. a 13. c 19. a 25. b 31. b 37. a 43. d 2. d 8. c 14. c 20. c 26. d 32. c 38. d 44. b 3. b 9. a 15. b 21. c 27. b

More information

NORM MANAGEMENT GUIDELINES & PRINCIPLES

NORM MANAGEMENT GUIDELINES & PRINCIPLES Introducing NORM NORM MANAGEMENT Three is glad to present some basic hints about NORM that should be taken onto consideration whilst dealing with these matters The acronym NORMmeans all Naturally Occurring

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Instructors Guide: Atoms and Their Isotopes

Instructors Guide: Atoms and Their Isotopes Instructors Guide: Atoms and Their Isotopes Standards Connections Connections to NSTA Standards for Science Teacher Preparation C.3.a.1 Fundamental structures of atoms and molecules. C.3.b.27 Applications

More information

Depleted Uranium Shells, The Radioactive Weapons - Perpetuation of War Damage by Radiation -

Depleted Uranium Shells, The Radioactive Weapons - Perpetuation of War Damage by Radiation - Depleted Uranium Shells, The Radioactive Weapons - Perpetuation of War Damage by Radiation - YAGASAKI Katsuma Group of Peace Education Against Nuclear Weapon, University of the Ryukyus (Abstract) Depleted

More information

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

Chapter 15 Radiation in the Environment 1

Chapter 15 Radiation in the Environment 1 Nuclear Science A Guide to the Nuclear Science Wall Chart 2003 Contemporary Physics Education Project (CPEP) Chapter 15 Radiation in the Environment 1 Many forms of radiation are encountered in the natural

More information

The Nucleus. Natural radioactivity (Radioactive Decay)

The Nucleus. Natural radioactivity (Radioactive Decay) The Nucleus Word Artificial transmutation Atomic Mass Unit (amu) Atomic number Deflect Emit Half-life Isotope Mass defect Mass number Natural radioactivity (Radioactive Decay) Neutron Nuclear charge Nuclear

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

What You Need To Know for the Chemistry Regents Exam

What You Need To Know for the Chemistry Regents Exam Name: What You Need To Know for the Chemistry Regents Exam The Test The Chemisty Regents Exam is broken down into three sections: Part A: 35 mulitple choice questions from all units covered over the course

More information

Particle Soup: Big Bang Nucleosynthesis

Particle Soup: Big Bang Nucleosynthesis Name: Partner(s): Lab #7 Particle Soup: Big Bang Nucleosynthesis Purpose The student explores how helium was made in the Big Bang. Introduction Very little helium is made in stars. Yet the universe is

More information

Nuclear Energy in Everyday Life

Nuclear Energy in Everyday Life Nuclear Energy in Everyday Life Understanding Radioactivity and Radiation in our Everyday Lives Radioactivity is part of our earth it has existed all along. Naturally occurring radioactive materials are

More information

EPA Radionuclides Rule and the RadNet Program

EPA Radionuclides Rule and the RadNet Program EPA Radionuclides Rule and the RadNet Program Kelly Moran (215) 814-2331 moran.kelly@epa.gov 7/20/2011 U.S. Environmental Protection Agency 1 What is a radionuclide (radioisotope)? element - any one of

More information

S t r a i g h t T o x

S t r a i g h t T o x S t r a i g h t T o x Polonium-210: The perfect poison? by Dwain Fuller, D-FTCB, TC-NRCC It was July 5 th, 2012, the Thursday of the Society of Forensic Toxicologists meeting in Boston. My cell phone rings,

More information

Environmental Radiation Risk Assessment

Environmental Radiation Risk Assessment Environmental Radiation Risk Assessment Jerome Puskin, PhD Center for Science & Risk Assessment Radiation Protection Division Office of Radiation and Indoor Air (ORIA) 2 Outline 1. Ionizing radiation definitions,

More information

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence PHYSICAL WORLD Heat & Energy GOD S DESIGN 4th Edition Debbie & Richard Lawrence God s Design for the Physical World is a complete physical science curriculum for grades 3 8. The books in this series are

More information

Atoms, Ions and Molecules The Building Blocks of Matter

Atoms, Ions and Molecules The Building Blocks of Matter Atoms, Ions and Molecules The Building Blocks of Matter Chapter 2 1 Chapter Outline 2.1 The Rutherford Model of Atomic Structure 2.2 Nuclides and Their Symbols 2.3 Navigating the Periodic Table 2.4 The

More information

The Models of the Atom

The Models of the Atom The Models of the Atom All life, whether in the form of trees, whales, mushrooms, bacteria or amoebas, consists of cells. Similarly, all matter, whether in the form of aspirin, gold, vitamins, air or minerals,

More information

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE 2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE In this chapter the principles and systematics of atomic and nuclear physics are summarised briefly, in order to introduce the existence and characteristics of

More information

GCSE COMBINED SCIENCE: TRILOGY

GCSE COMBINED SCIENCE: TRILOGY GCSE COMBINED SCIENCE: TRILOGY Higher Tier Paper 5: Physics 1H H Specimen 2018 Time allowed: 1 hour 15 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed).

More information

1. PUBLIC HEALTH STATEMENT

1. PUBLIC HEALTH STATEMENT 1 This public health statement tells you about cesium and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites

More information

Energy Sources. Chapter Resources. Includes: Glencoe Science. Reproducible Student Pages. Teacher Support and Planning TRANSPARENCY ACTIVITIES

Energy Sources. Chapter Resources. Includes: Glencoe Science. Reproducible Student Pages. Teacher Support and Planning TRANSPARENCY ACTIVITIES Glencoe Science Chapter Resources Energy Sources Includes: Reproducible Student Pages ASSESSMENT Chapter Tests Chapter Review HANDS-ON ACTIVITIES Lab Worksheets for each Student Edition Activity Laboratory

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Radiation Safety. University of Nevada Reno EH&S. Revised October 2012 Compiled by M. Jo

Radiation Safety. University of Nevada Reno EH&S. Revised October 2012 Compiled by M. Jo Radiation Safety University of Nevada Reno EH&S Revised October 2012 Compiled by M. Jo Copyright (c) 2012, Environmental Health & Safety, All Rights Reserved. Some graphs in this document are the property

More information