Analysis of Variance ANOVA

Size: px
Start display at page:

Transcription

1 Analysis of Variance ANOVA

2 Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations. When we re comparing the means from two independent samples we usually asked: Is one mean different than the other?

3 Overview (cont) Fundamentally, we re going to proceed in this section exactly as we did in Hypothesis testing on two means, up to a point. It s more complicated when we have more than two groups. So, we ll need to address those issues.

4 Overview (cont) First, we ll need to have a clear understanding of the data and what we re testing. Both the t- test situation and the correlation/ regression situation will help us understand the analysis of variance (ANOVA). The theory behind ANOVA is more complex than the two means situation, and so before we go through the stepby-step approach of doing ANOVA, let s get an intuitive feel for what s happening. How does ANOVA compare means?

5 Model Comparisons First we ll review what we learned when considering the correlation/regression question. We fit a straight line through the data in a scatterplot (when it was appropriate). There s an intuitive link between this situation and what we do when we compare means. This leads us to comparing models.

6 Models Recall that in the correlation/ regression situation there were three ways to phrase the question: 1. Non-zero correlation? 2. Non-zero slope? 3. Is the straight-line model better?

7 Models In the case of simple regression, the last form of this question: Is the straight-line model better? is it more complicated that we really need? However, this form of the simple regression question helps us understand the analysis of variance.

8 Fitting a straight line In a previous section, we talked about comparing two models of the data. H 0 : Y = Y + error H A : Y = intercept + slope X + error

9 Models What we were doing was looking at the average Y response and wondering: Is the average Y constant across all values of X? or Does the average Y change with X? The way we visualized this comparison was to look at the confidence band around our straightline model and compare it to the horizontal line drawn at the mean of Y

10

11 Comparing group means When we re comparing the average Y response in different groups, we re asking a similar question. Say we have four groups (X = a, b, c, or d) then the two models would be: H 0 : Y = Y + error, or. H A : Y = Y a + error, (if X = a), Y = Y b + error, (if X = b), Y = Y c + error, (if X = c), Y = Y d + error, (if X = d).

12 Comparing group means What we are doing is looking at the average Y response and wondering: Is the average Y constant across all values of X? or Does the average Y change with X? The way we visualize this comparison is to look at the confidence bounds around each mean and compare it to the horizontal line drawn at the grand mean of Y

13

14 Example Consider two different experiments designed to compare three different treatment groups. In each experiment, five subjects are randomly allocated to one of three groups. After the experimental protocol is completed, their response is measured. The two experiments use different measuring devices, Narrow and Wide

15

16

17 Comparing Means In both experiments the mean response for Group 1 is 5.9, for Group 2 is 5.5, and for Group 3 is 5.0. In the first experiment the one on the left measured by the variable Narrow are the three groups different? In the second experiment the one on the right measured by the variable Wide are the three groups different?

18

19 The interoccular-trauma test Again, your eye goes to the ink: the three groups seem to have a different mean in the first experiment. Whereas in the second experiment, the best explanation would probably be that any apparent differences in the means could have come about through chance variation.

20

21 In fact, what your eye is doing is comparing the differences between the means in each group to the differences within each group. That is, in the Narrow experiment a summary of the results would include a table of means and SD s

22 Narrow Group

23 Testing differences So, a difference as large as 5 vs. 5.9 is considered in the context of very small SD s (on the order of 0.013). The 0.9 unit difference is compared to standard errors of approximately

24 t-test Consider comparing the two groups with a t-test, we d calculate something like:

25 Wide Group But, in the Wide experiment a summary of the results would include a table of means and SD s as below

26 Comparing the means So, a difference as large as 5 vs. 5.9 is considered in the context of large SD s (on the order of 1.5). The 0.9 unit difference is compared to standard errors of approximately 0.68.

27 t-test

28 Understanding the F-test What ANOVA does is compare the differences between the means in each group to the differences within each group s observations. This is an extremely important concept because it s key to your understanding of the statistical test we use.

29 F-test

30 F-test for ANOVA It s a ratio of the mean square of the model (which compares the straight line predictedvalues to the mean predicted-values) to the mean square error (which compares the straight-line predicted-values to the observed values). This is exactly what we do when we compare means. We use an F test that compares the differences between the means in each group to the differences within each group.

31 F-test for ANOVA

32 SS model First, consider the differences between the means. The SSmodel is:

33 SS Model So the differences between the means in each group is just the sum of the weighted squared deviations (SSmodel = ) divided by the number of groups minus one (df = groups 1). So the numerator for the F test is SSmodel/dfmodel = 2.033/2 = = MSmodel.

34 SS error In the Narrow experiment, we consider the differences within each group. We take each observation and compare it to the group mean:

35

36 SS Error So the differences within all groups is just the sum of the squared deviations (SSerror = ) divided by the number of values minus the number of groups (df = n groups = 15 3 = 12). So the denominator for the F test is SSerror/dferror = /12 = = MSerror. Again what we re doing is comparing the differences between the means in each group to the differences within each group.

37 F-test Result for Narrow

38 SS error in the Wide experiment

39 F-test Result in Wide

40 Understanding ANOVA ANOVA is applicable when the response variable is continuous and we have more than two groups to compare. Our two intuitive understanding of the analysis of variance are as follows: 1. What ANOVA does is compares two models: One overall grand mean, vs. Different means for each group. 2. It does this by comparing the differences between the means in each group to the differences of the individual values within each group.

41 ANOVA: More than Two Sample Means Calcium and Weight: Researchers (randomly?) divided 7-week old rats into four groups on different diets: 1. untreated controls, 2. high calcium diet (Ca), 3. deoxycortiosterone-nacl treated rats (DOC), and 4. rats receiving both dietary supplements (DOC+Ca). The question is: do the four conditions have differing effects on the mean weight of Wistar-Kyoto rats?

42 Phase 1: State the Question 1. Evaluate and describe the data Recall our first two questions: 1. Where did this data come from? 2. What are the observed statistics? The first step in any data analysis is evaluating and describing the data. Preliminary Analysis: What are the observed statistics?

43 Fit Y by X

44 Oneway Analysis of Weight By Diet The dot plots show some differences between groups and spread within each group. Think back to what we d do next if we were comparing two means. We know we should concern ourselves with two assumptions: equal variance within each group, and normality. In the two-group situation, how did we assess these assumptions?

45 Normal Quantile Plots

46 Preliminary analysis, showing means If the data is normally distributed then means and SDs make sense. (If these distributional assumptions are unwarranted, then we should consider nonparametric methods.) The next thing to do in our preliminary analysis is to show the means and standard deviations calculated within each group.

47 Means and SDs

48 Table

49 Notes In the figure, the dashed lines above and below the means are one standard deviation away from their respective mean. In the table, note that the 95% CI on the means are shown and recall that these CIs do NOT assume equal variability.

50 Summing up Step 1 What have we learned about the data? We have not found any errors in the data. We re comfortable with the assumptions of normality and equal variance. We ve obtained descriptive statistics for each of the group we re comparing. It s our guess that there is a significant difference.

51 2. Review assumptions As always there are three questions to consider. 1. Is the process used in this study likely to yield data that is representative of each of the two populations? 2. Is each animal in the samples independent of the others? 3. Is the sample size within each group sufficient?

52 Assumptions Bottom line: We have to be comfortable that the first two assumptions are met before we can proceed at all. If we re comfortable with the normality assumption, then we proceed, as below. In a following section, we ll discuss what to do when normality can not be safely assumed.

53 3. State the question in the form of hypotheses Presuming that we re OK with normality, here are the hypotheses (using group names as subscripts): The null hypothesis is Ca = DOC = DOC+Ca = control (the means of all populations are the same), The alternative hypothesis is that not all the means are equal (there is at least one difference).

54 Phase 2: Decide How to Answer the Question 4. Decide on a summary statistic that reflects the question We can not use a t-test because there are more than two means. Note also, that it is completely inappropriate to use multiple t-tests! We use the F-test discussed above to compare the differences between the means to the differences within each group.

55 F-test As in the case when two groups are compared, we need to concern ourselves with whether the variances are the same in each group. There are, as before, two possibilities. The two possibilities depend upon the standard deviations within each group. Are they the same? Or do the groups have different standard deviations?

56 Equal Variance If the SDs (or variances) within the populations are equal than the average standard error in the denominator of the F- test is appropriate. If there is equal variance, then we calculate the p-value using the distribution of F. The distribution is complex, but recall that there are two df needed: 1. the df-numerator (which is the number of groups minus one), and 2. the df-denominator (the number of subjects minus the number of groups).

57 Unequal Variance If the variances are not equal, the calculation is more complicated. However, like the multiple proportions example, JMP handles the calculation details.

58 Deciding on the correct test Which test should we use? We may not need to choose; if the all sample sizes are equal (termed a balanced design) the two methods give identical results. It s even pretty close if the n s are slightly different. If one n is more than 1.5 times the other, you ll have to decide which t-test to use.

59 Choosing a Test 1.Decide whether the standard deviations are different. 2.Use the equal variance F-test if the SDs appear the same, or Use the unequal variance Welch ANOVA if the SDs appear different.

60 Options As before, look at the normal quantile plot. If the lines are in that gray area between clearly parallel and clearly not parallel, what do we do? Four possibilities come to mind: 1. Ignore the problem and be risky: use the equal variance F-test. 2. Ignore the problem and be conservative: use the unequal variance F-test. 3. Make a formal test of unequal variability in the two groups. 4. Compare the means using nonparametric methods.

61 Equal Variance Test

62 Which Test? If the Prob>F value for the Brown-Forsythe test is < 0.05, then you have unequal variances. This report also shows the result for the F-test to compare the means, allowing the standard deviations to be unequal. This is the Welch ANOVA Here is a written summarization of the results using this method: The four groups were compared using an unequal variance F-test and found to be significantly different (F(3, 31) = 14.2, p-value <.0001). The means were found to be different.

63 Steps 5 & 6 5. How could random variation affect that statistic? Recall the rough interpretation that F s larger than 4 are remarkable. 6. State a decision rule, using the statistic, to answer the question The universal decision rule: Reject Ho: if p- value < α.

64 Phase 3: Answer the Question 7. Calculate the statistic There are three possible statistics that may be appropriate: 1. an equal variance F-test, 2. an unequal variance F-test, or 3. the nonparametric Wilcoxon rank-sums test.

65 Next Time We ll look at each of the three options We ll use JMP to work through and example

66 Which Statistic? 7. Calculate the statistic There are three possible statistics that may be appropriate: 1.an equal variance F-test, 2.an unequal variance F-test, or 3.the nonparametric Wilcoxon rank-sums test.

67 Equal variance If the equal variance assumption is tenable then the standard F-test is appropriate. Note: When reporting a F-test it s assumed that, unless you specify otherwise, it s the equalvariance F-test. We ve seen the means diamonds in the situation with a two-group t-test. As the JMP Help shows, they represent the averages and a 95% confidence interval for each group.

68

69 Recall that we talked about the relationship between confidence intervals and the two-group t-test. We said that you can interpret confidence intervals as follows: If two confidence intervals do not overlap (vertically) then the two groups are different (in large samples).

70 JMP Output

71 Interpretation So, the F is large (F = 11.99, with df = 3, 57), and the p-value is small (p-value < ). Note that the n s and means in the report are the same as the means SD report. However, the standard errors are different. As the note says, these standard errors use the pooled estimate of variance; simply calculate the standard deviations within each group and divide by the square root of each n. Recall that the F-test is two-tailed; there is no direction of the difference. Since the null hypothesis specified a test for equality, this is the p-value we want.

72 Unequal Variance Use the Welch ANOVA results under the test for equal var. Report the denominator degrees of freedom to 1 decimal place Make sure you say Welch ANOVA or unequal variance F Otherwise, the interpretation is the same as the Equal Variance approach

73 Nonparametric comparison of the means If we wish to compare the medians we don t have to make any normality assumptions. So, we use a nonparametric test based solely on the ranks of the values of the Y-variable. The Wilcoxon rank-sum test (also called the Kruskal- Wallis test) simply ranks all the Y-values and then compares the sum of the ranks in each group. If the median of the first group is, in fact equal to the median of the second group, to the third group, etc, then the sum of the ranks should be equal.

74

75 Interpretation When reporting the results of a nonparametric test, it s usual to only report the p-value, although reporting the chi-square value is also appropriate. A summary sentence: The groups were compared using the nonparametric Kruskal- Wallis rank sum test and found to be different (chi-square = 23.3, df = 3, p-value < ).

76 Steps 8 & 9 8. Make a statistical decision Using all three tests, the groups are different. (All p-values are less than 0.05.) 9. State the substantive conclusion The four diets have different means.

77 Phase 4: Communicate the Answer to the Question 10. Document our understanding with text, tables, or figures A total of n = 61 Wistar-Kyoto (WKY) rats were assigned to one of four dietary groups: untreated controls, high calcium diet (Ca), deoxycortioterone-nacl treated rats (DOC), and rats receiving both dietary supplements (DOC+Ca). The ANOVA test indicated that the groups were significantly different (F(3, 57) = 12, p <.0001). (Show a table of summary statistics and a plot of the means.)

78 So Far: Multiple Independent Means Briefly, here is how we proceeded when comparing the means obtained from multiple independent samples. Describe the groups and the values in each group. What summary statistics are appropriate? Are there missing values? (why?) Assess the assumptions, including normality and equal variance. If normality is warranted, then it may be useful to determine confidence intervals on each of the means. Perform the appropriate statistical test. Determine the p-value that corresponds to your hypothesis. Reject or fail to reject? State your substantive conclusion. Is that it? What about where the means are different which groups are the same?

79 Considering the means If we look at the ordered means, it would appear that from lightest to heaviest the four groups are: DOC+Ca (303 gm), DOC (309 gm), Ca (321 gm), and control (343 gm). Questions: Is DOC+Ca significantly different than DOC? Is DOC+Ca significantly different than Ca? Is DOC+Ca significantly different than control? Is DOC significantly different than Ca? Is DOC significantly different than control? Is Ca significantly different than control?

80 All we ve decided is that there is a difference somewhere; that all four of the means are not equal. But we re far from explaining where the difference(s) lie. We have an impression that the control group is higher than the others, but are there any other differences?

81 Graphical comparison Recall the interpretation of means diamonds. Since they are confidence intervals, if they don t overlap then the groups are different. However, what if they don t overlap? Are the groups different? The answer is, if they overlap a little then the groups are different? How much is a little? The smaller horizontal lines within the means diamonds are one way to tell. These are called significance overlap lines. If we pay attention to whether the area within the overlap lines in two groups separate, then we can (roughly) see whether the groups are different

82

83 Interpretation In the above figure, we show the lower limit of the Ca group s overlap line. Extending it across to the right we see that the DOC group s overlap lines are within the lower Ca limit. We also see that the lower Ca limit is above the DOC+Ca group s overlap lines. From this we gain the impression that the Ca and DOC groups may not be different but the Ca and DOC+Ca groups may be different. But we need a definitive answer.

84 All possible t-tests One solution to this problem is to do all possible t-tests. We could answer each of the six questions above as though we had done a series of two-group studies. Note: we do not do this in practice. It is NOT a good idea.

85

86 Multiple comparisons The more statistical tests we do, eventually one will come out significant. We didn t have this problem in the two-group t-test situation. We just had two groups and there were two alternative: the groups were not different or the groups were different. There was only one t-test and it was controlled by a Type I error rate, a = We only say significant difference! when it s not true, 5% of the time.

87 Multiple Comparisons With three groups, there are three possible t- tests to do. If each test has α = 0.05, then the probability of saying significant difference! at least once when it s not true, is more than 5% Doing each test at a = 0.05 does not yield an experiment whose overall type I error rate is a =.05.

88

89 This is what is called the multiple comparison problem. So, even if there really is no difference, if you do the three t-tests required to compare three groups, at least one of them will appear significant by chance alone over 14% of the time. If we have 6 groups, this error rate is over 50% and by the time we re up to 10 groups we re virtually assured of finding a significant difference. We need to correct for the number of tests we are performing so that the error rate stays at 5%.

90 The Bonferroni correction The Bonferroni correction says this: If we want to operate with α = 0.05, then count up the number of comparisons we re doing the second column in the table above, call this number k and do each t-test at p-value < (0.05/k). So, with three groups there are three comparisons (k = 3), so compare the p-values to <

91 Bonferroni (cont) This approximation is simple and works fairly well as long as you don t mind how conservative it is. It s very hard to find a significant difference using Bonferroni-corrected p-values. On the other hand, if you can declare a difference with this severe a penalty, it s believable. There is a better way to handle the multiple comparison problem.

92 Tukey-Kramer Doing all possible t-tests without some sort of modification of significance level is a bad idea. Then what should we do? Use Tukey-Kramer honestly significant difference test. The HSD takes a much more sophisticated approach to this problem. The HSD looks at the distribution of the biggest difference. That is, the test comparing the smallest mean to the largest mean.

93 Tukey Important things to know: The observed differences are compared to an appropriate standard that s larger than the t- test standard. The standard is arrived at so that the overall experiment-wise error rate is 0.05.

94

95 Comparison Notice how by an uncorrected t-test the Ca and DOC+Ca groups are declared significantly different. By the HSD, the Ca and DOC+Ca groups are not different. Notice also that the comparison circles for HSD are larger than the Student s t comparison circles. This is a reflection of the higher standard for calling a difference significant.

96 Tukey You can believe the HSD results. Bottom line: If we re interested in all possible differences between the groups, use Compare all pairs, Tukey s HSD to compare means.

97

98 Means Comparisons The Means Comparisons report first shows a table of all possible ordered differences between the means. It s arranged so that the smallest differences are just off the diagonal and the largest difference is in the upper right-hand (or lower left-hand) corner. Positive values [in the lower report] show pairs of means that are significantly different

99 JMP Update JMP now provides the 95% CIs on the difference between each pair There is also an additional report that separates out the groups by giving all similar groups the same letter.

100 Comparison with a control If we re not interested in all the possible mean differences then the HSD is too conservative. The most common situation when this occurs is when the experiment is only interested in whether a mean is different than a pre-planned control group. That is if these are the only questions of interest: Is DOC+Ca significantly different than control? Is DOC significantly different than control? Is Ca significantly different than control?

101

102 Phase 4: Communicate the Answer to the Question 10. Document our understanding with text, tables, or figures Now we complete the description of our conclusions begun earlier: Using Tukey s HSD, it was determined that the control diet had significantly higher weight (mean = 343 gm) than each of the special-diet groups. Within the three special diet groups: DOC+Ca, DOC, and Ca (combined mean* 311 gm, SD = 21.6), there was no significant difference.

103 Means and Plots The earlier summary table of means, SD s and CI s is probably sufficient. However, if we wanted to show a figure, the best depiction using JMP would be the dot plot and CI s represented by the means diamonds. Note: There are any number of ways to calculate the combined mean and SD.

104 Summary: Comparing Multiple Independent Means Describe the groups and the values in each group. What summary statistics are appropriate? Are there missing values? (why?) Assess the assumptions, including normality and equal variance. If normality is warranted, then it may be useful to determine confidence intervals on each of the means. Perform the appropriate statistical test. If Normality is unwarranted then use the Rank-Sum test (or consider transforming the Y-variable to make it more normal).

105 Summary (cont) If Normality and equal variance are apparent, then use the F-test. If Normality and unequal variance are apparent, then use the Welch ANOVA F-test (or consider transforming the Y-variable to equalize variance). Determine the p-value that corresponds to your hypothesis. Null hypothesis: No difference. Reject or fail to reject?

106 Summary (cont) If we fail to reject: There is no evidence for more than one mean. Report the single mean & etc. If we reject: Then use the appropriate multiple comparison test to determine which groups are significantly different. Report means & etc. that reflect the pattern that is evident.

107 Summary (cont) Indeterminate results Note: The following scenarios are possible. 1. The F-test is not significant but one or more of the group comparisons is significant. No fair; you weren t supposed to look at the group comparisons if the overall test was not significant. Fishing is not allowed. 2. The F-test is significant but none of the group comparisons is significant. In other words, the F-test says there is a difference but we can t find it. This will sometimes happen (and it s irritating when it does). All you should do is report it (or redo the study with larger n). What people really do is fish until they find a plausible conclusion (be careful how you report this).

108 3. The F-test is significant. When the group comparisons are considered, the pattern of the means is difficult to interpret. It s even possible especially when the n s in each group are different that groups that should be different, aren t. For example, with a three-group study, it s possible that the multiple comparison tests indicate that: Group A > Group B, and Group B > Group C, but Group A is not > Group C (!?) All you can do is report the overall F-test and the results or just the F-test and re-run the study in a balanced fashion with larger n.

109 Next Semester We ll pick up with ANOVA Look at: Logistic Regression Dependant Means Multiple Time measures Multiple Random Variables Multiple Outcomes And more!

Comparing Means in Two Populations

Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

The Wilcoxon Rank-Sum Test

1 The Wilcoxon Rank-Sum Test The Wilcoxon rank-sum test is a nonparametric alternative to the twosample t-test which is based solely on the order in which the observations from the two samples fall. We

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

Post-hoc comparisons & two-way analysis of variance. Two-way ANOVA, II. Post-hoc testing for main effects. Post-hoc testing 9.

Two-way ANOVA, II Post-hoc comparisons & two-way analysis of variance 9.7 4/9/4 Post-hoc testing As before, you can perform post-hoc tests whenever there s a significant F But don t bother if it s a main

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

Statistics courses often teach the two-sample t-test, linear regression, and analysis of variance

2 Making Connections: The Two-Sample t-test, Regression, and ANOVA In theory, there s no difference between theory and practice. In practice, there is. Yogi Berra 1 Statistics courses often teach the two-sample

Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

2 Sample t-test (unequal sample sizes and unequal variances)

Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

1 Basic ANOVA concepts

Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2-sample t procedures. Now let s expand this to compare k 3 population means. As with the

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

Week 4: Standard Error and Confidence Intervals

Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

Statistics for Sports Medicine

Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota (suzanne.hecht@gmail.com) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

Nonparametric statistics and model selection

Chapter 5 Nonparametric statistics and model selection In Chapter, we learned about the t-test and its variations. These were designed to compare sample means, and relied heavily on assumptions of normality.

An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

How To Check For Differences In The One Way Anova

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples

Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

Two-sample inference: Continuous data

Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

Multiple-Comparison Procedures

Multiple-Comparison Procedures References A good review of many methods for both parametric and nonparametric multiple comparisons, planned and unplanned, and with some discussion of the philosophical

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

Once saved, if the file was zipped you will need to unzip it. For the files that I will be posting you need to change the preferences.

1 Commands in JMP and Statcrunch Below are a set of commands in JMP and Statcrunch which facilitate a basic statistical analysis. The first part concerns commands in JMP, the second part is for analysis

Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

Concepts of Experimental Design

Design Institute for Six Sigma A SAS White Paper Table of Contents Introduction...1 Basic Concepts... 1 Designing an Experiment... 2 Write Down Research Problem and Questions... 2 Define Population...

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

Chapter 14: Repeated Measures Analysis of Variance (ANOVA)

Chapter 14: Repeated Measures Analysis of Variance (ANOVA) First of all, you need to recognize the difference between a repeated measures (or dependent groups) design and the between groups (or independent

T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these

Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable

Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................

DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

Testing for differences I exercises with SPSS

Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the t-test and its non-parametric equivalents in their various forms. In SPSS, all these tests can

SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

Non-Inferiority Tests for Two Means using Differences

Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky hmotulsky@graphpad.com This is the first case in what I expect will be a series of case studies. While I mention

Inference for two Population Means

Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example

Using Excel for inferential statistics

FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

Non-Parametric Tests (I)

Lecture 5: Non-Parametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent

Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

1 Nonparametric Statistics

1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015

Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a t-distribution as an approximation

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation