Univariate Time Series Analysis; ARIMA Models
|
|
|
- Martina Wilkins
- 9 years ago
- Views:
Transcription
1 Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing time dependence: ACF and PACF. (4) Modelling time dependence: the ARMA(p,q) model (5) Examples: AR(). AR(2). MA(). (6) Lag operators, lag polynomials and invertibility. (7) Model selection. (8) Estimation. (9) Forecasting. 2of4
2 Univariate Time Series Analysis We consider a single time series, y,y 2,..., y T. We want to construct simple models for y t as a function of the past: E[y t history]. Univariate models are useful for: () Analyzing the dynamic properties of a time series. What is the dynamic adjustment after a shock? Do shocks have transitory or permanent effects (presence of unit roots)? (2) Forecasting. AmodelforE[y t x t ] is only useful for forecasting y t+ if we know (or can forecast) x t+. (3) Univariate time series analysis is a way to introduce the tools necessary for analyzing more complicated models. 3of4 Stationarity A time series, y,y 2,..., y t,..., y T,isstrictly stationary if the joint distributions (y t,y t2,..., y tn ) and (y t +h,y t2 +h,...,y tn +h) arethesameforallh. A time series is called weakly stationary or covariance stationary if E[y t ] = µ V [y t ] = E[(y t µ) 2 ] = γ Cov[y t,y t k ] = E[(y t µ)(y t k µ)] = γ k for k =, 2,... Often µ, γ,andγ k are assumed finite. On these slides we consider only stationary processes. Later we consider (unit root) non-stationary processes. 4of4
3 Stationarity, Non-Stationarity, and Trends 4 2 Stationary process 5 Stationary process with a deterministic trend Stationary process with a stochastic trend (unit root) First difference is a stationary process 5-5 Deviations from an estimated trend of4 The Autocorrelation Function (ACF) For a stationary time series we define the autocorrelation function (ACF) as Ã! ρ k = Corr(y t,y t k )= γ k = Cov(y t,y t k ), = Cov(y t,y t k ) p. γ V (y t ) V (yt ) V (y t k ) Note that ρ k, ρ =,andρ k = ρ k. Recall that the ACF can (e.g.) be estimated by OLS in the regression model y t = c + ρ k y t k + residual. If ρ = ρ 2 =... =, it holds that V (bρ k )=T, and a 95% confidence band is given by ±2/ T. 6of4
4 The Partial Autocorrelation Function (PACF) An alternative measure is the partial autocorrelation function (PACF), which is the correlation conditional on the intermediate values, i.e. Corr(y t,y t k y t,...,y t k+ ). The PACF can be estimated as the OLS estimator b θ k in the regression where the intermediate lags are included. y t = c + θ y t θ k y t k + residual, If θ = θ 2 =... =,itholdsthat V ( b θ k )=T, and a 95% confidence band is given by ±2/ T. 7of4 Example: Danish GDP 7. Danish GDP, log.5 Deviation from trend.5 First difference ACF PACF of4
5 The ARMA(p,q) Model We consider two simple models for y t : The autoregressive AR(p) model and the moving average MA(q) model. First define a white noise process, t i.i.d.(,σ 2 ). The AR(p) model is defined as y t = θ y t + θ 2 y t θ p y t p + t. Systematic part of y t is a linear function of p lagged values. The MA(q) model is defined as y t = t + α t + α 2 t α q t q. y t is a moving average of past shocks to the process. They can be combined into the ARMA(p,q) model y t = θ y t θ p y t p + t + α t α q t q. 9of4 Dynamic Properties of an AR() Model Consider the AR() model Y t = δ + θy t + t. Assume for a moment that the process is stationary. As we will see later, this requires θ <. First we want to find the expectation. Stationarity implies that E[Y t ]=E[Y t ]=µ. Wefind Note the following: E[Y t ] = E[δ + θy t + t ] E[Y t ] = δ + θe[y t ]+E[ t ] ( θ) µ = δ µ = δ θ. () The effect of the constant term, δ, depends on the autoregressive parameter, θ. (2) µ is not defined if θ =.Thisisexcludedforastationaryprocess. of 4
6 Next we want to calculate the variance and the autocovariances. It is convenient to define the deviation from mean, y t = Y t µ, sothat Y t = δ + θy t + t Y t = ( θ) µ + θy t + t Y t µ = θ (Y t µ)+ t y t = θy t + t. We note that γ = V [Y t ]=V [y t ].Wefind: V [y t ] = E[yt 2 ] = E[(θy t + t ) 2 ] = E[θ 2 yt t +2θy t t ] = θ 2 E[yt ]+E[ 2 2 t]+2θe[y t t ] = θ 2 V [y t ]+V [ t ]+. Using stationarity, γ = V [y t ]=V [y t ],weget γ ( θ 2 )=σ 2 or γ = σ2 θ 2. of 4 The covariances are given by The ACF is given by γ = Cov[y t,y t ]=E[y t y t ] = E[(θy t + t )y t ] = θe[yt ]+E[y 2 t t ] = θ σ2 θ 2 = θγ γ 2 = Cov[y t,y t 2 ]=E[y t y t 2 ] = E[(θy t + t ) y t 2 ] = E[(θ(θy t 2 + t )+ t ) y t 2 ] = E[θ 2 y t 2 + θy t 2 t + y t 2 t ] = θ 2 E[yt 2]+θE[y 2 t 2 t ]+E[y t 2 t ]=θ 2 σ 2 γ k = Cov[y t,y t k ]=θ k γ ρ k = γ k γ = θk γ γ = θ k. θ 2 = θ2 γ The PACF is simply the autoregressive coefficients: θ,,,... 2 of 4
7 Examples of Stationary AR() Models 2 y t =ε t ACF- PACF y t =.8 y t +ε t 2 ACF- 2 PACF y t =.8 y t +ε t 2 ACF- 2 PACF of 4 Examples of AR() Models 2.5 y t =.5 y t +ε t 2.5 y t =.95 y t +ε t y t =y t +ε t y t =.5 y t +ε t of 4
8 Dynamic Properties of an AR(2) Model Consider the AR(2) model given by Y t = δ + θ Y t + θ 2 Y t 2 + t. Again we find the mean under stationarity: E [Y t ] = δ + θ E [Y t ]+θ 2 E [Y t 2 ]+E [ t ] E [Y t ] = δ = µ. θ θ 2 We then define the process y t = Y t µ for which it holds that y t = θ y t + θ 2 y t 2 + t. 5 of 4 Multiplying both sides with y t and taking expectations yields E yt 2 = θ E [y t y t ]+θ 2 E [y t 2 y t ]+E [ t y t ] γ = θ γ + θ 2 γ 2 + σ 2 Multiplying instead with y t yields E [y t y t ] = θ E [y t y t ]+θ 2 E [y t 2 y t ]+E [ t y t ] γ = θ γ + θ 2 γ Multiplying instead with y t 2 yields E [y t y t 2 ] = θ E [y t y t 2 ]+θ 2 E [y t 2 y t 2 ]+E [ t y t 2 ] γ 2 = θ γ + θ 2 γ Multiplying instead with y t 3 yields E [y t y t 3 ] = θ E [y t y t 3 ]+θ 2 E [y t 2 y t 3 ]+E [ t y t 3 ] γ 3 = θ γ 2 + θ 2 γ These are the so-called Yule-Walker equations. 6 of 4
9 To find the variance we can solve the substitute γ and γ 2 into the equation for γ. This is, however, a bit tedious. We can find the autocorrelations, ρ k = γ k /γ,as or alternatively that ρ = θ + θ 2 ρ ρ 2 = θ ρ + θ 2 ρ k = θ ρ k + θ 2 ρ k 2, k 3 θ ρ = θ 2 ρ 2 = θ 2 + θ 2 θ 2 ρ k = θ ρ k + θ 2 ρ k 2, k 3. 7 of 4 Examples of AR(2) Models 2.5 y t =.5 y t +.4 y t 2 +ε t. ACF- PACF y t =.8 y t 2 +ε t 2 ACF- 2 PACF y t =.3 y t.8 y t 2 ε t 2 ACF- 2 PACF of 4
10 Dynamic Properties of a MA() Model Consider the MA() model Y t = µ + t + α t. The mean is given by E[Y t ]=E[µ + t + α t ]=µ which is here identical to the constant term. Next we find the variance: V [Y t ] = E h(y t µ) 2i = E h( t + α t ) 2i = E t 2 + E α 2 t 2 + E [2α t t ] = +α 2 σ 2. 9 of 4 The covariances are given by γ = Cov[Y t,y t ] = E [(Y t µ)(y t µ)] = E[( t + α t )( t + α t 2 )] = E[ t t + α t t 2 + α 2 t + α 2 t t 2 ] = ασ 2 γ 2 = Cov[Y t,y t 2 ] = E [(Y t µ)(y t 2 µ)] = E[( t + α t )( t 2 + α t 3 )] = E[ t t 2 + α t t 3 + α t t 2 + α 2 t t 3 ] = γ k = for k =3, 4,... The ACF is given by ρ = γ ασ 2 = γ ( + α 2 ) σ = α 2 ( + α 2 ) ρ k =, k 2. 2 of 4
11 Examples of MA Models 2.5 y t =ε t.9 ε t ACF- PACF y t =ε t +.9 ε t 2 ACF- 2 PACF y t =ε t.6 ε t +.5 ε t ε t 3 2 ACF- 2 PACF of 4 The Lag and Difference Operators Now we introduce an important tool called the lag-operator, L. It has the property that and, for example, L y t = y t, L 2 y t = L(Ly t )=Ly t = y t 2. Also define the first difference operator, = L, such that y t =( L) y t = y t Ly t = y t y t. The operators L and are not functions, but can be used in calculations. 22 of 4
12 Lag Polynomials Consider as an example the AR(2) model That can be written as y t = θ y t + θ 2 y t 2 + t. y t θ y t θ 2 y t 2 = t y t θ Ly t θ 2 L 2 y t = t ( θ L θ 2 L 2 )y t = t θ(l)y t = t, where θ(l) = θ L θ 2 L 2 is a polynomial in L, denoted a lag-polynomial. Standard rules for calculating with polynomials also hold for polynomials in L. 23 of 4 For a model Characteristic Equations and Roots we define the characteristic equation as y t θ y t θ 2 y t 2 = t θ(l)y t = t, θ(z) = θ z θ 2 z 2 =. The solutions, z and z 2, are denoted characteristic roots. An AR(p) has p roots. Some of them may be complex values, h ± v i, wherei =. Recall, that the roots can be used for factorizing the polynomial θ(z) = θ z θ 2 z 2 =( φ z)( φ 2 z), where φ = z and φ 2 = z 2 are the inverse roots. 24 of 4
13 Invertibility of Polynomials Define the inverse of a polynomial, θ (L) of θ(l), sothat θ (L)θ(L) =. Consider the AR() case, θ(l) = θl, and look at the product ( θl) +θl + θ 2 L 2 + θ 3 L θ k L k = ( θl)+ θl θ 2 L 2 + θ 2 L 2 θ 3 L 3 + θ 3 L 3 θ 4 L = θ k+ L k+. If θ <, itholdsthatθ k+ L k+ as k implying that θ (L) =( θl) = θl =+θl + θ2 L 2 + θ 3 L = X θ i L i. i= If θ(l) is a finite polynomial, the inverse polynomial, θ (L), isinfinite. 25 of 4 ARMA Models in AR and MA form Using lag polynomials we can rewrite the stationary ARMA(p,q) model as y t θ y t... θ p y t p = t + α t α q t q ( ) θ(l)y t = α(l) t. where θ(l) and α(l) are finite polynomials. If θ(l) is invertible, ( ) can be written as the infinite MA( ) model This is called the MA representation. y t = θ (L)α(L) t y t = t + γ t + γ 2 t If α(l) is invertible, ( ) can be written as an infinite AR( ) model α (L)θ(L)y t = t y t γ y t γ 2 y t 2... = t. This is called the AR representation. 26 of 4
14 Invertibility and Stationarity A finite order MA process is stationary by construction. It is a linear combination of stationary white noise terms. Invertibility is sometimes convenient for estimation and prediction. An infinitemaprocessisstationaryifthecoefficients, α i, converge to zero. We require that P i= α2 i <. An AR process is stationary if θ(l) is invertible. This is important for interpretation and inference. In the case of a root at unity standard results no longer hold. We return to unit roots later. 27 of 4 Consider again the AR(2) model θ(z) = θ z θ 2 z 2 =( φ L)( φ 2 L). The polynomial is invertible if the factors ( φ i L) are invertible, i.e. if φ < and φ 2 <. In general a polynomial, θ(l), is invertible if the characteristic roots, z,..., z p,are larger than one in absolute value. In complex cases, this corresponds to the roots being outside the complex unit circle. (Modulus larger than one). Imaginary part i Real part 28 of 4
15 ARMA Models and Common Roots Consider the stationary ARMA(p,q) model y t θ y t... θ p y t p = t + α t α q t q θ(l)y t = α(l) t ( φ L)( φ 2 L) φ p L y t = ( ξ L)( ξ 2 L) ξ q L t. If φ i = ξ j for some i, j, they are denoted common roots or canceling roots. The ARMA(p,q) model is equivalent to a ARMA(p-,q-) model. As an example, consider y t y t +.25y t 2 = t.5 t L +.25L 2 y t = (.5L) t (.5L)(.5L) y t = (.5L) t (.5L) y t = t. 29 of 4 Unit Roots and ARIMA Models A root at one is denoted aunit root, and has important consequences for the analysis. We consider tests for unit roots and unit root econometrics later. Consider an ARMA(p,q) model θ(l)y t = α(l) t. If there is a unit root in the AR polynomial, we can factorize into θ(l) =( L)( φ 2 L) φ p L =( L)θ (L), and we can write the model as θ (L)( L)y t = α(l) t θ (L) y t = α(l) t. An ARMA(p,q) model for d y t is denoted an ARIMA(p,d,q) model for y t. 3 of 4
16 Example: Danish Real House Prices Consider the Danish real house prices in logs, p t. An AR(2) model yields p t =.55 (2.7) The lag polynomial is given by p t.5734 ( 7.56) p t (.3) θ(l) =.55 L L 2, with inverse roots given by.9422 and.686. One root is close to unity and we estimate an ARIMA(2,,) model for p t : p t =.323 (6.6) The lag polynomial is given by with complex (inverse) roots given by p t.4853 ( 6.2) p t (.333) θ(l) =.323 L L 2,.664 ±.2879 i, where i =. 3 of 4 ARIMA(p,d,q) Model Selection Find a transformation of the process that is stationary, e.g. d Y t. Recall, that for the stationary AR(p) model The ACF is infinite but convergent. The PACF is zero for lags larger than p. For the MA(q) model The ACF is zero for lags larger than q. The PACF is infinite but convergent. The ACF and PACF contains information p and q. Can be used to select relevant models. 32 of 4
17 If alternative models are nested, they can be tested. Model selection can be based on information criteria IC = logbσ 2 {z } Measures the likelihood The information criteria should be minimized! Three important criteria + penalty(t,#parameters) {z } A penalty for the number of parameters AIC = logbσ k T HQ = logbσ 2 2 k log(log(t )) + T BIC = logbσ 2 + k log(t ), T where k is the number of estimated parameters, e.g. k = p + q. 33 of 4 Example: Consumption-Income Ratio (A) Consumption and income, logs. Consumption (c) Income (y). (B) Consumption-Income ratio, logs (C) ACF for series in (B) (D) PACF for series in (B) of 4
18 Model T p log-lik SC HQ AIC ARMA(2,2) ARMA(2,) ARMA(2,) ARMA(,2) ARMA(,) ARMA(,) ARMA(,) of Maximum likelihood estimation of ARFIMA(,,) model ---- The estimation sample is: 97 () - 23 (2) The dependent variable is: cy (ConsumptionData.in7) Coefficient Std.Error t-value t-prob AR MA Constant log-likelihood sigma sigma^ Maximum likelihood estimation of ARFIMA(2,,) model ---- The estimation sample is: 97 () - 23 (2) The dependent variable is: cy (ConsumptionData.in7) Coefficient Std.Error t-value t-prob AR AR Constant log-likelihood sigma sigma^ of 4
19 Estimation of ARMA Models The natural estimator is maximum likelihood. With normal errors log L(θ, α, σ 2 )= T TX 2 2 log(2πσ2 t ) 2 σ 2, where t is the residual. For an AR() model we can write the residual as and OLS coincides with ML. t = Y t δ θ Y t, Usual to condition on the initial values. Alternatively we can postulate a distribution for the first observation, e.g. µ δ Y N θ, σ 2 θ 2, where the mean and variance are chosen as implied by the model for the rest of the observations. We say that Y is chosen from the invariant distribution. t= 37 of 4 For the MA() model Y t = µ + t + α t, the residuals can be found recursively as a function of the parameters = Y µ 2 = Y 2 µ α 3 = Y 3 µ α 2. Here, the initial value is =, but that could be relaxed if required by using the invariant distribution. The likelihood function can be maximized wrt. α and µ. 38 of 4
20 Forecasting Easy to forecast with ARMA models. Main drawback is that here is no economic insight. We want to predict y T +k given all information up to time T, i.e. given the information set I T = {y,...,y T,y T }. The optimal predictor is the conditional expectation y T +k T = E[y T +k I T ]. 39 of 4 Consider the ARMA(,) model y t = θ y t + t + α t, t =, 2,..., T. To forecast we Substitute the estimated parameters for the true. Use estimated residuals up to time T. Hereafter, the best forecast is zero. The optimal forecasts will be y T + T = E[θ y T + T + + α T I T ] = b θ y T + bα b T y T +2 T = E[θ y T + + T +2 + α T + I T ] = b θ y T + T. 4 of 4
21 Forecasts Actual of 4
Univariate Time Series Analysis; ARIMA Models
Econometrics 2 Fall 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Univariate Time Series Analysis We consider a single time series, y,y 2,..., y T. We want to construct simple
Non-Stationary Time Series andunitroottests
Econometrics 2 Fall 2005 Non-Stationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:
Lecture 2: ARMA(p,q) models (part 3)
Lecture 2: ARMA(p,q) models (part 3) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.
Time Series Analysis
Time Series Analysis Autoregressive, MA and ARMA processes Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 212 Alonso and García-Martos
Time Series Analysis
Time Series Analysis [email protected] Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:
Some useful concepts in univariate time series analysis
Some useful concepts in univariate time series analysis Autoregressive moving average models Autocorrelation functions Model Estimation Diagnostic measure Model selection Forecasting Assumptions: 1. Non-seasonal
Sales forecasting # 2
Sales forecasting # 2 Arthur Charpentier [email protected] 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
Analysis and Computation for Finance Time Series - An Introduction
ECMM703 Analysis and Computation for Finance Time Series - An Introduction Alejandra González Harrison 161 Email: [email protected] Time Series - An Introduction A time series is a sequence of observations
Rob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1
Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4
Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London)
Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London) 1 Forecasting: definition Forecasting is the process of making statements about events whose
ARMA, GARCH and Related Option Pricing Method
ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September
Time Series - ARIMA Models. Instructor: G. William Schwert
APS 425 Fall 25 Time Series : ARIMA Models Instructor: G. William Schwert 585-275-247 [email protected] Topics Typical time series plot Pattern recognition in auto and partial autocorrelations
Univariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
Time Series Analysis and Forecasting
Time Series Analysis and Forecasting Math 667 Al Nosedal Department of Mathematics Indiana University of Pennsylvania Time Series Analysis and Forecasting p. 1/11 Introduction Many decision-making applications
ITSM-R Reference Manual
ITSM-R Reference Manual George Weigt June 5, 2015 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................
3.1 Stationary Processes and Mean Reversion
3. Univariate Time Series Models 3.1 Stationary Processes and Mean Reversion Definition 3.1: A time series y t, t = 1,..., T is called (covariance) stationary if (1) E[y t ] = µ, for all t Cov[y t, y t
Time Series Analysis
Time Series Analysis Forecasting with ARIMA models Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos (UC3M-UPM)
TIME SERIES ANALYSIS
TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-0 02 [email protected]. Introduction Time series (TS) data refers to observations
Topic 5: Stochastic Growth and Real Business Cycles
Topic 5: Stochastic Growth and Real Business Cycles Yulei Luo SEF of HKU October 1, 2015 Luo, Y. (SEF of HKU) Macro Theory October 1, 2015 1 / 45 Lag Operators The lag operator (L) is de ned as Similar
The Engle-Granger representation theorem
The Engle-Granger representation theorem Reference note to lecture 10 in ECON 5101/9101, Time Series Econometrics Ragnar Nymoen March 29 2011 1 Introduction The Granger-Engle representation theorem is
Exam Solutions. X t = µ + βt + A t,
Exam Solutions Please put your answers on these pages. Write very carefully and legibly. HIT Shenzhen Graduate School James E. Gentle, 2015 1. 3 points. There was a transcription error on the registrar
Advanced Forecasting Techniques and Models: ARIMA
Advanced Forecasting Techniques and Models: ARIMA Short Examples Series using Risk Simulator For more information please visit: www.realoptionsvaluation.com or contact us at: [email protected]
How To Model A Series With Sas
Chapter 7 Chapter Table of Contents OVERVIEW...193 GETTING STARTED...194 TheThreeStagesofARIMAModeling...194 IdentificationStage...194 Estimation and Diagnostic Checking Stage...... 200 Forecasting Stage...205
Time Series Analysis 1. Lecture 8: Time Series Analysis. Time Series Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013 MIT 18.S096
Lecture 8: Time Series Analysis MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis 1 Outline Time Series Analysis 1 Time Series Analysis MIT 18.S096 Time Series Analysis 2 A stochastic
Time Series Analysis
Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos
Chapter 9: Univariate Time Series Analysis
Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of
9th Russian Summer School in Information Retrieval Big Data Analytics with R
9th Russian Summer School in Information Retrieval Big Data Analytics with R Introduction to Time Series with R A. Karakitsiou A. Migdalas Industrial Logistics, ETS Institute Luleå University of Technology
Graphical Tools for Exploring and Analyzing Data From ARIMA Time Series Models
Graphical Tools for Exploring and Analyzing Data From ARIMA Time Series Models William Q. Meeker Department of Statistics Iowa State University Ames, IA 50011 January 13, 2001 Abstract S-plus is a highly
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay Business cycle plays an important role in economics. In time series analysis, business cycle
TIME SERIES ANALYSIS
TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi- 110 012 [email protected] 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these
Estimating an ARMA Process
Statistics 910, #12 1 Overview Estimating an ARMA Process 1. Main ideas 2. Fitting autoregressions 3. Fitting with moving average components 4. Standard errors 5. Examples 6. Appendix: Simple estimators
Forecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model
Tropical Agricultural Research Vol. 24 (): 2-3 (22) Forecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model V. Sivapathasundaram * and C. Bogahawatte Postgraduate Institute
Multivariate time series analysis is used when one wants to model and explain the interactions and comovements among a group of time series variables:
Multivariate Time Series Consider n time series variables {y 1t },...,{y nt }. A multivariate time series is the (n 1) vector time series {Y t } where the i th row of {Y t } is {y it }.Thatis,for any time
Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem
Chapter Vector autoregressions We begin by taking a look at the data of macroeconomics. A way to summarize the dynamics of macroeconomic data is to make use of vector autoregressions. VAR models have become
Traffic Safety Facts. Research Note. Time Series Analysis and Forecast of Crash Fatalities during Six Holiday Periods Cejun Liu* and Chou-Lin Chen
Traffic Safety Facts Research Note March 2004 DOT HS 809 718 Time Series Analysis and Forecast of Crash Fatalities during Six Holiday Periods Cejun Liu* and Chou-Lin Chen Summary This research note uses
Forecasting model of electricity demand in the Nordic countries. Tone Pedersen
Forecasting model of electricity demand in the Nordic countries Tone Pedersen 3/19/2014 Abstract A model implemented in order to describe the electricity demand on hourly basis for the Nordic countries.
Time Series Analysis
JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),
In this paper we study how the time-series structure of the demand process affects the value of information
MANAGEMENT SCIENCE Vol. 51, No. 6, June 25, pp. 961 969 issn 25-199 eissn 1526-551 5 516 961 informs doi 1.1287/mnsc.15.385 25 INFORMS Information Sharing in a Supply Chain Under ARMA Demand Vishal Gaur
Impulse Response Functions
Impulse Response Functions Wouter J. Den Haan University of Amsterdam April 28, 2011 General definition IRFs The IRF gives the j th -period response when the system is shocked by a one-standard-deviation
Discrete Time Series Analysis with ARMA Models
Discrete Time Series Analysis with ARMA Models Veronica Sitsofe Ahiati ([email protected]) African Institute for Mathematical Sciences (AIMS) Supervised by Tina Marquardt Munich University of Technology,
The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
Introduction to Time Series Analysis. Lecture 6.
Introduction to Time Series Analysis. Lecture 6. Peter Bartlett www.stat.berkeley.edu/ bartlett/courses/153-fall2010 Last lecture: 1. Causality 2. Invertibility 3. AR(p) models 4. ARMA(p,q) models 1 Introduction
Time Series Analysis in Economics. Klaus Neusser
Time Series Analysis in Economics Klaus Neusser May 26, 2015 Contents I Univariate Time Series Analysis 3 1 Introduction 1 1.1 Some examples.......................... 2 1.2 Formal definitions.........................
Studying Achievement
Journal of Business and Economics, ISSN 2155-7950, USA November 2014, Volume 5, No. 11, pp. 2052-2056 DOI: 10.15341/jbe(2155-7950)/11.05.2014/009 Academic Star Publishing Company, 2014 http://www.academicstar.us
Time Series Analysis
Time Series 1 April 9, 2013 Time Series Analysis This chapter presents an introduction to the branch of statistics known as time series analysis. Often the data we collect in environmental studies is collected
Software Review: ITSM 2000 Professional Version 6.0.
Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455-459 (June 2002). Published by Elsevier (ISSN: 0169-2070). http://0-
Econometrics Simple Linear Regression
Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight
ADVANCED FORECASTING MODELS USING SAS SOFTWARE
ADVANCED FORECASTING MODELS USING SAS SOFTWARE Girish Kumar Jha IARI, Pusa, New Delhi 110 012 [email protected] 1. Transfer Function Model Univariate ARIMA models are useful for analysis and forecasting
Time Series Analysis
Time Series Analysis Lecture Notes for 475.726 Ross Ihaka Statistics Department University of Auckland April 14, 2005 ii Contents 1 Introduction 1 1.1 Time Series.............................. 1 1.2 Stationarity
MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
State Space Time Series Analysis
State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State
Testing for Granger causality between stock prices and economic growth
MPRA Munich Personal RePEc Archive Testing for Granger causality between stock prices and economic growth Pasquale Foresti 2006 Online at http://mpra.ub.uni-muenchen.de/2962/ MPRA Paper No. 2962, posted
Readers will be provided a link to download the software and Excel files that are used in the book after payment. Please visit http://www.xlpert.
Readers will be provided a link to download the software and Excel files that are used in the book after payment. Please visit http://www.xlpert.com for more information on the book. The Excel files are
Integrated Resource Plan
Integrated Resource Plan March 19, 2004 PREPARED FOR KAUA I ISLAND UTILITY COOPERATIVE LCG Consulting 4962 El Camino Real, Suite 112 Los Altos, CA 94022 650-962-9670 1 IRP 1 ELECTRIC LOAD FORECASTING 1.1
Chapter 5: Bivariate Cointegration Analysis
Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...
USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY
Paper PO10 USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY Beatrice Ugiliweneza, University of Louisville, Louisville, KY ABSTRACT Objectives: To forecast the sales made by
VI. Real Business Cycles Models
VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized
Forecasting the US Dollar / Euro Exchange rate Using ARMA Models
Forecasting the US Dollar / Euro Exchange rate Using ARMA Models LIUWEI (9906360) - 1 - ABSTRACT...3 1. INTRODUCTION...4 2. DATA ANALYSIS...5 2.1 Stationary estimation...5 2.2 Dickey-Fuller Test...6 3.
Vector Time Series Model Representations and Analysis with XploRe
0-1 Vector Time Series Model Representations and Analysis with plore Julius Mungo CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin [email protected] plore MulTi Motivation
Sales and operations planning (SOP) Demand forecasting
ing, introduction Sales and operations planning (SOP) forecasting To balance supply with demand and synchronize all operational plans Capture demand data forecasting Balancing of supply, demand, and budgets.
Predicting Indian GDP. And its relation with FMCG Sales
Predicting Indian GDP And its relation with FMCG Sales GDP A Broad Measure of Economic Activity Definition The monetary value of all the finished goods and services produced within a country's borders
Chapter 5. Analysis of Multiple Time Series. 5.1 Vector Autoregressions
Chapter 5 Analysis of Multiple Time Series Note: The primary references for these notes are chapters 5 and 6 in Enders (2004). An alternative, but more technical treatment can be found in chapters 10-11
Analysis of algorithms of time series analysis for forecasting sales
SAINT-PETERSBURG STATE UNIVERSITY Mathematics & Mechanics Faculty Chair of Analytical Information Systems Garipov Emil Analysis of algorithms of time series analysis for forecasting sales Course Work Scientific
Centre for Central Banking Studies
Centre for Central Banking Studies Technical Handbook No. 4 Applied Bayesian econometrics for central bankers Andrew Blake and Haroon Mumtaz CCBS Technical Handbook No. 4 Applied Bayesian econometrics
COMP6053 lecture: Time series analysis, autocorrelation. [email protected]
COMP6053 lecture: Time series analysis, autocorrelation [email protected] Time series analysis The basic idea of time series analysis is simple: given an observed sequence, how can we build a model that
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Forecasting Chilean Industrial Production and Sales with Automated Procedures 1
Forecasting Chilean Industrial Production and Sales with Automated Procedures 1 Rómulo A. Chumacero 2 February 2004 1 I thank Ernesto Pastén, Klaus Schmidt-Hebbel, and Rodrigo Valdés for helpful comments
Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach.
Is Infrastructure Capital Productive? A Dynamic Heterogeneous Approach. César Calderón a, Enrique Moral-Benito b, Luis Servén a a The World Bank b CEMFI International conference on Infrastructure Economics
Time-Series Regression and Generalized Least Squares in R
Time-Series Regression and Generalized Least Squares in R An Appendix to An R Companion to Applied Regression, Second Edition John Fox & Sanford Weisberg last revision: 11 November 2010 Abstract Generalized
Time Series in Mathematical Finance
Instituto Superior Técnico (IST, Portugal) and CEMAT [email protected] European Summer School in Industrial Mathematics Universidad Carlos III de Madrid July 2013 Outline The objective of this short
Chapter 10 Introduction to Time Series Analysis
Chapter 1 Introduction to Time Series Analysis A time series is a collection of observations made sequentially in time. Examples are daily mortality counts, particulate air pollution measurements, and
Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
Forecasting Stock Market Series. with ARIMA Model
Journal of Statistical and Econometric Methods, vol.3, no.3, 2014, 65-77 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 Forecasting Stock Market Series with ARIMA Model Fatai Adewole
Fractionally integrated data and the autodistributed lag model: results from a simulation study
Fractionally integrated data and the autodistributed lag model: results from a simulation study Justin Esarey July 1, 215 Abstract Two contributions in this issue, Grant and Lebo (215) and Keele, Linn
Autocovariance and Autocorrelation
Chapter 3 Autocovariance and Autocorrelation If the {X n } process is weakly stationary, the covariance of X n and X n+k depends only on the lag k. This leads to the following definition of the autocovariance
The SAS Time Series Forecasting System
The SAS Time Series Forecasting System An Overview for Public Health Researchers Charles DiMaggio, PhD College of Physicians and Surgeons Departments of Anesthesiology and Epidemiology Columbia University
AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.
AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree
Energy Load Mining Using Univariate Time Series Analysis
Energy Load Mining Using Univariate Time Series Analysis By: Taghreed Alghamdi & Ali Almadan 03/02/2015 Caruth Hall 0184 Energy Forecasting Energy Saving Energy consumption Introduction: Energy consumption.
Promotional Analysis and Forecasting for Demand Planning: A Practical Time Series Approach Michael Leonard, SAS Institute Inc.
Promotional Analysis and Forecasting for Demand Planning: A Practical Time Series Approach Michael Leonard, SAS Institute Inc. Cary, NC, USA Abstract Many businesses use sales promotions to increase the
Forecasting areas and production of rice in India using ARIMA model
International Journal of Farm Sciences 4(1) :99-106, 2014 Forecasting areas and production of rice in India using ARIMA model K PRABAKARAN and C SIVAPRAGASAM* Agricultural College and Research Institute,
Time Series Analysis of Aviation Data
Time Series Analysis of Aviation Data Dr. Richard Xie February, 2012 What is a Time Series A time series is a sequence of observations in chorological order, such as Daily closing price of stock MSFT in
Performing Unit Root Tests in EViews. Unit Root Testing
Página 1 de 12 Unit Root Testing The theory behind ARMA estimation is based on stationary time series. A series is said to be (weakly or covariance) stationary if the mean and autocovariances of the series
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
TIME-SERIES ANALYSIS, MODELLING AND FORECASTING USING SAS SOFTWARE
TIME-SERIES ANALYSIS, MODELLING AND FORECASTING USING SAS SOFTWARE Ramasubramanian V. IA.S.R.I., Library Avenue, Pusa, New Delhi 110 012 [email protected] 1. Introduction Time series (TS) data refers
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU
PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Homework Assignment #2
THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Homework Assignment #2 Assignment: 1. Consumer Sentiment of the University of Michigan.
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Agenda. Managing Uncertainty in the Supply Chain. The Economic Order Quantity. Classic inventory theory
Agenda Managing Uncertainty in the Supply Chain TIØ485 Produkjons- og nettverksøkonomi Lecture 3 Classic Inventory models Economic Order Quantity (aka Economic Lot Size) The (s,s) Inventory Policy Managing
SYSTEMS OF REGRESSION EQUATIONS
SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations
Modeling and forecasting regional GDP in Sweden. using autoregressive models
MASTER THESIS IN MICRODATA ANALYSIS Modeling and forecasting regional GDP in Sweden using autoregressive models Author: Haonan Zhang Supervisor: Niklas Rudholm 2013 Business Intelligence Program School
