Are Those Sunspots Really on the Sun?
|
|
|
- Vivian Patrick
- 9 years ago
- Views:
Transcription
1 Are Those Sunspots Really on the Sun? Summary of Activity: Students will acquire solar images (or draw sunspots), and record coordinates of sunspots. They will calculate and plot their apparent movement and describe their shapes. They will determine whether sunspots are features on the surface of the Sun, or objects in orbit around it. Grade Level: 5-12 Duration of Activity: About 1 hour for preparation, 1/4 hour per day for days if you choose to collect new data; at least 1-3 hours for analyzing data, answering questions and doing optional calculations. Student Prerequisites: 1. Basic knowledge of the Sun and planets. 2. Concept of coordinates, longitude and latitude. 3. Measuring, plotting, basic geometric terms, i.e. "width-to-height ratio". 4. Optional - angular velocity (speed of rotation), vs. linear velocity, high school mathematics. Preparation & Supplies Needed: 1. Sunspot Recording Worksheets. ( Print out and make enough copies for each day of your observations. 2. Latitude/longitude grids. ( You may have to enlarge/shrink these with your computer or copier to make them match your solar disk images. And it will be easiest if you can copy them onto transparency paper. 3. Sunspot speed graphs. ( sunspots/spotspd.html). Print these out or make copies for each person. 4. Computer & access to the internet. You will download an image of the Sun every day, for about 2 weeks (either intensitygrams or magnetograms). 5. Copier machine and transparency paper (recommended) 6. A basketball and a tennis ball (optional) 1
2 Introduction When Galileo Galilei discovered sunspots, he had a problem. Here it was, 1612, and he had just pointed his new version of the Dutch tool called a "telescope" towards the heavens. Not only did he discover the moons of Jupiter, the "seas" and craters on our own Moon, and the phases of Venus, but he also found what he thought to be dark smudges on the Sun. How could this be? After all, the Catholic Church taught that the heavens were perfect. So there could not be imperfections, or spots, on the Sun. (Remember that it is dangerous to look directly at the Sun through binoculars or in any other way!) The German astronomer Christoph Scheiner claimed the spots must be tiny undiscovered planets circling the Sun, which would occasionally pass in front of its disk. Try this experiment and see if Galileo was right! Objectives: Students will: 1. Observe sunspots and consider ways to determine whether they are on the Sun, or in orbit around the Sun (Galileo's dilemma). 2. Collect and record sunspot data (images) for 2 weeks, or use sample data provided. 3. Tabulate data and draw inferences from their numbers. 4. Answer questions, and participate in group discussion, before the activity and after. Procedure Please read the whole procedure, and complete the quiz and group discussion before you begin collecting data. Note that most (but not all!) sunspots appear in groups, so to make things simpler we will call them sunspot groups, even in cases when there may be just one sunspot. Quiz 1. What are latitude and longitude lines? Can you show them on a solar coordinate grid? 2. What is a magnetogram and what is an intensitygram? 3. Can you find a sunspot or sunspot group on both a magnetogram and an intensitygram? 2
3 Discussion I. What do you suppose sunspots are? Do you think sunspots move? II. From your own point of view, are sunspots features on the Sun itself, or objects in orbit around the Sun? How would you try to prove this? Discuss this in your group. Collecting Data: 1. Decide on whether you want to use magnetograms or intensitygrams. 2. Go to SOHO daily images - ( Magnetograms are labeled "MDI Magnetogram", and intensitygrams are "MDI Continuum". 3. Every day for days, either print out a copy of the internet solar image, or sketch and label the image and sunspot groups you see. (If you have to sketch, try placing the latitude/longitude grid directly over the image on your screen to find exactly where to sketch your spots. Be careful to always have the image straight up and down.) Here are some examples of Galileo's sunspot drawings: 4. For each of the major sunspot group, record on your Sunspot Recording Worksheet: i. The name of each sunspot group. Make up any name you want, but make sure to keep track of which group has which name. Hints: ii. iii. Where (i.e. at what latitude and longitude) the spot groups lie. Note whether there were any observable changes in your sunspot groups (has the group changed size, shape, disappeared altogether?) You can see a sample completed data sheet here ( You'll need to track the sunspots for about 2 weeks. Start with images for the current day. If these aren't complete, start looking at images from previous days. If you don't have 2 weeks to spare, or if there are no substantial sunspots in the recent images (as is often the case during a solar minimum), you can look at images from earlier dates. 3
4 The easiest way to do this is to go to: for magnetograms, and to: for intensitygrams, and browse by clicking on the year and month of interest. Another way to obtain archived images is to go to: Enter the start and end dates, and the type of image you want (don't worry about "Latest n images"). Alternatively, you can use these magnetograms in the examples: ( The label on each image indicates the time when it was taken (e.g. for "2009/02/03 22:29", the date is February 3rd, and the time is 22:29.) Each day when you retrieve your images, try to get one from the same time as the day before. Measure only the large blotches, and don't worry about the smaller dots or the spread-out areas which look like lace. When you measure the latitude and longitude, measure to the center of the spot or spot group. On the magnetograms, measure to the area right between the white and black portions: Data Analysis 1. First, you're going to transfer your sunspot data onto the table for your Sunspot Speed Graph. Note that you will need to figure out the distance, in centimeters, traveled by the sunspot groups each day. You will then make a graph with the group's longitude on the horizontal axis, and its apparent speed in centimeters per day on the vertical axis. (As an optional assignment, you can also record the group's speed in degrees of longitude per day, and plot it on a separate graph.) 2. Pick your best sunspot group, the one for which you have the most data. What you want to find is how far that group appeared to travel across the Sun's disk. Remember to measure to the center of the spot or spot group! 3. To figure out how far the sunspot group moved from the first to second day, subtract your measured distance (the one you measured on your sketch from the edge of the Sun) of the first day from the measured distance of the second day. (e.g. if your Day #1 = 3 cm and Day #2 = 4.5 cm., the distance would be = 1.5 cm) Now, graph that point above the longitude measurement for the second day. 4
5 4. Figure out how far the group moved between each of the rest of your days, and place the points on the graph. (If you have a day missing, figure the distance the spot group moved in 2 days and use half that amount for each of the 2 days.) 5. Once your data is plotted, draw a line/curve between the points. To minimize recording errors, graph one or two more sunspot groups just as you did the first. Questions 1. What can you say about the shapes of the sunspots? Do they remain constant? 2. Look at the shape of one sunspot as it appears on the edge (limb) of the Sun's image. What happens to its width-to-height ratio as it moves across the disk, and when it again approaches the limb on the other side? Why do you think that is? 3. Do sunspots always appear and disappear on the solar limb? 4. Look at your graph. Does the "movement" of sunspots across the disk (in centimeters per day) remain constant with longitude? 5. If the distances traveled, and hence the speeds, were different, in what areas of the Sun did they appear faster? In what areas did they appear slower? 6. Why do you think the spots appear to move at different speeds the way they do? 5
6 7. In your groups, discuss whether or not you think sunspots are features on the Sun's surface. Suppose that the spots are objects in orbit some significant distance away from the Sun. Would their speeds appear to change much as they went past the limb and then across the center of the solar disk? If you have difficulty visualizing this, try a simple experiment. Draw a dot on a basketball, and rotate the ball around its axis, such that the dot appears to travel horizontally when you look at it from the side. While spinning the ball at a constant rate, observe the apparent changes in speed of the dot. Now, put the ball down on a table, and sit across the room. Have another person hold a tennis ball a few feet from the basketball and slowly move it in an orbiting motion around the basketball. Observe whether the speed of the tennis ball varies much while it passes in front of the basketball. Then, check out this SOHO image of Mercury's transit across the solar disk! Extra questions: i. Does your sunspot speed graph in centimeters per day show angular or linear velocity? ii. Does the angular velocity of the sunspots remain fairly constant? Why or why not? Extra assignment: If you were Galileo, how would you mathematically prove the spots are actually on the Sun? ( 6
Phases of the Moon. Preliminaries:
Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.
Climate Discovery Teacher s Guide
Climate Discovery eacher s Guide Sunspots and Climate Unit:Little Ice Age Lesson: 7 Materials & Preparation ime: Preparation: 10 min eaching: 60 min Materials for the eacher: Overhead projector ransparencies
1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
From Aristotle to Newton
From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers
CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS
INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before
Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?
Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
Exploration of the Solar System
Exploration of the Solar System I. Phases of the Moon all about perspective. In this section you will use WWT to explore how the moon appears to change phases from our vantage point on Earth over the course
Science Benchmark: 06 : 01 Standard 01: THE MYSTICAL MOON axis of rotation,
Science Benchmark: 06 : 01 The appearance of the lighted portion of the moon changes in a predictable cycle as a result of the relative positions of Earth, the moon, and the sun. Standard 01: Students
Barycenter of Solar System Earth-Moon barycenter? Moon orbits what?
Barycenter of Solar System Earth-Moon barycenter? Moon orbits what? Dr. Scott Schneider Friday Feb 24 th, 2006 Sponsored by the Society of Physics Students (SPS) Webpage : http://qbx6.ltu.edu/s_schneider/astro/astroweek_2006.shtml
The University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.
1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,
Lesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
Chapter 3 The Science of Astronomy
Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar
Study Guide due Friday, 1/29
NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system
Exercise: Estimating the Mass of Jupiter Difficulty: Medium
Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for
Astronomy 1140 Quiz 1 Review
Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality
Exploring the Phases of the Moon
Exploring the Phases of the Moon Activity UCIObs 5 Grade Level: 3 5 Source: Copyright (2009) by Tammy Smecker-Hane. Contact [email protected] with questions. Standards: This activity addresses these California
5- Minute Refresher: Daily Observable Patterns in the Sky
5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and
Journey to other celestial objects. learning outcomes
The eight planets Journey to other celestial objects C 44 time 80 minutes. learning outcomes To: know which planets have moons know which planets have rings know the colours of the different planets know
SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring
Lab Activity on the Causes of the Seasons
Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you
NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density
National Aeronautics and Space Administration NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook Solar System Math Comparing Mass, Gravity, Composition, & Density What interval of values
The Reasons for the Seasons
The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch
Motions of Earth, Moon, and Sun
Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning
Updates to Graphing with Excel
Updates to Graphing with Excel NCC has recently upgraded to a new version of the Microsoft Office suite of programs. As such, many of the directions in the Biology Student Handbook for how to graph with
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
Name Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
Angular Velocity vs. Linear Velocity
MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring
Demonstration of Data Analysis using the Gnumeric Spreadsheet Solver to Estimate the Period for Solar Rotation
Demonstration of Data Analysis using the Gnumeric Spreadsheet Solver to Estimate the Period for Solar Rotation Ron Larham Hart Plain Institute for Studies Introduction This paper serves two purposes, the
The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)
GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric
Lesson Plan. Skills: Describe, model Knowledge: position, size, motion, earth, moon, sun, day, night, solar eclipse, lunar eclipse, phases, moon
Gallmeyer 1 Lesson Plan Lesson: Rotation of the Earth Length: 45 minutes Age or Grade Level Intended: 4 th Academic Standard(s): Science: Earth and Space: 6.2.1 Describe and model how the position, size
Planetary Orbit Simulator Student Guide
Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
Grade 7/8 Math Circles November 3/4, 2015. M.C. Escher and Tessellations
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following
Curve Fitting, Loglog Plots, and Semilog Plots 1
Curve Fitting, Loglog Plots, and Semilog Plots 1 In this MATLAB exercise, you will learn how to plot data and how to fit lines to your data. Suppose you are measuring the height h of a seedling as it grows.
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Colour by Numbers Image Representation
Activity 2 Colour by Numbers Image Representation Summary Computers store drawings, photographs and other pictures using only numbers. The following activity demonstrates how they can do this. Curriculum
Graphical Integration Exercises Part Four: Reverse Graphical Integration
D-4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley
CHAPTER 1: SPREADSHEET BASICS. AMZN Stock Prices Date Price 2003 54.43 2004 34.13 2005 39.86 2006 38.09 2007 89.15 2008 69.58
1. Suppose that at the beginning of October 2003 you purchased shares in Amazon.com (NASDAQ: AMZN). It is now five years later and you decide to evaluate your holdings to see if you have done well with
ACCELERATION DUE TO GRAVITY
EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities
Space Weather Forecast
Space Weather Forecast v. 070507 Space Weather Curriculum Developed at Chabot Space & Science Center For the Stanford Solar Center Space Weather Forecast 2 Introduction Contents Introduction... 6 Overview...
HONEY, I SHRUNK THE SOLAR SYSTEM
OVERVIEW HONEY, I SHRUNK THE SOLAR SYSTEM MODIFIED VERSION OF A SOLAR SYSTEM SCALE MODEL ACTIVITY FROM UNDERSTANDING SCIENCE LESSONS Students will construct a scale model of the solar system using a fitness
EdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
Earth, Moon, and Sun Inquiry Template Eclipses
One Stop Shop For Educators The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved
This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES
Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES I. Introduction The Moon's revolution in orbit around the center of gravity (barycenter) of the Earth- Moon System results in an apparent motion of the
Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm.
Measurement Lab You will be graphing circumference (cm) vs. diameter (cm) for several different circular objects, and finding the slope of the line of best fit using the CapStone program. Write out or
EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1
Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time
Session 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares
Observing the Sun NEVER LOOK DIRECTLY AT THE SUN!!! Image taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003.
name Observing the Sun NEVER LOOK DRECTLY AT THE SUN!!! mage taken from the SOHO web-site http://sohowww.nascom.nasa.gov/gallery/solarcorona/uvc003.html Explanation: The Sun is a pretty active star. You
AP Environmental Science Graph Prep
AP Environmental Science Graph Prep Practice Interpreting Data: The following questions are to help you practice reading information shown on a graph. Answer each question on the separate answer sheet.
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
The Circumference Function
2 Geometry You have permission to make copies of this document for your classroom use only. You may not distribute, copy or otherwise reproduce any part of this document or the lessons contained herein
Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force?
Lifting A Load 1 NAME LIFTING A LOAD Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Background Information:
Shadows, Angles, and the Seasons
Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center
Newton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
PLOTTING DATA AND INTERPRETING GRAPHS
PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they
Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC
Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental
Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.
is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Counting Sunspots. Parent Prompts: Are there years with lots of sunspots? Are there years with very few sunspots?
Counting are magnetic storms on the Sun these dark areas are a little cooler than the rest of the Sun s atmosphere. They can be easily seen when the Sun s image is projected onto a white surface, using
Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations
Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane
Lesson 1: Phases of the Moon
Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,
Use WITH Investigation 4, Part 2, Step 2
INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors
FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
Calculating Astronomical Unit from Venus Transit
Calculating Astronomical Unit from Venus Transit A) Background 1) Parallaxes of the Sun (the horizontal parallaxes) By definition the parallaxes of the Sun is the angle β shown below: By trigonometry,
An Introduction to Astronomy and Cosmology. 1) Astronomy - an Observational Science
An Introduction to Astronomy and Cosmology 1) Astronomy - an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose
The Physics and Math of Ping-pong and How It Affects Game Play. By: Connor Thompson & Andrew Johnson
The Physics and Math of Ping-pong and How It Affects Game Play 1 The Physics and Math of Ping-pong and How It Affects Game Play By: Connor Thompson & Andrew Johnson The Practical Applications of Advanced
What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating
What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in
Basic Coordinates & Seasons Student Guide
Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to
The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC
The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is
What Do You Think? For You To Do GOALS
Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship
Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005
Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005 When you create a graph, you step through a series of choices, including which type of graph you should use and several
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe
LAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
Voyage: A Journey through our Solar System. Grades 9-12. Lesson 1: A Scale Model Solar System
Voyage: A Journey through our Solar System Grades 9-12 Lesson 1: A Scale Model Solar System On a visit to the National Mall in Washington, DC, one can see monuments of a nation Memorials to Lincoln, Jefferson,
4 The Rhumb Line and the Great Circle in Navigation
4 The Rhumb Line and the Great Circle in Navigation 4.1 Details on Great Circles In fig. GN 4.1 two Great Circle/Rhumb Line cases are shown, one in each hemisphere. In each case the shorter distance between
LAB 6 - GRAVITATIONAL AND PASSIVE FORCES
L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
A.4 The Solar System Scale Model
CHAPTER A. LABORATORY EXPERIMENTS 25 Name: Section: Date: A.4 The Solar System Scale Model I. Introduction Our solar system is inhabited by a variety of objects, ranging from a small rocky asteroid only
ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
Pushes and Pulls. TCAPS Created June 2010 by J. McCain
Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................
Coordinate Systems. Orbits and Rotation
Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million
SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION
SIERRA COLLEGE OBSERVATIONAL ASTRONOMY LABORATORY EXERCISE NUMBER III.F.a. TITLE: ASTEROID ASTROMETRY: BLINK IDENTIFICATION DATE- PRINT NAME/S AND INITIAL BELOW: GROUP DAY- LOCATION OBJECTIVE: Use CCD
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
GRAPH MATCHING EQUIPMENT/MATERIALS
GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion
Scales of the Universe
29:50 Astronomy Lab Stars, Galaxies, and the Universe Name Partner(s) Date Grade Category Max Points Points Received On Time 5 Printed Copy 5 Lab Work 90 Total 100 Scales of the Universe 1. Introduction
Graphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
Exploring Creation with Astronomy Learning Lapbook - Full Color Version
Exploring Creation with Astronomy Learning Lapbook - Full Color Version Authors: Nancy Fileccia and Paula Winget Copyright 2010 A Journey Through Learning Pages may be copied for other members of household
KINDERGARTEN PHYSICS
KINDERGARTEN PHYSICS 3 WEEKS LESSON PLANS AND ACTIVITIES APPLIED SCIENCE OVERVIEW OF KINDERGARTEN SCIENCE AND MATH WEEK 1. PRE: Describing and comparing nests, birds, and eggs. LAB: Describing different
Mathematics Content: Pie Charts; Area as Probability; Probabilities as Percents, Decimals & Fractions
Title: Using the Area on a Pie Chart to Calculate Probabilities Mathematics Content: Pie Charts; Area as Probability; Probabilities as Percents, Decimals & Fractions Objectives: To calculate probability
Essential Question. Enduring Understanding
Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons
Linear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
