[G.CO.2, G.CO.4, G.CO.5]
|
|
|
- Lesley Alexander
- 9 years ago
- Views:
Transcription
1 Name: Date: Geometric Transformations Multiple Choice Test Bank 1. A triangle has vertices at A (1, 3), B (4, 2), and C (3, 8). Which transformation would produce an image with vertices A (3, 1), B (2, 4), C (8, 3)? a. a reflection over the x-axis b. a reflection over the y-axis c. a rotation 90 clockwise d. a rotation 90 counterclockwise 2. A triangle has vertices at F ( 7, 3), G (2, 6), and H (3, 5). What are the coordinates of each vertex if the triangle is reflected over the x axis? a. F ( 7, 3), G (2, 6), H (3, 5) b. F (7, 3), G ( 2, 6), H ( 3, 5) c. F (7, 3), G ( 2, 6), H ( 3, 5) d. F ( 7, 3), G ( 2, 6), H ( 3, 5) 3. Describe the transformation done on RTS to form VXW. a. rotation around the origin 180 b. reflection over the x-axis c. reflection over the y-axis d. translation
2 4. What are the coordinates of each vertex if the figure is rotated 90 counterclockwise about the origin? a. A ( 2, 2), B ( 5, 2), C ( 3, 6), D (3, 4) b. A (2, 2), B (5, 2), C (3, 6), D ( 3, 4) c. A ( 2, 2), B ( 5, 2), C ( 3, 6), D (3, 4) d. A (2, 2), B (5, 2), C (3, 6), D ( 3, 4) 5. Describe the transformation done on FKW to form RNG. a. rotation about the origin 90 counterclockwise b. rotation about the origin 90 clockwise c. reflection over the x-axis d. translation 5 units right and 9 units up
3 6. A triangle has vertices at A( 3, 1), B( 6, 5), C( 1, 4). Which transformation would produce an image with vertices A (3, 1), B (6, 5), C (1, 4)? a. a reflection over the x-axis b. a reflection over the y-axis c. a rotation 90 clockwise d. a rotation 90 counterclockwise 7. A triangle has vertices at A( 7, 6), B(4, 9), C( 2, 3). What are the coordinates of each vertex if the triangle is translated 4 units right and 6 units down? a. A ( 11, 12), B (0, 15), C ( 6, 3) b. A ( 11, 0), B (0, 3), C ( 6, 9) c. A ( 3, 12), B (8, 15), C (2, 3) d. A ( 3, 0), B (8, 3), C (2, 9) 8. What are the coordinates of each vertex if the figure is rotated 180 clockwise about the origin? a. A ( 2, 2), B ( 5, 2), C ( 3, 6), D (3, 4) b. A (2, 2), B ( 2, 5), C ( 6, 3), D ( 4, 3) c. A ( 2, 2), B (2, 5), C (6, 3), D (4, 3) d. A (2, 2), B ( 2, 5), C ( 6, 3), D ( 4, 3)
4 9. In this figure, XPL was formed by what transformation on DWT? a. rotation about the origin 180 b. rotation about the origin 90 clockwise c. reflection over the x-axis d. rotation about the origin 90 counterclockwise 10. What are the coordinates of each vertex if the figure is reflected over the y-axis? a. A (6, 1), B ( 5, 4), C ( 4, 5), D ( 3, 3) b. A ( 1, 6), B ( 4, 5), C ( 5, 4), D ( 3, 3) c. A ( 1, 6), B ( 5, 4), C ( 4, 5), D ( 3, 3) d. A ( 6, 1), B ( 5, 4), C ( 4, 5), D (3, 3)
5 11. Which transformation would produce an image with vertices A ( 2, 2), B (9, 6), C (9, 2)? a. a reflection over the x-axis b. a reflection over the y-axis c. a rotation 90 clockwise d. a rotation 90 counterclockwise 12. What transformation was perfomed on TNZ to form CRM? a. reflection over the x-axis b. reflection over the y-axis c. rotation about the origin 90 counterclockwise d. rotation about the origin 180
6 13. What are the coordinates of each vertex if the figure is translated 3 units right and 2 units up? a. A (0, 5), B (4, 8), C (8, 6), D (6, 0) b. A ( 5, 0), B ( 1, 3), C (3, 1), D (1, 5) c. A (1, 0), B (5, 3), C (9, 2), D (7, 5) d. A (1, 4), B (5, 7), C (9, 5), D (7, 1) 14. Determine which rotations will map this figure to itself. [G.CO.3] i. 45 ii. 60 iii. 120 iv. 180 a. ii only c. ii, iii, and iv b. ii and iii d. iii and iv
7 15. Determine the angle of rotation for A to map onto A. [G.CO.3] a. 45 c. 90 b. 135 d How many lines of symmetry does this figure have? [G.CO.3] a. 4 c. 8 b. 16 d. 2
8 ID: A Geometric Transformations Multiple Choice Test Bank Answer Section 1. ANS: C PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO.5 2. ANS: A PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO.5 3. ANS: C PTS: 1 REF: 13.5 NAT: G.CO.6 G.CO.7 G.CO.8 G.CO.12 STA: G.CO.6 G.CO.7 G.CO.8 G.CO.12 TOP: Standardized Test KEY: Angle-Side-Angle Congruence Theorem included side 4. ANS: C PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO.5 5. ANS: A PTS: 1 REF: 13.2 NAT: G.CO.6 G.CO.7 G.CO.8 STA: G.CO.6 G.CO.7 G.CO.8 TOP: Standardized Test KEY: congruent angles corresponding sides corresponding angles 6. ANS: B PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO.5 7. ANS: D PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO.5 8. ANS: B PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO.5 9. ANS: C PTS: 1 REF: 13.2 NAT: G.CO.6 G.CO.7 G.CO.8 STA: G.CO.6 G.CO.7 G.CO.8 TOP: Standardized Test KEY: congruent angles corresponding sides corresponding angles 10. ANS: B PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO ANS: D PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO ANS: D PTS: 1 REF: 13.2 NAT: G.CO.6 G.CO.7 G.CO.8 STA: G.CO.6 G.CO.7 G.CO.8 TOP: Standardized Test KEY: congruent angles corresponding sides corresponding angles 13. ANS: D PTS: 1 REF: 13.1 NAT: G.CO.2 G.CO.4 G.CO ANS: B G.CO.3 PTS: 1
9 ID: A 15. ANS: B G.CO.3 PTS: ANS: C G.CO.3 PTS: 1
Transformations Worksheet. How many units and in which direction were the x-coordinates of parallelogram ABCD moved? C. D.
Name: ate: 1. Parallelogram ABC was translated to parallelogram A B C. 2. A shape is shown below. Which shows this shape transformed by a flip? A. B. How many units and in which direction were the x-coordinates
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
4.3 Congruent Triangles Quiz
Name: Class: Date: ID: A 4.3 Congruent Triangles Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given: ABC MNO Identify all pairs of congruent corresponding
Chapter 4: Congruent Triangles
Name: Chapter 4: Congruent Triangles Guided Notes Geometry Fall Semester 4.1 Apply Triangle Sum Properties CH. 4 Guided Notes, page 2 Term Definition Example triangle polygon sides vertices Classifying
Chapter 5.1 and 5.2 Triangles
Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each
Geometry Chapter 2 Study Guide
Geometry Chapter 2 Study Guide Short Answer ( 2 Points Each) 1. (1 point) Name the Property of Equality that justifies the statement: If g = h, then. 2. (1 point) Name the Property of Congruence that justifies
What's the Spin? - Discover Properties of Geometric Rotations
What's the Spin? - Discover Properties of Geometric Rotations Geometry Major Topics: Rotations and their relation to reflections NCTM Principles and Standards: Content Standards Geometry Apply transformations
Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.
Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric
Comprehensive Benchmark Assessment Series
Test ID #1910631 Comprehensive Benchmark Assessment Series Instructions: It is time to begin. The scores of this test will help teachers plan lessons. Carefully, read each item in the test booklet. Select
2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
Geometry Module 4 Unit 2 Practice Exam
Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning
Logo Symmetry Learning Task. Unit 5
Logo Symmetry Learning Task Unit 5 Course Mathematics I: Algebra, Geometry, Statistics Overview The Logo Symmetry Learning Task explores graph symmetry and odd and even functions. Students are asked to
Transformations: Rotations
Math Objectives Students will identify a rotation as an isometry, also called a congruence transformation. Students will identify which properties (side length, angle measure, perimeter, area, and orientation)
Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: _ ate: _ I: SSS Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Given the lengths marked on the figure and that bisects E, use SSS to explain
Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester
Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon
Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations
Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
Final Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
Basic Understandings
Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying
Set 4: Special Congruent Triangles Instruction
Instruction Goal: To provide opportunities for students to develop concepts and skills related to proving right, isosceles, and equilateral triangles congruent using real-world problems Common Core Standards
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Algebra 2 Chapter 5 Practice Test (Review)
Name: Class: Date: Algebra 2 Chapter 5 Practice Test (Review) Multiple Choice Identify the choice that best completes the statement or answers the question. Determine whether the function is linear or
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Dear Accelerated Pre-Calculus Student:
Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
Lesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A Q3 Geometry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Graph the image of each figure under a translation by the given
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
This activity shows how to use Word to draw symmetrical shapes.
This activity shows how to use Word to draw symmetrical shapes. Open a new Word document. Sometimes drawing is easier if you use gridlines. To show the gridlines left click View then the small boxes next
1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
Geometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
Incenter and Circumcenter Quiz
Name: lass: ate: I: Incenter and ircumcenter Quiz Multiple hoice Identify the choice that best completes the statement or answers the question.. The diagram below shows the construction of the center of
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology
North Carolina Math 2
Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.
Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold
Chapter 18 Symmetry Symmetry is of interest in many areas, for example, art, design in general, and even the study of molecules. This chapter begins with a look at two types of symmetry of two-dimensional
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
AP Physics - Vector Algrebra Tutorial
AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
Line Segments, Rays, and Lines
HOME LINK Line Segments, Rays, and Lines Family Note Help your child match each name below with the correct drawing of a line, ray, or line segment. Then observe as your child uses a straightedge to draw
GEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
PHYSICS 151 Notes for Online Lecture #6
PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Triangle Similarity: AA, SSS, SAS Quiz
Name: lass: ate: I: Triangle Similarity:, SSS, SS Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Explain why the triangles are similar and write a
Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University
Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Overview The GeoGebra documents allow exploration of four geometric transformations taught
Graphing Quadratic Functions
Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the
with functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.
GEOM 1B Geometry I, Second Semester #PR-109, BK-1030 (v.3.0) To the Student: After your registration is complete and your proctor has been approved, you may take the Credit by Examination for GEOM 1B.
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
7 th Grade Study guide IV Partial Remember to practice the constructions that are not part of this guide.
7 th Grade Study guide IV Partial Remember to practice the constructions that are not part of this guide. 1. Which figure shows one point? a. S R c. D C b. Q d. F G 2. Which name describes the line? G
DRAFT. New York State Testing Program Grade 8 Common Core Mathematics Test. Released Questions with Annotations
DRAFT New York State Testing Program Grade 8 Common Core Mathematics Test Released Questions with Annotations August 2014 Developed and published under contract with the New York State Education Department
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
High School Geometry Test Sampler Math Common Core Sampler Test
High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
GEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Thursday, January 28, 2016 9:15 a.m. to 12:15 p.m., only Student Name: School Name:
Geo, Chap 4 Practice Test, EV Ver 1
Class: Date: Geo, Chap 4 Practice Test, EV Ver 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (4-3) In each pair of triangles, parts are congruent as
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
CAMI Education linked to CAPS: Mathematics
- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
Geometry 8-1 Angles of Polygons
. Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.
56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test
Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan
One advantage of this algebraic approach is that we can write down
. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out
Testing for Congruent Triangles Examples
Testing for Congruent Triangles Examples 1. Why is congruency important? In 1913, Henry Ford began producing automobiles using an assembly line. When products are mass-produced, each piece must be interchangeable,
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
3D Distance from a Point to a Triangle
3D Distance from a Point to a Triangle Mark W. Jones Technical Report CSR-5-95 Department of Computer Science, University of Wales Swansea February 1995 Abstract In this technical report, two different
Objectives After completing this section, you should be able to:
Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Mathematics Test Book 3
Mathematics Test Book 3 Grade 8 May 5 7, 2010 Name 21658 Developed and published by CTB/McGraw-Hill LLC, a subsidiary of The McGraw-Hill Companies, Inc., 20 Ryan Ranch Road, Monterey, California 93940-5703.
abscissa The horizontal or x-coordinate of a two-dimensional coordinate system.
NYS Mathematics Glossary* Geometry (*This glossary has been amended from the full SED ommencement Level Glossary of Mathematical Terms (available at http://www.emsc.nysed.gov/ciai/mst/math/glossary/home.html)
Geometry EOC Practice Test #3
Class: Date: Geometry EOC Practice Test #3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which regular polyhedron has 12 petagonal faces? a. dodecahedron
Activities Grades K 2 THE FOUR-SQUARE QUILT. Put triangles together to make patterns.
Activities Grades K 2 www.exploratorium.edu/geometryplayground/activities THE FOUR-SQUARE QUILT Put triangles together to make patterns. [45 minutes] Materials: Four-Square Quilt Template (attached) Triangle
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will
Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles
Largest Fixed-Aspect, Axis-Aligned Rectangle
Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
Pennsylvania System of School Assessment
Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read
Convert between units of area and determine the scale factor of two similar figures.
CHAPTER 5 Units of Area c GOAL Convert between units of area and determine the scale factor of two. You will need a ruler centimetre grid paper a protractor a calculator Learn about the Math The area of
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
ANALYTIC GEOMETRY. Study Guide. Georgia End-Of-Course Tests
ANALYTIC GEOMETRY Study Guide Georgia End-Of-Course Tests TABLE OF CONTENTS INTRODUCTION...5 HOW TO USE THE STUDY GUIDE...6 OVERVIEW OF THE EOCT...8 PREPARING FOR THE EOCT...9 Study Skills...9 Time Management...10
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Chapter 9. Editing Features. Learning Objectives
Chapter 9 Editing Features Learning Objectives After completing this chapter, you will be able to: Edit features. Edit sketches of the sketch based features. Edit the sketch plane of the sketch based features.
HIGH SCHOOL GEOMETRY: COMPANY LOGO
HIGH SCHOOL GEOMETRY: COMPANY LOGO UNIT OVERVIEW This 3-4 week unit uses an investigation of rigid motions and geometric theorems to teach students how to verify congruence of plane figures and use the
