Objectives After completing this section, you should be able to:

Size: px
Start display at page:

Download "Objectives After completing this section, you should be able to:"

Transcription

1 Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding of the relationship between arc length and the subtended angle. Find the angular velocity and linear speed of objects in rotational motion. Trigonometry The word trigonometry derives from the Greek: "trigono" for triangle (three angles), and "metron" for measure. Trigonometry is the branch of mathematics that deals with the relations of sides and angles of triangles, and with the relations among special functions associated with any angle. Trigonometry was developed by ancient cultures as a tool to help them map the apparent motion of stars and planets through the sky, and to help predict celestial phenomena such as the phases of the moon, eclipses, and equinoxes. This spherical trigonometry the study of spherical triangles on the surface of the so-called "celestial sphere" (pictured at right) was the first type of trigonometry to be discovered. Because of the curvature involved, spherical trigonometry is much more complex than planar trigonometry (the study of angles and angular relationships in planar figures), but it preceded the latter due to its astronomical application. The Greek mathematician Hipparchus of Rhodes ( BC) is considered the founder of trigonometry because he produced the first tables of geometric "chords" to be referenced in recorded history. In geometry, a chord is the straight segment that joins any two points in a circumference and, more generically, on any curve. continued Page 1 of 12

2 continued The figure below shows a chord as the segment between points A and B on the circumference of a circle. The curved portions of the circumference with A and B as starting and ending points are called arcs of the circumference. The space or opening between the radii that join the center of the circle with points A and B is called an angle. Note: This image represents an animation that can only be seen in the course online. As shown in the animation in the course online, the given points A and B on the circumference and the center of the circle define two angles, one much larger than the other but both sharing the same chord. The first chord tables produced by Hipparchus were for astronomical use and consisted of twelve books which, unfortunately, were lost. Only references to his work are found in documents by other mathematicians and astronomers. He was the first geometer to introduce the division of the circle into 360 equal angle sectors. Several books of chords in spherical and planar trigonometry were written by other astronomers and mathematicians in the following centuries. Ptolomy ( AD) built very complete tables of chords at intervals of 1/2 of a degree. Using Hipparchus' technique of dividing the circle into 360 equal sectors, and using the chords of the circle to construct the 360 sides of the inscribed regular polygon, he derived an approximation for the value of the number pi: Ptolomy recorded his ideas on geocentric planetary motion and trigonometric methods in his most important work titled Almagest, a treatise of thirteen books that dominated scientific knowledge for about fifteen centuries. Angles The geometric definition of an angle involves the use of rays, so we start by defining a ray: Rays are sometimes referred to as half lines. A ray is a straight line extending from a point P. continued Page 2 of 12

3 continued A geometric angle is the opening or space between two rays that share the same starting point, P. This point P is called the vertex of the angle, and the rays are the sides of the angle. A rotation angle is the opening or space defined when a ray rotates around a starting point P from an initial position to a final position. The position of the ray before rotation is the initial side of the angle, and the final position of the ray is its terminal side. Angles that are defined with the initial side coincident with the positive x-axis on the x-y coordinate plane and the starting point P at the origin of the coordinate system are said to be in standard position. Note: This image represents an animation that can only be seen in the course online. Positive and Negative Angles Angles that are generated by rotating a ray counter-clockwise are positive angles. Conversely, angles obtained by rotating the ray clockwise are negative angles, as shown in the figures below. The same convention applies when rotating a segment of a line around a fixed end from an initial position to a final (terminal) position. A complete rotation of such a segment, which is obtained when the terminal position coincides with the initial position of the segment, describes a full circle. Page 3 of 12

4 Angle Measurement Angles are traditionally measured in degrees, following the division of a circle into 360 equal sectors as done by Hipparchus. Thus, a full rotation describes an angle of 360 degrees (expressed as: 360 o ). When the two rays that define an angle are separated by exactly 90 degrees we say that they determine a right angle. By using this division into 360 equal sectors, we can find the geometric representation of various given angles. We can also do the reverse procedure: find the angle measure in degrees from a geometric representation of an angle. This is shown in the following examples. Example A: Draw the standard angle of each indicated measure using the 15-degree grid shown. A) 60 B) 45 C) 180 D) 90 Since each division in the grid corresponds to 15 degrees, we start on the horizontal axis and rotate the terminal ray as many divisions as needed either counter-clockwise or clockwise according to the sign of the angle. A) B) C) D) Page 4 of 12

5 Example B: Find the degree measure of each angle depicted below. A) B) A) We count the number of 15-degree divisions that this positive (counter-clockwise) angle encompasses: 14 sectors of 15 degrees = 210 degrees B) We count the number of 15-degree divisions that this negative (clockwise) angle encompasses: 8 sectors of 15 degrees = 120 degrees Coterminal Angles Some angles, like the ones generated by the rotating rods shown in the figure below may have the same initial and terminal sides, although they were originated by different patterns. Such angles are called coterminal angles. Clearly, by adding a multiple of a full rotation, coterminal angles are obtained. For example, the 0 angle and the 360 angle are coterminal. Note: This image represents an animation that can only be seen in the course online. Page 5 of 12

6 Example C: Are the following standard angles coterminal angles? A) 105 degrees and 495 degrees. B) 150 degrees and 210 degrees A) No, these two angles are not coterminal angles since they do not share the same terminal position: B) Yes, these are coterminal angles since they share the same terminal position. Page 6 of 12

7 Special Angles There are some special angles which we will use extensively. These are the angles that mark the division of each quadrant of the x-y plane into two and into three equal sectors. They are shown in the following figure. Note: This image represents an animation that can only be seen in the course online. Naming Angles When assigning names to generic angles, Greek letters are commonly used to recognize the work of ancient Greek mathematicians and geometers. Some of the Greek letters most commonly used to define angles are: Radians There is another common unit for measuring angles (different from the degree) called the radian. It is particularly convenient to use in advanced mathematics and in science because it greatly simplifies the derivation of trigonometric expressions. "Radian" is generally defined as the angle subtended by (opposite to) the arc of length equal to the circumference's radius (see the image below). A radian is equivalent to approximately The arc described by a segment (or "rod") rotating one full revolution (360 ) has a length of 2π ; therefore, the angle subtended corresponds to 2π radians. Similarly, a rod rotating half a revolution (180 ) defines an angle of π radians. continued Page 7 of 12

8 continued The table below shows the angle in both radians and degrees for fractions of a revolution that correspond to the special angles studied above. Note: This table represents an interactive practice exercise in the course online. The radian has become such a standard unit of angle measure that the word "radian" is not included after the numerical value when angles are expressed in this unit. Conversely, the "degree" unit must be specified after the numerical value for an angle to distinguish it from the radian, by using the degree symbol. For example: Using proportions and the equivalence between 180 and π radians, we can find very simple conversion formulas from radians to degrees and from degrees to radians, for any angle : continued Page 8 of 12

9 continued The mathematical procedure is summarized in the following image: Example D: Find the degree/radian conversion for the following angles: A) 105 to radians. B) 2 π radians to degrees. 5 π π 7π A) Multiply by 105 = radians B) Multiply by 180 π 2 π 180 o = π Note that the convention for positive and negative angles in standard position discussed earlier applies to radian measures as with degrees. The figure on the right shows the rectangular coordinate system with the quadrant boundaries labeled with 0, π /2, π and 3 π /2 radians. The positive angle in standard position subtended between the points 0 and P on the circumference and the origin of the coordinate system corresponds to π /6, equivalent to a + 30 angle. The negative angle pictured in orange subtended between the points 0 and R on the circumference and the origin of the coordinate system is π /6 (equivalent to an angle of 30 ). Page 9 of 12

10 Arc Length Considering a segment (or rod) that rotates around one of its ends to generate a rotation angle, we can find a mathematical expression that relates the subtended angle given in units of radians with the length of the arc described by the free end of the segment. Note: This image represents an animation that can only be seen in the course online. We can use simple proportionality to relate the length of the full circumference of radius r described by a rod in a full revolution about one of its ends and the subtended angle, 2 r, with the length of the arc (S) generated when the same rod rotates an angle : π The length of the arc S that subtends a central angle of radians in a circle of radius r is: S = θr That is, the length of the arc is the product of the radian measure of the angle times the radius of the circle. Example E: Find the length of the arc subtended by an angle of measure 108 on a circumference of radius 15 in. π 3π First convert the angle to radians: 108 = Then, multiply this radian measure times the radius of the circumference: 3π 15 in = 9π in in 5 Page 10 of 12

11 Angular Velocity In the same way that we define linear velocity for an object that covers a certain linear distance in a given time as: distance / time we can define angular velocity of an object describing circular motion as: central angle subtended / time An animation in the course online (an image of which is shown below) can help us understand angular velocity with the example of a fish swimming around a bowl. Note: This image represents an animation that can only be seen in the course online. The animation shows that we set up a coordinate system with the origin at the center of the circumference described by the fish's motion. We measure then the time it takes the fish to complete a full revolution around the origin of the coordinate system. The angular velocity is defined as: central angle subtended / time = 360 /8 sec = 45 / sec Angular velocities can be given in different units, depending on the units used to measure the angle and the time. Some common units are: degrees per hour, radians per second, and revolutions per minute. Page 11 of 12

12 Example F: Find the angular velocity in units of radians per second of a bicycle wheel that rotates eighty full revolutions in one minute. First convert the angle and the time to the requested units. The angle that the wheel rotates in radians is 80 2π = 160π. Then, express the time of the rotation in seconds 1 minute = 60 seconds. Now divide to obtain the angular velocity: 160 π 8 π = radians per 60 3 second. Apart from the angular velocity of a fish's rotational motion around a bowl, we can study the actual linear velocity (speed) of the fish in the water. The linear velocity associated with the rotational motion of the fish in our example on the previous page can be calculated by considering the length of the arc of circumference covered by the fish during rotation divided by the time. In this particular case, if we consider that the fish is swimming around a circle of radius r, then: We can conclude that when the angular velocity is known (with the angle measured in radians), the linear velocity is easily found by the following formula: linear velocity = angular velocity radius Example G: A trainer is trotting his horse around him. The horse trots in a circle whose radius is given by the length of the rope. The horse performs 3 full rotations in 20 seconds. If the length of the rope is 14 feet, find the linear speed (in feet per second) at which the horse is trotting. First, convert the angle described to radians 3 full rotations in radians is: 3 2π = 6π. Find the angular velocity by writing the quotient between the angle in radians and the time in seconds: 6 π 3 π = radians per second Now calculate the linear velocity by multiplying the angular speed times the radius of the rotational movement: 3 π π = feet per second End of Lesson Page 12 of 12

Section 6.1 Angle Measure

Section 6.1 Angle Measure Section 6.1 Angle Measure An angle AOB consists of two rays R 1 and R 2 with a common vertex O (see the Figures below. We often interpret an angle as a rotation of the ray R 1 onto R 2. In this case, R

More information

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes 210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Unit 1 - Radian and Degree Measure Classwork

Unit 1 - Radian and Degree Measure Classwork Unit 1 - Radian and Degree Measure Classwork Definitions to know: Trigonometry triangle measurement Initial side, terminal side - starting and ending Position of the ray Standard position origin if the

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

Number Sense and Operations

Number Sense and Operations Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Objective: To distinguish between degree and radian measure, and to solve problems using both.

Objective: To distinguish between degree and radian measure, and to solve problems using both. CHAPTER 3 LESSON 1 Teacher s Guide Radian Measure AW 3.2 MP 4.1 Objective: To distinguish between degree and radian measure, and to solve problems using both. Prerequisites Define the following concepts.

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same. Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013 Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

More information

Chapter 8 Geometry We will discuss following concepts in this chapter.

Chapter 8 Geometry We will discuss following concepts in this chapter. Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

More information

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179 Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Cabri Geometry Application User Guide

Cabri Geometry Application User Guide Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting

More information

alternate interior angles

alternate interior angles alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

More information

Chapter 5: Trigonometric Functions of Angles

Chapter 5: Trigonometric Functions of Angles Chapter 5: Trigonometric Functions of Angles In the previous chapters we have explored a variety of functions which could be combined to form a variety of shapes. In this discussion, one common shape has

More information

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

NEW MEXICO Grade 6 MATHEMATICS STANDARDS PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Earth In Space Chapter 3

Earth In Space Chapter 3 Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

More information

Arc Length and Areas of Sectors

Arc Length and Areas of Sectors Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.

More information

David Bressoud Macalester College, St. Paul, MN. NCTM Annual Mee,ng Washington, DC April 23, 2009

David Bressoud Macalester College, St. Paul, MN. NCTM Annual Mee,ng Washington, DC April 23, 2009 David Bressoud Macalester College, St. Paul, MN These slides are available at www.macalester.edu/~bressoud/talks NCTM Annual Mee,ng Washington, DC April 23, 2009 The task of the educator is to make the

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.) Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Additional Topics in Math

Additional Topics in Math Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

Microsoft Mathematics for Educators:

Microsoft Mathematics for Educators: Microsoft Mathematics for Educators: Familiarize yourself with the interface When you first open Microsoft Mathematics, you ll see the following elements displayed: 1. The Calculator Pad which includes

More information

An Application of Analytic Geometry to Designing Machine Parts--and Dresses

An Application of Analytic Geometry to Designing Machine Parts--and Dresses Electronic Proceedings of Undergraduate Mathematics Day, Vol. 3 (008), No. 5 An Application of Analytic Geometry to Designing Machine Parts--and Dresses Karl Hess Sinclair Community College Dayton, OH

More information

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Lesson 1: Introducing Circles

Lesson 1: Introducing Circles IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

More information

Concepts in Calculus III

Concepts in Calculus III Concepts in Calculus III Beta Version UNIVERSITY PRESS OF FLORIDA Florida A&M University, Tallahassee Florida Atlantic University, Boca Raton Florida Gulf Coast University, Ft. Myers Florida International

More information

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved)

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved) 1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved) Hipparchus: The birth of trigonometry occurred in the chord tables of Hipparchus (c 190-120 BCE) who was born shortly

More information

Geometry. Higher Mathematics Courses 69. Geometry

Geometry. Higher Mathematics Courses 69. Geometry The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

Coordinate Systems. Orbits and Rotation

Coordinate Systems. Orbits and Rotation Coordinate Systems Orbits and Rotation Earth orbit. The earth s orbit around the sun is nearly circular but not quite. It s actually an ellipse whose average distance from the sun is one AU (150 million

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

Volumes of Revolution

Volumes of Revolution Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Gear Trains. Introduction:

Gear Trains. Introduction: Gear Trains Introduction: Sometimes, two or more gears are made to mesh with each other to transmit power from one shaft to another. Such a combination is called gear train or train of toothed wheels.

More information

Douglas Adams The Hitchhikers Guide to the Galaxy

Douglas Adams The Hitchhikers Guide to the Galaxy There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

16 Circles and Cylinders

16 Circles and Cylinders 16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two

More information

Surface Area and Volume Cylinders, Cones, and Spheres

Surface Area and Volume Cylinders, Cones, and Spheres Surface Area and Volume Cylinders, Cones, and Spheres Michael Fauteux Rosamaria Zapata CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable

More information

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Unit 6 Trigonometric Identities, Equations, and Applications

Unit 6 Trigonometric Identities, Equations, and Applications Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean

More information

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping

The Earth Really is Flat! The Globe and Coordinate Systems. Long History of Mapping. The Earth is Flat. Long History of Mapping The Earth Really is Flat! The Globe and Coordinate Systems Intro to Mapping & GIS The Earth is Flat Day to day, we live life in a flat world sun rises in east, sets in west sky is above, ground is below

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Unit 1: Integers and Fractions

Unit 1: Integers and Fractions Unit 1: Integers and Fractions No Calculators!!! Order Pages (All in CC7 Vol. 1) 3-1 Integers & Absolute Value 191-194, 203-206, 195-198, 207-210 3-2 Add Integers 3-3 Subtract Integers 215-222 3-4 Multiply

More information

Trigonometric Functions and Equations

Trigonometric Functions and Equations Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES

Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES Exercise 5.0 LUNAR MOTION, ELONGATION, AND PHASES I. Introduction The Moon's revolution in orbit around the center of gravity (barycenter) of the Earth- Moon System results in an apparent motion of the

More information

DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2

DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 DOE-HDBK-1014/2-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release; distribution

More information

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices. Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Unit 3: Circles and Volume

Unit 3: Circles and Volume Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency. CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

More information

Basic Understandings

Basic Understandings Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Area and Arc Length in Polar Coordinates

Area and Arc Length in Polar Coordinates Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar

More information

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

More information

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

More information

Circumference of a Circle

Circumference of a Circle Circumference of a Circle A circle is a shape with all points the same distance from the center. It is named by the center. The circle to the left is called circle A since the center is at point A. If

More information

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate) New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

The Australian Curriculum Mathematics

The Australian Curriculum Mathematics The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

More information

CAMI Education linked to CAPS: Mathematics

CAMI Education linked to CAPS: Mathematics - 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

More information

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

More information

TRIGONOMETRY FOR ANIMATION

TRIGONOMETRY FOR ANIMATION TRIGONOMETRY FOR ANIMATION What is Trigonometry? Trigonometry is basically the study of triangles and the relationship of their sides and angles. For example, if you take any triangle and make one of the

More information

Optical Illusions Essay Angela Wall EMAT 6690

Optical Illusions Essay Angela Wall EMAT 6690 Optical Illusions Essay Angela Wall EMAT 6690! Optical illusions are images that are visually perceived differently than how they actually appear in reality. These images can be very entertaining, but

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

MILS and MOA A Guide to understanding what they are and How to derive the Range Estimation Equations

MILS and MOA A Guide to understanding what they are and How to derive the Range Estimation Equations MILS and MOA A Guide to understanding what they are and How to derive the Range Estimation Equations By Robert J. Simeone 1 The equations for determining the range to a target using mils, and with some

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

2.2. Instantaneous Velocity

2.2. Instantaneous Velocity 2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

More information