Readings in Image Processing
|
|
|
- Lee Thomas
- 9 years ago
- Views:
Transcription
1 OVERVIEW OF IMAGE PROCESSING K.M.M. Rao*,Deputy Director,NRSA,Hyderabad Introduction Image Processing is a technique to enhance raw images received from cameras/sensors placed on satellites, space probes and aircrafts or pictures taken in normal day-today life for various applications. Methods of Image Processing There are two methods available in Image Processing. Analog Image Processing Various techniques have been developed in Image Processing during the last four to five decades. Most of the techniques are developed for enhancing images obtained from unmanned spacecrafts, space probes and military reconnaissance flights. Image Processing systems are becoming popular due to easy availability of powerful personnel computers, large size memory devices, graphics softwares etc. Image Processing is used in various applications such as: Remote Sensing Medical Imaging Non-destructive Evaluation Forensic Studies Textiles Material Science. Military Film industry Document processing Graphic arts Printing Industry The common steps in image processing are image scanning, storing, enhancing and interpretation. The schematic diagram of image scanner-digitizer diagram is shown in figure 1. Analog Image Processing refers to the alteration of image through electrical means. The most common example is the television image. The television signal is a voltage level which varies in amplitude to represent brightness through the image. By electrically varying the signal, the displayed image appearance is altered. The brightness and contrast controls on a TV set serve to adjust the amplitude and reference of the video signal, resulting in the brightening, darkening and alteration of the brightness range of the displayed image. Digital Image Processing In this case, digital computers are used to process the image. The image will be converted to digital form using a scanner digitizer [6] (as shown in Figure 1) and then process it. It is defined as the subjecting numerical representations of objects to a series of operations in order to obtain a desired result. It starts with one image and produces a modified version of the same. It is therefore a process that takes an image into another. The term digital image processing generally refers to processing of a two-dimensional picture by a digital computer [7,11]. In a broader context, it implies digital processing of any two-dimensional data. A digital image is an array of real numbers represented by a finite number of bits. Figure 1 The principle advantage of Digital Image Processing methods is its versatility, repeatability and the preservation of original data precision. * Deputy Director, National Remote Sensing Agency, Hyderabad, India. [email protected] 1
2 The various Image Processing techniques are: Image representation Image preprocessing Image enhancement Image restoration Image analysis Image reconstruction Image data compression Image Representation An image defined in the "real world" is considered to be a function of two real variables, for example, f(x,y) with f as the amplitude (e.g. brightness) of the image at the real coordinate position (x,y). The effect of digitization is shown in Figure 2. Image Preprocessing Scaling The theme of the technique of magnification is to have a closer view by magnifying or zooming the interested part in the imagery. By reduction, we can bring the unmanageable size of data to a manageable limit. For resampling an image Nearest Neighborhood, Linear, or cubic convolution techniques [5] are used. I. Magnification This is usually done to improve the scale of display for visual interpretation or sometimes to match the scale of one image to another. To magnify an image by a factor of 2, each pixel of the original image is replaced by a block of 2x2 pixels, all with the same brightness value as the original pixel. Figure 2 The 2D continuous image f(x,y) is divided into N rows and M columns. The intersection of a row and a column is called as pixel. The value assigned to the integer coordinates [m,n] with {m=0,1, 2,...,M-1} and {n=0,1,2,...,n-1} is f[m,n]. In fact, in most cases f(x,y)--which we might consider to be the physical signal that impinges on the face of a sensor. Typically an image file such as BMP, JPEG, TIFF etc., has some header and picture information. A header usually includes details like format identifier (typically first information), resolution, number of bits/pixel, compression type, etc. II. Reduction Figure 3 Image Magnification To reduce a digital image to the original data, every m th row and m th column of the original imagery is selected and displayed. Another way of accomplishing the same is by taking the average in 'm x m' block and displaying this average after proper rounding of the resultant value. 2
3 Mosaic Mosaic is a process of combining two or more images to form a single large image without radiometric imbalance. Mosaic is required to get the synoptic view of the entire area, otherwise capture as small images. Figure 4 Image Reduction Rotation Rotation is used in image mosaic, image registration etc. One of the techniques of rotation is 3-pass shear rotation, where rotation matrix can be decomposed into three separable matrices. 3-pass shear rotation R = cosα sinα = sinα cosα 1 tanα/ tanα/2 0 1 sinα Figure 6 Image Mosaicking Image Enhancement Techniques Figure 5 3-Pass Shear Rotation Advantages 1. No scaling no associated resampling degradations. 2. Shear can be implemented very efficiently. Some times images obtained from satellites and conventional and digital cameras lack in contrast and brightness because of the limitations of imaging sub systems and illumination conditions while capturing image. Images may have different types of noise. In image enhancement, the goal is to accentuate certain image features for subsequent analysis or for image display[1,2]. Examples include contrast and edge enhancement, pseudo-coloring, noise filtering, sharpening, and magnifying. Image enhancement is useful in feature extraction, image analysis and an image display. The enhancement process itself does not increase the inherent information content in the data. It simply emphasizes certain specified image characteristics. Enhancement algorithms are generally interactive and applicationdependent. 3
4 Some of the enhancement techniques are: Contrast Stretching Noise Filtering Histogram modification Contrast Stretching: Some images (eg. over water bodies, deserts, dense forests, snow, clouds and under hazy conditions over heterogeneous regions) are homogeneous i.e., they do not have much change in their levels. In terms of histogram representation, they are characterized as the occurrence of very narrow peaks. The homogeneity can also be due to the incorrect illumination of the scene. Figure 8 Noise Removal Ultimately the images hence obtained are not easily interpretable due to poor human perceptibility. This is because there exists only a narrow range of gray-levels in the image having provision for wider range of gray-levels. The contrast stretching methods are designed exclusively for frequently encountered situations. Different stretching techniques have been developed to stretch the narrow range to the whole of the available dynamic range. Noise Filtering Figure 7 contrast stretching Figure 9 Histogram Modification Edge Enhancemen Histogram has a lot of importance in image enhancement. It reflects the characteristics of image. By modifying the histogram, image characteristics can be modified. One such example is Histogram Equalization. Histogram equalization is a nonlinear stretch that redistributes pixel values so that there is approximately the same number of pixels with each value within a range. The result approximates a flat histogram. Therefore, contrast is increased at the peaks and lessened at the tails. Noise filtering is used to filter the unnecessary information from an image. It is also used to remove various types of noises from the images. Mostly this feature is interactive. Various filters like low pass, high pass, mean, median etc., are available. Figure 10 Histogram equalized output 4
5 Image Analysis Image analysis is concerned with making quantitative measurements from an image to produce a description of it [8]. In the simplest form, this task could be reading a label on a grocery item, sorting different parts on an assembly line, or measuring the size and orientation of blood cells in a medical image. More advanced image analysis systems measure quantitative information and use it to make a sophisticated decision, such as controlling the arm of a robot to move an object after identifying it or navigating an aircraft with the aid of images acquired along its trajectory. Image analysis techniques require extraction of certain features that aid in the identification of the object. Segmentation techniques are used to isolate the desired object from the scene so that measurements can be made on it subsequently. Quantitative measurements of object features allow classification and description of the image. Image Segmentation Image segmentation is the process that subdivides an image into its constituent parts or objects. The level to which this subdivision is carried out depends on the problem being solved, i.e., the segmentation should stop when the objects of interest in an application have been isolated e.g., in autonomous air-toground target acquisition, suppose our interest lies in identifying vehicles on a road, the first step is to segment the road from the image and then to segment the contents of the road down to potential vehicles. Image thresholding techniques are used for image segmentation. Classification Classification is the labeling of a pixel or a group of pixels based on its grey value[9,10]. Classification is one of the most often used methods of information extraction. In Classification, usually multiple features are used for a set of pixels i.e., many images of a particular object are needed. In Remote Sensing area, this procedure assumes that the imagery of a specific geographic area is collected in multiple regions of the electromagnetic spectrum and that the images are in good registration. Most of the information extraction techniques rely on analysis of the spectral reflectance properties of such imagery and employ special algorithms designed to perform various types of 'spectral analysis'. The process of multispectral classification can be performed using either of the two methods: Supervised or Unsupervised. In Supervised classification, the identity and location of some of the land cover types such as urban, wetland, forest etc., are known as priori through a combination of field works and toposheets. The analyst attempts to locate specific sites in the remotely sensed data that represents homogeneous examples of these land cover types. These areas are commonly referred as TRAINING SITES because the spectral characteristics of these known areas are used to 'train' the classification algorithm for eventual land cover mapping of reminder of the image. Multivariate statistical parameters are calculated for each training site. Every pixel both within and outside these training sites is then evaluated and assigned to a class of which it has the highest likelihood of being a member. Figure 11. Image Classification In an Unsupervised classification, the identities of land cover types has to be specified as classes within a scene are not generally known as priori because ground truth is lacking or surface features within the scene are not well defined. The computer is required to group pixel data into different spectral classes according to some statistically determined criteria. The comparison in medical area is the labeling of cells based on their shape, size, color and texture, which act as features. This method is also useful for MRI images. 5
6 Image Restoration Image restoration refers to removal or minimization of degradations in an image. This includes de-blurring of images degraded by the limitations of a sensor or its environment, noise filtering, and correction of geometric distortion or non-linearity due to sensors. Image is restored to its original quality by inverting the physical degradation phenomenon such as defocus, linear motion, atmospheric degradation and additive noise. Image Compression Compression is a very essential tool for archiving image data, image data transfer on the network etc. They are various techniques available for lossy and lossless compressions. One of most popular compression techniques, JPEG (Joint Photographic Experts Group) uses Discrete Cosine Transformation (DCT) based compression technique. Currently wavelet based compression techniques are used for higher compression ratios with minimal loss of data. Figure 12 Weiner Image Restoration Image Reconstruction from Projections Image reconstruction from projections [3] is a special class of image restoration problems where a two- (or higher) dimensional object is reconstructed from several one-dimensional projections. Each projection is obtained by projecting a parallel X-ray (or other penetrating radiation) beam through the object. Planar projections are thus obtained by viewing the object from many different angles. Reconstruction algorithms derive an image of a thin axial slice of the object, giving an inside view otherwise unobtainable without performing extensive surgery. Such techniques are important in medical imaging (CT scanners), astronomy, radar imaging, geological exploration, and nondestructive testing of assemblies. Figure 13 MRI Slices Figure 14. Wavelet Image Compression References 1. Digital Image Processing - A Remote Sensing Perspective, Jhon R. Jenson, 3 rd Edition, Prentice Hall, Digital Image Processing - Kenneth R. Castleman, Prentice-Hall, KMM Rao, Medical Image Processing, Proc. of workshop on Medical Image Processing and Applications, 8 th October NRSA, Hyderabad KMM Rao, Image Processing for Medical Applications, Proc. of 14 th world conference on NDT, 8 th 13 th Dec Ramanjaneyulu M, KMM Rao, A Novel technique to Resample High Resolution Remote Sensing Satellite Images, Proc. of IGRASS-02, Colorado. 6. KMM et al., Design and Fabrication of Color Scanner, Indian Journal of Technology, Vol 15, Apr Fundamentals Of Digital Image Processing - Anil K. Jain, Prentice-Hall,
7 8. Remote Sensing Digital Analysis - John A. Richards and Xiuping Jia, enlarged edition, Springer-Verlag, Computer Image Processing And Recognition - Ernest L.Hal, Academic Press, Digital Image Processing - Chellappa, 2 nd Edition, IEEE Computer Society Press, Digital Image Processing - R.C. Gonzalez Woods, Addison Wesley,
Digital Image Processing
Digital Image Processing Muzamil Bhat Abstract: With the large cost involved in launching satellites, probes, sensors to keep an eye on the resources and entities of commercial value necessitates to strengthen
Digital image processing
746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS
ANALYSIS OF THE EFFECTIVENESS IN IMAGE COMPRESSION FOR CLOUD STORAGE FOR VARIOUS IMAGE FORMATS Dasaradha Ramaiah K. 1 and T. Venugopal 2 1 IT Department, BVRIT, Hyderabad, India 2 CSE Department, JNTUH,
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Digital Image Fundamentals. Selim Aksoy Department of Computer Engineering Bilkent University [email protected]
Digital Image Fundamentals Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Imaging process Light reaches surfaces in 3D. Surfaces reflect. Sensor element receives
ECE 468 / CS 519 Digital Image Processing. Introduction
ECE 468 / CS 519 Digital Image Processing Introduction Prof. Sinisa Todorovic [email protected] ECE 468: Digital Image Processing Instructor: Sinisa Todorovic [email protected] Office:
Digital Image Processing: Introduction
Digital : Introduction Slides by Brian Mac Namee [email protected] Materials found at: Slides: http://www.comp.dit.ie/bmacnamee/materials/dip/lectures/1-introduction.ppt Lectures: http://homepages.inf.ed.ac.uk/rbf/books/vernon/
Comparison of different image compression formats. ECE 533 Project Report Paula Aguilera
Comparison of different image compression formats ECE 533 Project Report Paula Aguilera Introduction: Images are very important documents nowadays; to work with them in some applications they need to be
Extraction of Satellite Image using Particle Swarm Optimization
Extraction of Satellite Image using Particle Swarm Optimization Er.Harish Kundra Assistant Professor & Head Rayat Institute of Engineering & IT, Railmajra, Punjab,India. Dr. V.K.Panchal Director, DTRL,DRDO,
Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features
Remote Sensing and Geoinformation Lena Halounová, Editor not only for Scientific Cooperation EARSeL, 2011 Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - [email protected]
DIGITAL IMAGE PROCESSING AND ANALYSIS
DIGITAL IMAGE PROCESSING AND ANALYSIS Human and Computer Vision Applications with CVIPtools SECOND EDITION SCOTT E UMBAUGH Uffi\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM
PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM Rohan Ashok Mandhare 1, Pragati Upadhyay 2,Sudha Gupta 3 ME Student, K.J.SOMIYA College of Engineering, Vidyavihar, Mumbai, Maharashtra,
Redundant Wavelet Transform Based Image Super Resolution
Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics
1. Redistributions of documents, or parts of documents, must retain the SWGIT cover page containing the disclaimer.
Disclaimer: As a condition to the use of this document and the information contained herein, the SWGIT requests notification by e-mail before or contemporaneously to the introduction of this document,
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
Euler Vector: A Combinatorial Signature for Gray-Tone Images
Euler Vector: A Combinatorial Signature for Gray-Tone Images Arijit Bishnu, Bhargab B. Bhattacharya y, Malay K. Kundu, C. A. Murthy fbishnu t, bhargab, malay, [email protected] Indian Statistical Institute,
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,
Resolution Enhancement of Photogrammetric Digital Images
DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA
Raster Data Structures
Raster Data Structures Tessellation of Geographical Space Geographical space can be tessellated into sets of connected discrete units, which completely cover a flat surface. The units can be in any reasonable
ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan
Handwritten Signature Verification ECE 533 Project Report by Ashish Dhawan Aditi R. Ganesan Contents 1. Abstract 3. 2. Introduction 4. 3. Approach 6. 4. Pre-processing 8. 5. Feature Extraction 9. 6. Verification
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories Dr. Farrag Ali FARRAG Assistant Prof. at Civil Engineering Dept. Faculty of Engineering Assiut University Assiut, Egypt.
Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.
Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ., Raleigh, NC One vital step is to choose a transfer lens matched to your
HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER
HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER Gholamreza Anbarjafari icv Group, IMS Lab, Institute of Technology, University of Tartu, Tartu 50411, Estonia [email protected]
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT
dr hab. Paweł Strumiłło ([email protected])
IE PŁ dr hab. Paweł Strumiłło ([email protected]) One picture is worth more than ten thousand words Anonymous Literature: 1. Lecture notes (*.pdf files) www.eletel.p.lodz.pl 2. R.C. Gonzales, R. E. Woods,
Lecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
Introduction to image coding
Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Advanced Image Management using the Mosaic Dataset
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Advanced Image Management using the Mosaic Dataset Vinay Viswambharan, Mike Muller Agenda ArcGIS Image Management
Understanding Raster Data
Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed
Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object
Some elements of photo. interpretation
Some elements of photo Shape Size Pattern Color (tone, hue) Texture Shadows Site Association interpretation Olson, C. E., Jr. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric
A System for Capturing High Resolution Images
A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: [email protected]
ENG4BF3 Medical Image Processing. Image Visualization
ENG4BF3 Medical Image Processing Image Visualization Visualization Methods Visualization of medical images is for the determination of the quantitative information about the properties of anatomic tissues
Introduction. Chapter 1
1 Chapter 1 Introduction Robotics and automation have undergone an outstanding development in the manufacturing industry over the last decades owing to the increasing demand for higher levels of productivity
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras
Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras W3A.5 Douglas Chai and Florian Hock Visual Information Processing Research Group School of Engineering and Mathematics Edith
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;
1. Introduction to image processing
1 1. Introduction to image processing 1.1 What is an image? An image is an array, or a matrix, of square pixels (picture elements) arranged in columns and rows. Figure 1: An image an array or a matrix
A Simple Feature Extraction Technique of a Pattern By Hopfield Network
A Simple Feature Extraction Technique of a Pattern By Hopfield Network A.Nag!, S. Biswas *, D. Sarkar *, P.P. Sarkar *, B. Gupta **! Academy of Technology, Hoogly - 722 *USIC, University of Kalyani, Kalyani
Digital Imaging and Image Editing
Digital Imaging and Image Editing A digital image is a representation of a twodimensional image as a finite set of digital values, called picture elements or pixels. The digital image contains a fixed
Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011)
Lecture 16: A Camera s Image Processing Pipeline Part 1 Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Today (actually all week) Operations that take photons to an image Processing
Low-resolution Image Processing based on FPGA
Abstract Research Journal of Recent Sciences ISSN 2277-2502. Low-resolution Image Processing based on FPGA Mahshid Aghania Kiau, Islamic Azad university of Karaj, IRAN Available online at: www.isca.in,
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
How Landsat Images are Made
How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy
Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon
Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon Shihua Zhao, Department of Geology, University of Calgary, [email protected],
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
Signature Region of Interest using Auto cropping
ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 1 Signature Region of Interest using Auto cropping Bassam Al-Mahadeen 1, Mokhled S. AlTarawneh 2 and Islam H. AlTarawneh 2 1 Math. And Computer Department,
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66
Limitations of Human Vision. What is computer vision? What is computer vision (cont d)?
What is computer vision? Limitations of Human Vision Slide 1 Computer vision (image understanding) is a discipline that studies how to reconstruct, interpret and understand a 3D scene from its 2D images
A BRIEF STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES
Volume 4, No. 4, April 2013 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info A BRIEF STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES Priyanka Kamboj
Introduction to Medical Image Compression Using Wavelet Transform
National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill
Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
Scanners and How to Use Them
Written by Jonathan Sachs Copyright 1996-1999 Digital Light & Color Introduction A scanner is a device that converts images to a digital file you can use with your computer. There are many different types
Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery
Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared
Computer Vision for Quality Control in Latin American Food Industry, A Case Study
Computer Vision for Quality Control in Latin American Food Industry, A Case Study J.M. Aguilera A1, A. Cipriano A1, M. Eraña A2, I. Lillo A1, D. Mery A1, and A. Soto A1 e-mail: [jmaguile,aciprian,dmery,asoto,]@ing.puc.cl
LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK
vii LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF NOTATIONS LIST OF ABBREVIATIONS LIST OF APPENDICES
Introduction. Selim Aksoy. Bilkent University [email protected]
Introduction Selim Aksoy Department of Computer Engineering Bilkent University [email protected] What is computer vision? What does it mean, to see? The plain man's answer (and Aristotle's, too)
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities
1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM Apurva Sinha 1, Mukesh kumar 2, A.K. Jaiswal 3, Rohini Saxena 4 Department of Electronics
RUN-LENGTH ENCODING FOR VOLUMETRIC TEXTURE
RUN-LENGTH ENCODING FOR VOLUMETRIC TEXTURE Dong-Hui Xu, Arati S. Kurani, Jacob D. Furst, Daniela S. Raicu Intelligent Multimedia Processing Laboratory, School of Computer Science, Telecommunications, and
Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES
CHAPTER 16 Image Analysis 16.1 ANALYSIS PROCEDURES Studies for various disciplines require different technical approaches, but there is a generalized pattern for geology, soils, range, wetlands, archeology,
Colorado School of Mines Computer Vision Professor William Hoff
Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
White Paper. "See" what is important
Bear this in mind when selecting a book scanner "See" what is important Books, magazines and historical documents come in hugely different colors, shapes and sizes; for libraries, archives and museums,
The promise of ultrasonic phased arrays and the role of modeling in specifying systems
1 modeling in specifying systems ABSTRACT Guillaume Neau and Deborah Hopkins This article illustrates the advantages of phased-array systems and the value of modeling through several examples taken from
EVIDENCE PHOTOGRAPHY TEST SPECIFICATIONS MODULE 1: CAMERA SYSTEMS & LIGHT THEORY (37)
EVIDENCE PHOTOGRAPHY TEST SPECIFICATIONS The exam will cover evidence photography involving crime scenes, fire scenes, accident scenes, aircraft incident scenes, surveillances and hazardous materials scenes.
Understanding Compression Technologies for HD and Megapixel Surveillance
When the security industry began the transition from using VHS tapes to hard disks for video surveillance storage, the question of how to compress and store video became a top consideration for video surveillance
SCIENTIFIC WORKING GROUP ON IMAGING TECHNOLOGIES (SWGIT)
SCIENTIFIC WORKING GROUP ON IMAGING TECHNOLOGIES (SWGIT) DRAFT RECOMMENDATIONS AND GUIDELINES FOR THE USE OF DIGITAL IMAGE PROCESSING IN THE CRIMINAL JUSTICE SYSTEM (Version 1.1 February 2001) The purpose
How To Use Trackeye
Product information Image Systems AB Main office: Ågatan 40, SE-582 22 Linköping Phone +46 13 200 100, fax +46 13 200 150 [email protected], Introduction TrackEye is the world leading system for motion
Information Contents of High Resolution Satellite Images
Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,
TerraColor White Paper
TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)
International Journal of Advanced Information in Arts, Science & Management Vol.2, No.2, December 2014
Efficient Attendance Management System Using Face Detection and Recognition Arun.A.V, Bhatath.S, Chethan.N, Manmohan.C.M, Hamsaveni M Department of Computer Science and Engineering, Vidya Vardhaka College
Introduction to Imagery and Raster Data in ArcGIS
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
Generation of Cloud-free Imagery Using Landsat-8
Generation of Cloud-free Imagery Using Landsat-8 Byeonghee Kim 1, Youkyung Han 2, Yonghyun Kim 3, Yongil Kim 4 Department of Civil and Environmental Engineering, Seoul National University (SNU), Seoul,
Field Techniques Manual: GIS, GPS and Remote Sensing
Field Techniques Manual: GIS, GPS and Remote Sensing Section A: Introduction Chapter 1: GIS, GPS, Remote Sensing and Fieldwork 1 GIS, GPS, Remote Sensing and Fieldwork The widespread use of computers
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH 2
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH Atmospherically Correcting Multispectral Data Using FLAASH 2 Files Used in this Tutorial 2 Opening the Raw Landsat Image
3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension
3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, [email protected]
Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components
Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components Mr. G.M. Khaire 1, Prof. R.P.Shelkikar 2 1 PG Student, college of engg, Osmanabad. 2 Associate Professor, college
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES 1.0 SCOPE AND PURPOSE These specifications apply to fingerprint capture devices which scan and capture
Pixel-based and object-oriented change detection analysis using high-resolution imagery
Pixel-based and object-oriented change detection analysis using high-resolution imagery Institute for Mine-Surveying and Geodesy TU Bergakademie Freiberg D-09599 Freiberg, Germany [email protected]
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
Ultrasonic Wave Propagation Review
Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic
