Embedded Retaining Wall Design Engineering or Paradox?

Size: px
Start display at page:

Download "Embedded Retaining Wall Design Engineering or Paradox?"

Transcription

1 Embedded Retaining Wall Design Engineering or Paradox? A personal viewpoint by A.Y. Chmoulian, associate at Royal Haskoning Introduction Retaining wall design theory is a complicated subject with a long history. The problem was, for a long time, solved exclusively in terms of Coulomb s approach, that is, through equilibrium calculations based on post-failure soil pressures. The geometry of the wall reflecting its equilibrium could then be enhanced to create a desired margin of safety on wall stability. In a similar way, direct factoring of the calculated stresses would ensure the necessary margin of wall structural strength. The main disadvantage of this method was its oversimplified approach to the soil-structure interaction. However, most of the sophisticated methods of soilstructure interaction analysis were not capable of dealing with the conventionally used definitions of factors of safety on wall stability. Hence, the advances in numerical analysis required modification of the safety factor approach to ensure compatibility of the results. An easy way forward was available through factoring soil strength and was often adopted. The idea is very simple and clear for wall stability: if the soil strength is reduced by a factor and the wall is still standing the problem is solved. The problem becomes less clear when dealing with structural forces induced in the by soil pressures. Common sense suggests that reducing the soil strength would cause consequential increases in soil pressures on the interface with the wall and therefore in the structural forces, providing the ultimate design loading conditions. This idea was suggested in the original (1994) edition of BS82 [2]. But it was noticed that when factored soil parameters are used, the stability requirement is for the external forces to be in equilibrium only, that is by calculation the wall may actually be as near to the point of failure as possible. For a cantilever wall or a wall with a single prop near the top this may mean that the soil on the interface with the wall has reached the point of failure and so interface stresses are lower than those in the working conditions. The amended edition of BS82 states that the earth pressures at ultimate limit state are actually lower than those under working conditions. It is noted that the British Standards for structural design, for example BS595 [1] and BS811 [2], have also introduced additional partial factors of safety on loads calculated using the BS82 design approach. This, in the author s experience, sometimes causes substantial increases in the overall structural strength demand compared with the traditional (unfactored) retaining wall design approach. While it is logical to accept that soil pressure reduces with the increasing wall deflection, it is more difficult to comprehend that a structure can deflect less under greater earth pressures. This paper will show examples from the author s experience, representing just a small sample of possible effects that may be caused by the use of factored soil parameters for designing embedded s. General The analyses presented in this paper represent real design situations. But to make the effect of different design parameters clearer, only simple geometries are presented, with the varying factors applied independently. The basic initial conditions always implied that the soil conditions are uniform and all structural elements are absolutely stiff, although the effect of finite wall stiffness was also studied. The groundwater pressures were ignored here to ensure that the primary effects caused by the soil pressures are clearer. It is a normal design practice that the majority of analyses within a single project are carried out using the same design software. It would be unusual in a routine design to find the same engineer using different analysis methods when carrying out the ultimate limit state (ULS) calculations using factored soil parameters, compared with the serviceability limit state (SLS) calculations using representative parameters. As the analyses presented here are supposed to represent normal The following notations are used here: Subscripts f and r refer to any results of f and r the analysis using respectively a factored or a representative set of design parameters ø δ d h D K a, K p, K o M R A m = Mf A r = Rf M r R r Internal friction angle of soil Adhesion angle on the interface between soil and Retaining wall embedment Retaining wall height, measured from top to toe Excavation depth Respectively, active, passive and atrest earth pressure coefficients Maximum calculated bending moment in the Maximum calculated prop force Ratio between maximum bending moments calculated in retaining structures of the same geometry using factored (M f) and representative (M r) sets of soil parameters Ratio between maximum prop forces calculated for retaining structures of the same geometry using factored (R f) and representative (R r) sets of soil parameters design conditions but to allow modelling of both the elastic and plastic soil behaviour, most of the calculations for this paper were performed using a standard industry software suite that allows modelling non-linear soil structure interaction with coupled subgrade reactions (Software Suite A). References to the results attained through other types of numerical modelling are given where necessary. All of the analyses have first been carried out using the factored sets of soil parameters to establish required wall embedment. The factored analyses would also give the structural design forces consistent with BS82 or with EC7 [4]. Analyses were then repeated using the same wall geometry but with the representative soil parameters. This would indicate the structural strength demand using the traditional design approach. It would also give the designer s best estimate of the real situation, which should attract a load factor when using structural design codes. When factoring the soil parameters in accordance with BS82 it was assumed that the critical state effective stress strength is greater than the factored representative strength value. Otherwise, the findings presented may be exaggerated even further, as the ratio between the factored and the representative values increases. Where references are made to BS82 δ-values it was assumed that δ r = 2/3ø r in the analysis using representative soil parameters and tan(δ f) =.75tan(ø f) for the factored soil parameters. The effect of factoring soil parameters is addressed here in the form of ratios A m and A r, which gives an indicative comparison of the structural strength demand when using different design approaches. Issues related to the analysis of stability are avoided if possible, although it should be acknowledged that different design approaches, for example, J.B. Burland and D.M. Potts (1981), may result in different wall embedment requirements, which can ultimately affect the structural design of the GROUND ENGINEERING JULY 27 31

2 Partial factor wall. The size of this paper does not permit inclusion of all available data. In particular, only uniform granular soil deposits are discussed. It should be noted that the design is very sensitive to the wall embedment; the calculated value was always rounded up to the nearest 1mm rather than the usual.5m to 1m. The results do not always align into smooth curves as they, like all numerical analyses, contain different types of small random errors due to various numerical inaccuracies. An example in Figure 1 shows a plot of A m versus ø-value for a cantilever in a uniform granular deposit. The values are hand calculated using a simple approximation of perfectly plastic soil behaviour, with the maximum bending moment corresponding to the zero shear point. The results of these calculations are not dependent on the depth of the excavation and the calculation errors are only caused by the inaccuracy of reading the K a and K p values from the BS82 charts. Naturally, A m- values for δ = were calculated directly and contain no error so they are aligned horizontally. It can be seen that a few per cent calculation error is possible just through the rounding of chart data. To design what is meant or to mean what is designed? General analysis of cantilever walls A large sample of analyses was carried out for a simple cantilever. The analysis covered various excavation depths from 3m to 12m, ø-values from 2º to 4º, wall stiffnesses ranging from 2 x 1 4 kn.m 2 /m.run (conversion is difficult to achieve for smaller stiffnesses) to the virtual infinity and soil stiffnesses from 1MPa to 1MPa. The values of K o =.6 were used in all analyses. A sample of analysis results for 9m deep excavations in soils of different strength is presented in Figure 2. These curves are based on the analyses assuming a partial factor of on the ø values. A very similar plot can be produced for the partial factor value δ-values 2/3 ø ø BS82 6 ±.2 96 ± ±.3 6 ± ± ±.57 - Table 1: A m ratios for different analysis parameters of 5, as per Table A.2 of EC7. It can be seen that bending moments for both representative and factored sets of parameters are dependent on the soil strength and on the adhesion factor. However, the curves are very similar in shape and as a result the A m ratios are virtually independent of the varied factors as shown in Table 1. Therefore, the designer can expect good predictability of the results whether the representative (or best guess) or the factored soil strength design is carried out in uniform ground conditions. The Table 1 values do not apply to layered soils. Effect of overexcavation on cantilever walls Figures 3 and 4 show the effect of overexcavation on the analysis results for absolutely stiff retaining walls. The depths of overexcavation were selected as the lesser of.1d or.5m and the overexcavations were only included in the analysis using the factored soil parameters, which is consistent with BS82. For all equations here, δ = ø was used. As can be seen, the effect of overexcavation depends on the depth of the main excavation, with the M f-values between 55% and 8% greater than the M r-values for the same wall geometry of absolutely stiff walls. This compares with about 38% when modelling the wall without overexcavation. Effect of embedment depth on cantilever walls Figure 5 shows the effect of extra depth of embedment, in excess of the stability requirement, on A m-values for stiff walls. As the embedment depth increases, the wall gradually approaches the fixed earth condition. As a result, earth pressure on the active side becomes closer to the at rest value for both representative and factored analyses and A m-ratio reduces. But, this effect develops very slowly and is unlikely to affect the results unless the embedment is substantially greater than is necessary. Naturally, the effect caused by extra wall embedment will be reduced for walls of finite stiffness. The analysis results presented above for cantilever walls do not represent anything unexpected δ = δ = 2/3ϕ δ = ϕ 9 Figure 1: Errors arising from scaling Ka and Kp values from charts Mf (δ = ) Mr (δ = ) Mf (δ = 2/3ϕ) Mr (δ = 2/3ϕ) Mf (δ = ϕ) Mr (δ = ϕ) Mf (BS82) Mr (BS82) 5 Figure 2: Maximum bending moments for a cantilever with 9m upstand Mf (without overexcavation) Mf (with overexcavation) Mr (with or without overexcavation) 5 Figure 3: Effect of overexcavation for a cantilever with 9m upstand No overexcavation (all depths) Overexcavation (D = 3m) Overexcavation (D = 6m) Overexcavation (D = 9m) Overexcavation (D = 12m) Figure 4: Effect of overexcavation on A m ratios for a cantilever 32 GROUND ENGINEERING JULY 27

3 The picture changes, however, when dealing with tied or propped s. General analysis of propped walls Figures 6 and 7 show, respectively, bending moments and strut forces for an absolutely stiff wall with an absolutely stiff prop at the top. These analyses were based on a soil strength factor of. The use of absolutely stiff structural elements allows avoiding distortions of diagrams that may potentially be caused by the secondary effects. It can be seen that the plots are similar for different δ-values, but, significantly, for soils of greater strength the forces calculated in the factored analyses are smaller than those from the representative analyses. It looks as if an increase in the soil strength causes an increase in the forces in the, which sounds as paradoxal as Hambly s stool. As a result, the respective A m and A r ratios vary from about for the weaker soils to to for the stronger soils, as shown on the plot in Figure 8. A similar set of results is shown in Figure 9 for the partial soil strength factor of 5, as per EC7. The amplitude of variation of A m and A r ratios is just slightly greater than for the BS82 factor, but the overall pattern remains the same. To demonstrate that the above effects were not caused by software error, a numerical analysis of a similar supporting a 15m excavation was carried out using standard industry numerical analysis software using finite differences approach (Software Suite B). The wall was modelled with an absolutely stiff support at the top. As numerical analysis software cannot properly converge to a solution for an absolutely stiff wall, a reduced stiffness was used in the analysis. This does not allow a direct comparison between the results for Software Suites A and B. Nevertheless, the comparison of bending moments calculated for representative and factored designs was confirmed by Software Suite B analysis, as shown in Figure 1. It can be seen that factored analysis yields higher values of bending moments for a relatively weak soil (ø = 25º), whereas for stronger soil (ø = 4º) representative bending moments were marginally higher than those from the factored analysis. A sensitivity analysis for the wall embedment can help to explain the apparent paradox of greater soil strength causing greater structural loads. This was carried out using Software Suite A, assuming an absolutely stiff wall and using soil parameters as above and δ = ø. The results are presented below. Effect of embedment depth on propped walls A plot of maximum bending moments calculated for different wall embedments is presented in Figure 11. It can be seen that relatively small increases in the wall embedment cause significant increases in the bending moments. This effect, which is particularly transparent for the soils of greater strength, is caused by relative stiffening of the embedded part of the wall. This effect occurs similarly to the cantilever walls but is much more pronounced for the propped walls. A stiffer toe response would, naturally, reduce wall deflections and increase the bending moments. A plot of the respective strut forces is very similar and is not presented here. Therefore, the phenomenon of increased soil strength resulting in greater structural forces is caused by a combination of effects of the increased soil strength and the Mf (δ = ) Mr (δ = ) Mf (δ = 2/3ϕ) Mr (δ = 2/3ϕ) Mf (δ = ϕ) Mr (δ = ϕ) Mf (BS82) Mr (BS82) Figure 6: Bending moments diagram for a tied with 15m upstand Strut force, kn/m run Rf (δ = ) 9 Rr (δ = ) Rf (δ = 2/3ϕ) 8 Rr (δ = 2/3ϕ) Rf (δ = ϕ) 7 Rr (δ = ϕ) 6 Rf (BS82) Rr (BS82) Figure 7: Strut forces diagram for a tied with 15m upstand and Ar (δ = ) (δ = 2/3ϕ) (δ = ϕ) (BS82) Ar (δ = ) Ar (δ = 2/3ϕ) Ar (δ = ϕ) Ar (BS82) Figure 8: A m and A r ratios for a tied (partial factor) and Ar (δ = 2/3ϕ) (δ = ϕ) Ar (δ = 2/3ϕ) Ar (δ = ϕ) Embedment = d Embedment = 2d Embedment = 3d Embedment = 4d Figure 5: Effect embedment depth on A m ratios for a cantilever reataining wall Figure 9: A m and A r ratios for a tied (partial factor5) GROUND ENGINEERING JULY 27 33

4 relatively increased wall embedment. Had two different walls been analysed separately, using either factored or representative strength for both stability and structural loads calculations, the one using the representative soil strength would have a smaller embedment and smaller design bending moments. The above effect seems only to be encountered when using software capable of numerical modelling of soil-structure interaction. The software suites that use a simplified analysis approach, even those based on non-coupled subgrade reaction analysis, just show a conventional increase in structural forces with reduced soil strength. Figure 12 shows the effect of extra wall embedment on A m and A r. It can be seen that for wall embedment just twice the design value, the ratios are very close to 1. Naturally, as wall stiffness reduces, A m and A r ratios become less dependent on the relative increase in the wall embedment. It should be noted that the relative wall stiffness depends on the depth of excavation. Figure 13 shows the effect of wall stiffness on the calculated M-values for a propped supporting a 15m deep excavation. It can be seen from Figure 14 that for a sufficiently soft wall A m is about to, that is, similar to the values calculated for cantilever walls. The A m values for soft walls do not seem to be affected by the soil strength or by the depth of excavation. To put the above sensitivity analysis into perspective of real walls, Figure 15 shows a sensitivity analysis for wall stiffness. Stiffnesses of some real walls are shown on the same plot for comparison. It should be noted that AZ12 sheet pile section is the lightest available from its manufacturer. It can be seen that A m-ratios may be close to or even less than 1 for quite real structures. Strut force plots are similar and not presented here. This phenomenon can be found in real design situations. For example, the author has been involved in reviewing designs in ground conditions comprising sands over completely weathered sandstone, where an increase in design values of sandstone strength caused an increase in the design bending moments. Effect of overexcavation on propped walls The above effect will be exaggerated by other factors increasing the relative embedment of the wall. Figure 16 shows the effect of including an overexcavation in the analysis. Although it was carried out for an absolutely stiff wall, similar effects will be encountered for walls of finite stiffness. It can be seen that M f values do indeed increase as a result of overexcavation. But due to the excess embedment, M r values increase to an even greater extent. Figure 17 shows the respective ratios A m and A r for different overexcavation scenarios. There is very little variation of the ratio values for different depths of excavation checked here, that is, within the range of 9m to 24m upstands. Comparing the A m and A r ratios for analyses with and without overexcavation, it can be seen that introduction of overexcavation increases the relative factored structural forces for weaker soils. For stronger soils the effect is the opposite introduction of overexcavation causes A m and A r ratios to reduce further compared with the results without overexcavation. In the same way, structural forces developing during gradual excavation of soil on the passive side of the may be greater than when the excavation is completed. This is only relevant for relatively stiff walls in stronger soils, but ignoring this factor in the design cases when it is actually applicable will certainly not increase the conservatism of the design. Similarly to the cantilever wall analyses, sensitivity to soil stiffness was checked for E-moduli range from 1MPa to 1MPa and no effect on the analysis results was encountered. No sensitivity analysis for strut stiffness is presented here. But this factor rarely causes a significant effect on the bending moments. The greatest effect is normally caused by introduction of pre-stressed anchors, which increases the stiffness of the system, thus reducing the deflections and increasing the anchor forces. This is similar to the way it works in pre-stressed concrete. Discussion & concluding remarks When designing a the designer would be concerned to provide a safe as well as efficient design. It is also usually desirable to ensure that differences between various designs of the same structure done by different designers are not just governed by their willingness to take risks. Based just on the limited analysis presented in this paper, it is possible to evaluate the range of structural design forces that are implied by current design codes. This is only a sample of the possible design outcomes. Depth, m - - Mr Mr -2 Mf -2 Mf (a) -22 (b) Figure 1: Bending moment diagrams from Software Suite B analysis: (a) for uniform soil strata with ø = 25, (b) for uniform soil strata with ø = Mf (Embedment = d) Mr (Embedment = d) Mf (Embedment = d) Mr (Embedment = d) Mf (Embedment = 5d) Mr (Embedment = 5d) Mf (Embedment = 2d) Mr (Embedment = 2d) Figure 11: Effect of embedment depth on bending moments for a tied with 15m upstand and Ar Rf/Rr (Embedment = d) Rf/Rr (Embedment = d) Rf/Rr (Embedment = 5d) Rf/Rr (Embedment = 2d) Mf/Mr (Embedment = d) Mf/Mr (Embedment = d) Mf/Mr (Embedment = 5d) Mf/Mr (Embedment = 2d) Figure 12: Effect of embedment depth on A m and A r ratios for a tied 6 Md (all stiffnesses) Mr (stiffness 2 x 1^8) Mr (stiffness 2 x 1^7) Mr (stiffness 2 x 1^6) Mr (stiffness 2 x 1^5) Mr (stiffness 2 x 1^4) Figure 13: Effect of wall stiffness on bending moments for a tied with 15m upstand 34 GROUND ENGINEERING JULY 27

5 s D = 6 (stiffness 2 x 1^8) D = 15 (stiffness 2 x 1^8) D = 24 (stiffness 2 x 1^8).6 D = 6 (stiffness 2 x 1^7) D = 15 (stiffness 2 x 1^7) D = 6 (stiffness 2 x 1^5).4 D = 24 (stiffness 2 x 1^7) D = 15 (stiffness 2 x 1^5) D = 6 (stiffness 2 x 1^6) D = 24 (stiffness 2 x 1^5).2 D = 15 (stiffness 2 x 1^6) D = 6 (stiffness 2 x 1^4) D = 24 (stiffness 2 x 1^6) D = 15 (stiffness 2 x 1^4) Figure 14: Effect of wall stiffness on A m ratios for a tied retaining wall with 15m upstand Mf (No overexcavation) Mr (No overexcavation) Mf (Overexcavation) Mr (Overexcavation) Figure 16: Effect of overexcavation on bending moments for a tied retaing wall with 15m upstand Contiguous RC pile wall d6mm at 9mm c/c Sheet pile wall AZ12.7 E +4 E +5 E +6 The Table 2 values are quoted directly from the results presented in this paper, for walls in a uniform granular stratum. There are other recommendations on the selection partial load factors that are currently available, however, some of them are not sufficiently explicit and some others imply Y f- values lower than those applied to the self weight of the structures. The author believes that a comparison based on the above three options would give a sufficient review here. Just to make the designer s task more challenging, it is interesting to see how the understanding of a conservative design translates into a paradox: a geotechnical engineer interpreting the ground conditions may believe that by ascribing ø = 4º to a soil whose real ø-value is 45º, makes the design conservative. That would translate into a factored ø-value of about 35º using a mobilisation factor of. m thick RC diaphragm wall RC T-diaphragm wall: flange 4x1m, web 3.6x1m D = 6m (ϕ = 2 ) D = 6m (ϕ = 4 ) D = 15m (ϕ = 2 ) E +7 D = 15m (ϕ = 4 ) D = 24m (ϕ = 2 ) D = 24m (ϕ = 4 ) E +8 E +9 Wall stiffness, kn m^2 Figure 15: A m ratios versus wall stiffness for a tied For a cantilever, for a wide range of input parameters For very stiff s propped near the top For propped wall of finite stiffness BS595 (1) (Clause 2.2.4) Yf = on nominal loads determined in accordance with CP2 BS811 (3) (Table 2.1 without BS811 (Table 2.1 with overexcavation) and BS595 (Table 2) Yf = on earth pressures obtained from BS82 including appropriate mobilisation factors 5-1.7, depending on the δ-value -5, depending on the ø and δ-values, but converges to about for walls with excessively large embedment -1.8, depending on the ø-values overexcavation) Yf = on earth pressures obtained from BS82, when unplanned excavation is included in the calculation 5-1.8, depending on excavation depth.75-, depending on the excavation depth (variation of δ-values not addressed in this paper) Not addressed in this paper Using this value, the design engineer will find the required embedment through analysis and then round it up to make the design more conservative. The detailer will then increase the wall strength (and stiffness too) for the same reason. The result may be that the wall embedment will be two to three times what was actually required for the real soil conditions and the bending moment may be up to twice greater than that calculated by design. Introduction of overexcavation into the design may increase the underdesign in structural strength by a further 1% to 15%. It should be remembered that the above refers just to the designs capable of modelling variation in soil structure interface stresses, depending on the relative deflections. The use of simpler types of analysis may introduce much different results. The progress in computer development has created the and Ar.7 environment when design can be done by engineers and managers with a very basic understanding of geotechnics, who just follow the published design recommendations. This creates a large variety of designs, some of which may be more pragmatic than desired. It is hoped that the above analysis gives some understanding of the difficulties arising from direct application of standard requirements for the use of factored soil parameter designs. The author suggests that when using a factored soil strength design approach (whether BS82, or EC7, or other) the designer may wish to ensure that: They understand that the analysis based on factored soil parameters may result in a set of structural design loads little related to the real working conditions. They understand the assumptions implied by the method of analysis or type of software employed, together with the consequences caused to the structural design of the wall. The comparative increase in structural strength demand against the analysis based on best estimate reflects the factual design uncertainties faced. (No overexcavation - all depths) (Overexcavation - all depths) Ar (No overexcavation - all depths) Ar (Overexcavation - all depths) Figure 17: Effect of overexcavation on A m and A r ratios for a tied Table 2: Ratio of the structural design moments to the serviceability moments (soil strengh factor M=) Any conservative changes made to the geometry of the structure after the design is completed are not causing an increase in the structural forces (this includes, for example, increasing embedment of the wall, its cross-section). The conservative assumptions made with regard to, for example, soil strength or construction staging are indeed conservative. The issues discussed in this paper will not disappear when using EC7 unless engineers understand the importance of using a combination of several design approaches in their practice. References 1. BS595-1:. Structural use of steelwork in building Part 1: Code of practice for design rolled and welded sections. 2. BS82:1994. Code of practice for earth retaining structures. 3. BS811-1:1997. Structural use of concrete Part 1: Code of practice for design and construction. 4. BS EN :24, Eurocode 7: Geotechnical design Part 1: General rules. 5. J.B. Burland, D.M. Potts. The overall stability of free and propped embedded cantilever s. Ground Engineering, 1981, July, pp GROUND ENGINEERING JULY 27 35

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

Requirements for an Excavation and Lateral Support Plan Building (Administration) Regulation 8(1)(bc)

Requirements for an Excavation and Lateral Support Plan Building (Administration) Regulation 8(1)(bc) Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-57 Requirements for an Excavation and Lateral Support Plan Building

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

More information

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

More information

HOW TO DESIGN CONCRETE STRUCTURES Foundations

HOW TO DESIGN CONCRETE STRUCTURES Foundations HOW TO DESIGN CONCRETE STRUCTURES Foundations Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and

More information

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL

EXAMPLE 1 DESIGN OF CANTILEVERED WALL, GRANULAR SOIL EXAMPLE DESIGN OF CANTILEVERED WALL, GRANULAR SOIL A sheet pile wall is required to support a 2 excavation. The soil is uniform as shown in the figure. To take into account the friction between the wall

More information

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

More information

Design of diaphragm and sheet pile walls. D-Sheet Piling. User Manual

Design of diaphragm and sheet pile walls. D-Sheet Piling. User Manual Design of diaphragm and sheet pile walls D-Sheet Piling User Manual D-SHEET PILING Design of diaphragm and sheet pile walls User Manual Version: 14.1.34974 31 July 2014 D-SHEET PILING, User Manual Published

More information

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

More information

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1 INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

INTRODUCTION TO LIMIT STATES

INTRODUCTION TO LIMIT STATES 4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and

More information

Chapter 2 Basis of design and materials

Chapter 2 Basis of design and materials Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Local buckling of plates made of high strength steel

Local buckling of plates made of high strength steel Local buckling of plates made of high strength steel Tapani Halmea, Lauri Huusko b,a, Gary Marquis a, Timo Björk a a Lappeenranta University of Technology, Faculty of Technology Engineering, Lappeenranta,

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface

Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection

More information

Eurocode 2: Design of concrete structures

Eurocode 2: Design of concrete structures Eurocode 2: Design of concrete structures Owen Brooker, The Concrete Centre Introduction The transition to using the Eurocodes is a daunting prospect for engineers, but this needn t be the case. Industry

More information

PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center

PDHonline Course S151A (1 PDH) Steel Sheet Piling. Instructor: Matthew Stuart, PE, SE. PDH Online PDH Center PDHonline Course S151A (1 PDH) Steel Sheet Piling Instructor: Matthew Stuart, PE, SE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

ick Foundation Analysis and Design

ick Foundation Analysis and Design ick Foundation Analysis and Design Work: ick Foundation Location: Description: Prop: Detail analysis and design of ick patented foundation for Wind Turbine Towers Gestamp Hybrid Towers Date: 31/10/2012

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods

Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Steve Macklin Principal Engineering Geologist GHD Melbourne 1. Introduction, scope of Part 1 2. Terminology

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Technical handbook Panel Anchoring System

Technical handbook Panel Anchoring System 1 Basic principles of sandwich panels 3 Design conditions 4 Basic placement of anchors and pins 9 Large elements (muliple rows) 10 Small elements (two rows) 10 Turned elements 10 Slender elements 10 Cantilevering

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

Overhang Bracket Loading. Deck Issues: Design Perspective

Overhang Bracket Loading. Deck Issues: Design Perspective Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS

THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS THE DEVELOPMENT OF DESIGN METHODS FOR REINFORCED AND UNREINFORCED MASONRY BASEMENT WALLS J.J. ROBERTS Technical Innovation Consultancy Emeritus Professor of Civil Engineering Kingston University, London.

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Preliminary steel concrete composite bridge design charts for Eurocodes

Preliminary steel concrete composite bridge design charts for Eurocodes Preliminary steel concrete composite bridge 90 Rachel Jones Senior Engineer Highways & Transportation Atkins David A Smith Regional Head of Bridge Engineering Highways & Transportation Atkins Abstract

More information

Shear Forces and Bending Moments

Shear Forces and Bending Moments Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Design Manual to BS8110

Design Manual to BS8110 Design Manual to BS8110 February 2010 195 195 195 280 280 195 195 195 195 195 195 280 280 195 195 195 The specialist team at LinkStudPSR Limited have created this comprehensive Design Manual, to assist

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Control of Seismic Drift Demand for Reinforced Concrete Buildings with Weak First Stories

Control of Seismic Drift Demand for Reinforced Concrete Buildings with Weak First Stories Earthquake Yoshimura: Engineering Control and of Engineering Seismic Drift Seismology Demand for Reinforced Concrete Buildings with Weak First Stories 7 Volume 4, Number, September 3, pp. 7 3 Control of

More information

DS/EN 1993-1-1 DK NA:2014

DS/EN 1993-1-1 DK NA:2014 National Annex to Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings Foreword This national annex (NA) is a revision of DS/EN 1993-1-1 DK NA:2013 and replaces the

More information

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA

More information

GEOTECHNICAL DESIGN ASPECTS OF BASEMENT RETAINING WALLS

GEOTECHNICAL DESIGN ASPECTS OF BASEMENT RETAINING WALLS GEOTECHNICAL DESIGN ASPECTS OF BASEMENT RETAINING WALLS John Byrne Byrne Looby Partners John Byrne graduated from South Bank University in London with an Honours Degree in Civil Engineering in 1992. He

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

A N Beal EARTH RETAINING STRUCTURES - worked examples 1

A N Beal EARTH RETAINING STRUCTURES - worked examples 1 A N Beal EARTH RETAINING STRUCTURES - worked examples 1 Worked examples of retaining wall design to BS8002 The following worked examples have been prepared to illustrate the application of BS8002 to retaining

More information

ALLOWABLE LOADS ON A SINGLE PILE

ALLOWABLE LOADS ON A SINGLE PILE C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

More information

A study on the causes of troubles in shield tunneling site with numerical analysis

A study on the causes of troubles in shield tunneling site with numerical analysis A study on the causes of troubles in shield tunneling site with numerical analysis 1 B.K. Rho, 2 S.Y. Choo, 2 M.K. Song Korea Rail Network Authority, Daejeon, Korea 1 ; Danwoo E&C Co., Ltd., Sungnam, Korea

More information

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information

Static analysis of restrained sheet-pile walls

Static analysis of restrained sheet-pile walls Static analysis of restrained sheet-pile walls Bogdan Rymsza Warsaw University of Technology, Civil Engineering Faculty, Poland Krzysztof Sahajda Aarsleff Sp. z o.o., Poland ABSTRACT: The results of displacement

More information

Design MEMO 60 Reinforcement design for TSS 102

Design MEMO 60 Reinforcement design for TSS 102 Date: 04.0.0 sss Page of 5 CONTENTS PART BASIC ASSUMTIONS... GENERAL... STANDARDS... QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART REINFORCEMENT... 4 EQUILIBRIUM... 4 Date: 04.0.0 sss Page of 5 PART BASIC

More information

Description of mechanical properties

Description of mechanical properties ArcelorMittal Europe Flat Products Description of mechanical properties Introduction Mechanical properties are governed by the basic concepts of elasticity, plasticity and toughness. Elasticity is the

More information

How To Model A Shallow Foundation

How To Model A Shallow Foundation Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

Forensic engineering of a bored pile wall

Forensic engineering of a bored pile wall NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Forensic engineering of a bored pile wall Willem Robert de Bruin Geovita AS, Norway,

More information

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

Design MEMO 54a Reinforcement design for RVK 41

Design MEMO 54a Reinforcement design for RVK 41 Page of 5 CONTENTS PART BASIC ASSUMTIONS... 2 GENERAL... 2 STANDARDS... 2 QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART 2 REINFORCEMENT... 4 EQUILIBRIUM... 4 Page 2 of 5 PART BASIC ASSUMTIONS GENERAL

More information

PDCA Driven-Pile Terms and Definitions

PDCA Driven-Pile Terms and Definitions PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified

More information

Dimensional and Structural Data for Elliptical Pipes. PD 26 rev D 21/09/05

Dimensional and Structural Data for Elliptical Pipes. PD 26 rev D 21/09/05 Dimensional and Structural Data for Elliptical Pipes 21/09/05 Page 1 of 15 1. Foreword This document details a method for the structural design of Stanton Bonna Elliptical pipes for the common conditions

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Outline MICROPILES SUBJECT TO LATERAL LOADING. Dr. Jesús Gómez, P.E.

Outline MICROPILES SUBJECT TO LATERAL LOADING. Dr. Jesús Gómez, P.E. MICROPILES SUBJECT TO LATERAL LOADING Dr. Jesús Gómez, P.E. Micropile Design and Construction Seminar Las Vegas, NV April 3-4, 2008 Outline When are micropiles subject to lateral load? How do we analyze

More information

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

More information

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY International Conference on Structural and Foundation Failures August 2-4, 2004, Singapore ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY A. S. Osman, H.C. Yeow and M.D. Bolton

More information

How To Calculate Tunnel Longitudinal Structure

How To Calculate Tunnel Longitudinal Structure Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer 1,2 Li Zhong, 2Chen Si-yang, 3Yan Pei-wu, 1Zhu Yan-peng School of Civil Engineering, Lanzhou University

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K.

SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K. VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE Robert K. Dowell Department of Civil and Environmental Engineering San Diego State University Abstract This paper

More information

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED

EFFECT OF GEOGRID REINFORCEMENT ON LOAD CARRYING CAPACITY OF A COARSE SAND BED International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 01 06, Article ID: IJCIET_07_03_001 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Validation of methods for assessing tunnelling-induced settlements on piles

Validation of methods for assessing tunnelling-induced settlements on piles Validation of methods for assessing tunnelling-induced settlements on piles Mike Devriendt, Arup Michael Williamson, University of Cambridge & Arup technical note Abstract For tunnelling projects, settlements

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

Steel joists and joist girders are

Steel joists and joist girders are THE STEEL CONFERENCE Hints on Using Joists Efficiently By Tim Holtermann, S.E., P.E.; Drew Potts, P.E.; Bob Sellers, P.E.; and Walt Worthley, P.E. Proper coordination between structural engineers and joist

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Proceedings of the International Workshop on the EVALUATION OF EUROCODE 7

Proceedings of the International Workshop on the EVALUATION OF EUROCODE 7 TRIITY COLLEGE DUBLI Department of Civil, Structural ISSMGE ERTC 0 and Proceedings of the International Workshop on the EVALUATIO OF EUROCODE 7 Cost: 50.00 including postage Order Form ame Affiliation

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD PENETRATION TEST METHOD

BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD PENETRATION TEST METHOD SENRA Academic Publishers, British Columbia Vol., No. 1, pp. 27-2774, February 20 Online ISSN: 0-353; Print ISSN: 17-7 BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

DIMENSIONING TUNNEL SUPPORT BY DESIGN METHODOLOGY

DIMENSIONING TUNNEL SUPPORT BY DESIGN METHODOLOGY DIMENSIONING TUNNEL SUPPORT BY DESIGN METHODOLOGY "INTERACTIVE STRUCTURAL DESIGN" Diseno Estructural Activo, DEA) Benjamín Celada Tamames, Director General, Geocontrol, Madrid Translated from: Taller sobre

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

5 Steel elements. 5.1 Structural design At present there are two British Standards devoted to the design of strucof tural steel elements:

5 Steel elements. 5.1 Structural design At present there are two British Standards devoted to the design of strucof tural steel elements: 5 Steel elements 5.1 Structural design At present there are two British Standards devoted to the design of strucof steelwork tural steel elements: BS 449 The use of structural steel in building. BS 5950

More information

King Post Wall Information

King Post Wall Information King Post Wall Information DAWSON-WAM specialise in the installation of piled retaining wall systems including steel sheet piling, concrete piled walls and king post walls. This document is our guide to

More information

Eurocode 3: Design of steel structures

Eurocode 3: Design of steel structures Eurocode 3: Design of steel structures David Brown, Associate Director, Steel Construction Institute Introduction Structural engineers should be encouraged that at least in steel, design conforming to

More information

When to Use Immediate Settlement in Settle 3D

When to Use Immediate Settlement in Settle 3D When to Use Immediate Settlement in Settle 3D Most engineers agree that settlement is made up of three components: immediate, primary consolidation and secondary consolidation (or creep). Most engineers

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

More information

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST OBJEVTIVES To determine the shear strength parameters for a

More information

A Strategy for Teaching Finite Element Analysis to Undergraduate Students

A Strategy for Teaching Finite Element Analysis to Undergraduate Students A Strategy for Teaching Finite Element Analysis to Undergraduate Students Gordon Smyrell, School of Computing and Mathematics, University of Teesside The analytical power and design flexibility offered

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

FOUR-PLATE HEB-100 BEAM SPLICE BOLTED CONNECTIONS: TESTS AND COMMENTS

FOUR-PLATE HEB-100 BEAM SPLICE BOLTED CONNECTIONS: TESTS AND COMMENTS FOUR-PLATE HEB- BEAM SPLICE BOLTED CONNECTIONS: TESTS AND COMMENTS M.D. Zygomalas and C.C. Baniotopoulos Institute of Steel Structures, Aristotle University of Thessaloniki, Greece ABSTRACT The present

More information