Ethernet (LAN switching)
|
|
|
- Neal Perkins
- 9 years ago
- Views:
Transcription
1 Ethernet ( switching) 1 Outline Interconnection devices Bridges/ switches vs. Routers Bridges Learning Bridges Transparent bridges 2 1
2 Bridges/ switches Interconnect multiple, possibly with different type Bridges operate at the Data Link Layer (Layer 2) The term switches and Bridges are synonymous Bridge Token-ring IP LLC Bridge LLC IP LLC MAC MAC MAC MAC 3 Routers Routers operate at the Network Layer (Layer 3) Interconnect different subnetworks Router Subnetwork Subnetwork Subnetwork Router Application Application TCP TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access Data Link Network Access Network Access Data Link Network Access Network Access Data Link Network Access Host Router Router Host 4 2
3 Bridges versus Routers An enterprise network (e.g., university network) with a large number of local area networks (s) can use routers or bridges Until early 1990s: most s were interconnected by routers Since mid1990s: switches replace most routers 5 A Routed Enterprise Network Internet Router switch FDDI FDDI 6 3
4 A Switched Enterprise Network Internet Router Switch 7 Example: Univ. of Virginia CS Department Network Design of the network architecture (Spring 2000) There is no router! 350T Gigabit Ethernet Switch 100/Giga Ethernet Switch 350T 350T 350T 350T 350T 100 Mbps Ethernet Switch 350T 350T 350T 350T 350T 8 4
5 Bridges versus Routers Routers Bridges Each host s IP address must be configured MAC addresses are hardwired If network is reconfigured, IP addresses may need to be reassigned Routing done via RIP or OSPF Each router manipulates packet header (e.g., reduces TTL field) No network configuration needed No routing protocol needed (sort of) learning bridge algorithm spanning tree algorithm Bridges do not manipulate frames 9 Need for Routing What do bridges do if some s are reachable only in multiple hops? 2 Bridge 3 d Bridge 4 What do bridges do if the path between two s is not unique? Bridge Bridge 5 3 Bridge
6 Routing for Bridges Overall design goal: Complete transparency Plug-and-play Self-configuring without hardware or software changes Bridges should not impact operation of existing s Three parts to transparent bridges: (1) Forwarding of Frames (2) Learning of Addresses (3) Spanning Tree Algorithm 11 (1) Frame Forwarding Each bridge maintains a forwarding database with entries < MAC address, port, age> MAC address: port: age: host name or group address port number of bridge aging time of entry with interpretation: a machine with MAC address lies in direction of the port number from the bridge. The entry is age time units old. 12 6
7 (1) Frame Forwarding Assume a MAC frame arrives on port x. Port x Is MAC address of destination in forwarding database for ports A, B, or C? Port A Bridge 2 Port B Port C Found? Not found? Forward the frame on the appropriate port Flood the frame, i.e., send the frame on all ports except port x. 13 (2) Address Learning (Learning Bridges) Routing tables entries are set automatically with a simple heuristic: The source field of a frame that arrives on a port tells which hosts are reachable from this port. Src=x, Dest=y Src=x, Dest=y Port 1 Port 2 x is at Port 3 y is at Port 4 Port 4 Port 5 Src=y, Src=x, Dest=x Dest=y Src=x, Dest=y Src=y, Src=x, Dest=x Dest=y Port 3 Port 6 Src=x, Dest=y 14 7
8 (2) Address Learning (Learning Bridges) Algorithm: For each frame received, the bridge stores the source field in the forwarding database together with the port where the frame was received. All entries are deleted after some time (default is 15 seconds). Port 1 Port 2 x is at Port 3 y is at Port 4 Port 4 Port 5 Src=y, Dest=x Src=y, Dest=x Port 3 Port 6 15 Example Consider the following packets: (Src=A, Dest=F), (Src=C, Dest=A), (Src=E, Dest=C) What have the bridges learned? 16 8
9 Danger of Loops Consider the two s that are connected by two bridges. Assume host n is transmitting a frame F with unknown destination. What is happening? Bridges A and B flood the frame to 2. Bridge B sees F on 2 (with unknown destination), and copies the frame back to 1 Bridge A does the same. The copying continues Where s the problem? What s the solution? F Bridge A F 2 1 F host n F Bridge B F 17 Spanning Trees / Transparent Bridges A solution is to prevent loops in the topology IEEE 802.1d has an algorithm that builds and maintains a spanning tree in a dynamic environment using a distributed spanning tree (SPT) algorithm Bridges that run 802.1d are called transparent bridges Bridges exchange messages to configure the bridge (Configuration Bridge Protocol Data Unit, Configuration BPDUs) to build the tree. 18 9
10 Building the Spanning Tree Result of the SPT algorithm: One bridge is elected as the root bridge. Each bridge selects a root port ( R ), which is the port that leads to the shortest path to the root bridge For each there is one bridge that has a designated port ( D ) for this All port of a bridge that are neither the root port, nor a designated port, are blocked. Bridges never forward traffic on blocked ports. Question: What is the spanning tree in the figure? How does this algorithm prevent loops? R Bridge Bridge D D 2 D 1 Bridge 5 Bridge Bridge 3 4 d R R D R D 19 Details of the IEEE 802.1d SPT algorithm Bridges connected to the same exchange messages to configure the bridge (Configuration Bridge Protocol Data Unit, Configuration BPDUs) to build the tree. With the help of the BPDUs, bridges can: Elect a single bridge as the root bridge. Calculate the distance of the shortest path to the root bridge Each can determine a designated bridge, which is the bridge closest to the root. The designated bridge will forward packets towards the root bridge. Each bridge can determine a root port, the port that gives the best path to the root. Select ports to be included in the spanning tree
11 Configuration BPDUs Destination MAC address Source MAC address Configuration Message protocol identifier version message type flags root ID Cost bridge ID port ID Set to 0 Set to 0 Set to 0 lowest bit is "topology change bit (TC bit) ID of root Cost of the path from the bridge sending this message ID of bridge sending this message Time between BPDUs from the root (default: 1sec) message age maximum age hello time forward delay Time between recalculations of the spanning tree (default: 15 secs) priority of configurable interface (used for loop detection) time since root sent a message on which this message is based 21 Concepts Each bridge as a unique identifier: Bridge ID = <MAC address + priority level> Note that a bridge has several MAC addresses (one for each port), but only one ID Each port within a bridge has a unique identifier (port ID). Root Bridge: The bridge with the lowest identifier is the root of the spanning tree. Root Port: Each bridge has a root port which identifies the next hop from a bridge to the root
12 Concepts Root Path Cost: For each bridge, the cost of the min-cost path to the root. Assume it is measured in #hops to the root Designated Bridge, Designated Port: Single bridge on a that provides the minimal cost path to the root for this : - if two bridges have the same cost, select the one with highest priority - if the min-cost bridge has two or more ports on the, select the port with the lowest identifier Note: We assume that cost of a path is the number of hops. 23 Steps of Spanning Tree Algorithm 1. Determine the root bridge 2. Determine the root port on all other bridges 3. Determine the designated port on each Each bridge is sending out BPDUs that contain the following information: root ID cost bridge ID/port ID root bridge (what the sender thinks it is) root path cost for sending bridge Identifies sending bridge 24 12
13 Ordering of Messages We can order BPDU messages with the following ordering relation << : M1 ID R1 C1 ID B1 < ID R2 C2 ID B2 If (R1 < R2) M1<< M2 elseif ((R1 == R2) and (C1 < C2)) M1 << M2 elseif ((R1 == R2) and (C1 == C2) and (B1 < B2)) M1 << M2 M2 25 Determine the Root Bridge Initially, all bridges assume they are the root bridge. Each bridge B sends BPDUs of this form on its s: B 0 B Each bridge looks at the BPDUs received on all its ports and its own transmitted BPDUs. Root bridge is the smallest received root ID that has been received so far (Whenever a smaller ID arrives, the root is updated) 26 13
14 Calculate the Root Path Cost Determine the Root Port At this time: A bridge B has a belief of who the root is, say R. Bridge B determines the Root Path Cost (Cost) as follows: If B = R : Cost = 0. If B R: Cost = {Smallest Cost in any of BPDUs that contains root ID R} + 1 B s root port is the port from which B received the lowest cost path to R (in terms of relation << ). Knowing R and Cost, B can generate its BPDU (but will not necessarily send it out): R Cost B 27 Calculate the Designated Bridge Determine the Designated Port At this time: B has generated its BPDU R Cost B B will send this BPDU on one of its ports, say port x, only if its BPDU is lower (via relation << ) than any BPDU that B received from port x. In this case, B also assumes that it is the designated bridge for the Port x to which the port connects. Bridge B Port A Port B Port C 28 14
15 Selecting the Ports for the Spanning Tree At this time: Bridge B has calculated the root, the root path cost, and the designated bridge for each. Now B can decide which ports are in the spanning tree: B s root port is part of the spanning tree All ports for which B is the designated bridge are part of the spanning tree. B s ports that are in the spanning tree will forward packets (=forwarding state) B s ports that are not in the spanning tree will not forward packets (=blocking state) 29 Example network Bridge ID 7 Bridge ID 5 port A port B port C port A port B port C Bridge ID 3 port A port B Ethernet0/ /24 port A port B Bridge ID 1 port A port C port B Bridge ID 2 port B port C port A port D Bridge ID
16 Example Assume that all bridges send out their BPDU s once per second, and assume that all bridges send their BPDUs at the same time. Assume that all bridges are turned on simultaneously at time T=0 sec. Use the following table to write the BPDUs which are sent by the bridges. For each cell, include: the BPDU (For each BPDU, only provide the <root, cost, bridge> fields) the ports on which the BPDUs is transmitted (write none if the BPDU is not sent on any of the ports) See next page. 31 Table for example Bridge 1 Bridge 2 Bridge 3 Bridge 5 Bridge 6 Bridge 7 T=0sec 1,0,1 2,0,2 3,0,3 5,0,5 6,0,6 7,0,7 T=1sec 1,0,1 2,0,2 1,1,3 1,1,5 1,1,6 1,1,7 T=2sec 1,0,1 1,2,2 1,1,3 1,1,5 1,1,6 1,1,
17 Results for example Bridge 1 Bridge 2 Bridge 3 Bridge 5 Bridge 6 Bridge 7 Root Port Designated Ports / A,B A / B A,C A B,C B D B / Blocked ports / B / / A,C A,C 33 17
Objectives. The Role of Redundancy in a Switched Network. Layer 2 Loops. Broadcast Storms. More problems with Layer 2 loops
ITE I Chapter 6 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Implement Spanning Tree Protocols LAN Switching and Wireless Chapter 5 Explain the role of redundancy in a converged
Level 2 Routing: LAN Bridges and Switches
Level 2 Routing: LAN Bridges and Switches Norman Matloff University of California at Davis c 2001, N. Matloff September 6, 2001 1 Overview In a large LAN with consistently heavy traffic, it may make sense
CHAPTER 10 LAN REDUNDANCY. Scaling Networks
CHAPTER 10 LAN REDUNDANCY Scaling Networks CHAPTER 10 10.0 Introduction 10.1 Spanning Tree Concepts 10.2 Varieties of Spanning Tree Protocols 10.3 Spanning Tree Configuration 10.4 First-Hop Redundancy
IP Multicasting. Applications with multiple receivers
IP Multicasting Relates to Lab 10. It covers IP multicasting, including multicast addressing, IGMP, and multicast routing. 1 Applications with multiple receivers Many applications transmit the same data
Infrastructure Components: Hub & Repeater. Network Infrastructure. Switch: Realization. Infrastructure Components: Switch
Network Infrastructure or building computer networks more complex than e.g. a short bus, some additional components are needed. They can be arranged hierarchically regarding their functionality: Repeater
Communication Systems Internetworking (Bridges & Co)
Communication Systems Internetworking (Bridges & Co) Prof. Dr.-Ing. Lars Wolf TU Braunschweig Institut für Betriebssysteme und Rechnerverbund Mühlenpfordtstraße 23, 38106 Braunschweig, Germany Email: [email protected]
Internet Packets. Forwarding Datagrams
Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed
CS335 Sample Questions for Exam #2
CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to
Computer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks
Computer Networks Lecture 06 Connecting Networks Kuang-hua Chen Department of Library and Information Science National Taiwan University Local Area Networks (LAN) 5 kilometer IEEE 802.3 Ethernet IEEE 802.4
CSE331: Introduction to Networks and Security. Lecture 8 Fall 2006
CSE331: Introduction to Networks and Security Lecture 8 Fall 2006 Announcements Reminders: Project I is due on Monday, Sept. 25th. Homework 1 is due on Friday, Sept. 29th. CSE331 Fall 2004 2 Internet Protocol
LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs
LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when
CORPORATE NETWORKING
CORPORATE NETWORKING C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham [email protected] Typical example of Ethernet local networks Mostly based
VXLAN: Scaling Data Center Capacity. White Paper
VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where
Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)
QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than
Switching in an Enterprise Network
Switching in an Enterprise Network Introducing Routing and Switching in the Enterprise Chapter 3 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Compare the types of
The ABCs of Spanning Tree Protocol
The ABCs of Spanning Tree Protocol INTRODUCTION In an industrial automation application that relies heavily on the health of the Ethernet network that attaches all the controllers and computers together,
Bridgewalling - Using Netfilter in Bridge Mode
Bridgewalling - Using Netfilter in Bridge Mode Ralf Spenneberg, [email protected] Revision : 1.5 Abstract Firewalling using packet filters is usually performed by a router. The packet filtering software
DG Forwarding Algorithm
DG Forwarding Algorithm Host or Router first check if destination on same Network Router multiple interfaces Match found deliver to that Network If not found default router for every router a default router
Objectives. Explain the Role of Redundancy in a Converged Switched Network. Explain the Role of Redundancy in a Converged Switched Network
Implement Spanning Tree Protocols LAN Switching and Wireless Chapter 5 Objectives Explain the role of redundancy in a converged network Summarize how STP works to eliminate Layer 2 loops in a converged
Layer 3 Routing User s Manual
User s Manual Second Edition, July 2011 www.moxa.com/product 2011 Moxa Inc. All rights reserved. User s Manual The software described in this manual is furnished under a license agreement and may be used
Chapter 3. Enterprise Campus Network Design
Chapter 3 Enterprise Campus Network Design 1 Overview The network foundation hosting these technologies for an emerging enterprise should be efficient, highly available, scalable, and manageable. This
IP - The Internet Protocol
Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network
Routing Protocols OSPF CHAPTER. The following topics describe supported routing protocols. Topics include OSPF, page 9-1 IS-IS Protocol, page 9-3
CHAPTER 9 The following topics describe supported routing protocols. Topics include OSPF, page 9-1 IS-IS Protocol, page 9-3 OSPF Open Shortest Path First (OSPF) is a link state Internet routing protocol.
June 2006. Bridge & Switch. Pietro Nicoletti Piero[at]studioreti.it. Bridge-Switch-Engl - 1 P. Nicoletti: see note pag. 2
Bridge & Switch Pietro Nicoletti Piero[at]studioreti.it Bridge-Switch-Engl - P. Nicoletti: see note pag. Copyright note These slides are protected by copyright and international treaties. The title and
Software Defined Networking (SDN) - Open Flow
Software Defined Networking (SDN) - Open Flow Introduction Current Internet: egalitarian routing/delivery based on destination address, best effort. Future Internet: criteria based traffic management,
Portland: how to use the topology feature of the datacenter network to scale routing and forwarding
LECTURE 15: DATACENTER NETWORK: TOPOLOGY AND ROUTING Xiaowei Yang 1 OVERVIEW Portland: how to use the topology feature of the datacenter network to scale routing and forwarding ElasticTree: topology control
Instructor Notes for Lab 3
Instructor Notes for Lab 3 Do not distribute instructor notes to students! Lab Preparation: Make sure that enough Ethernet hubs and cables are available in the lab. The following tools will be used in
Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.
Data Networking and Architecture The course focuses on theoretical principles and practical implementation of selected Data Networking protocols and standards. Physical network architecture is described
Data Communication Networks and Converged Networks
Data Communication Networks and Converged Networks The OSI Model and Encapsulation Layer traversal through networks Protocol Stacks Converged Data/Telecommunication Networks From Telecom to Datacom, Asynchronous
Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols
Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various
RARP: Reverse Address Resolution Protocol
SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it
TRILL Large Layer 2 Network Solution
TRILL Large Layer 2 Network Solution Contents 1 Network Architecture Requirements of Data Centers in the Cloud Computing Era... 3 2 TRILL Characteristics... 5 3 Huawei TRILL-based Large Layer 2 Network
2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above
CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network
Router and Routing Basics
Router and Routing Basics Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Routing Protocols and Concepts CCNA2 Routing and packet forwarding Static routing Dynamic
Network Basics GRAPHISOFT. for connecting to a BIM Server. 2009 (version 1.0)
for connecting to a BIM Server GRAPHISOFT 2009 (version 1.0) Basic Vocabulary...3 Local Area Networks...5 Examples of Local Area Networks...5 Example 1: LAN of two computers without any other network devices...5
Based on Computer Networking, 4 th Edition by Kurose and Ross
Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,
CHAPTER 6 DESIGNING A NETWORK TOPOLOGY
CHAPTER 6 DESIGNING A NETWORK TOPOLOGY Expected Outcomes Able to identify terminology that will help student discuss technical goals with customer. Able to introduce a checklist that can be used to determine
Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004
5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 1 43 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same
04 Internet Protocol (IP)
SE 4C03 Winter 2007 04 Internet Protocol (IP) William M. Farmer Department of Computing and Software McMaster University 29 January 2007 Internet Protocol (IP) IP provides a connectionless packet delivery
Interconnecting Cisco Networking Devices Part 2
Interconnecting Cisco Networking Devices Part 2 Course Number: ICND2 Length: 5 Day(s) Certification Exam This course will help you prepare for the following exam: 640 816: ICND2 Course Overview This course
Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing
Dynamic Routing Protocols II OSPF Relates to Lab 4. This module covers link state routing and the Open Shortest Path First (OSPF) routing protocol. 1 Distance Vector vs. Link State Routing With distance
Fundamentals of Switching
1 CCNA 640-801 Exam Notes - Fundamentals of Switching CCNA 640-801 Exam Notes Fundamentals of Switching 1. LAN Segmentation 1.1 In a collision domain, a frame sent by a device can cause collision with
TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems
for Service Provider Data Center and IXP Francois Tallet, Cisco Systems 1 : Transparent Interconnection of Lots of Links overview How works designs Conclusion 2 IETF standard for Layer 2 multipathing Driven
DEMYSTIFYING ROUTING SERVICES IN SOFTWAREDEFINED NETWORKING
DEMYSTIFYING ROUTING SERVICES IN STWAREDEFINED NETWORKING GAUTAM KHETRAPAL Engineering Project Manager, Aricent SAURABH KUMAR SHARMA Principal Systems Engineer, Technology, Aricent DEMYSTIFYING ROUTING
The IP Transmission Process. V1.4: Geoff Bennett
The IP Transmission Process V1.4: Geoff Bennett Contents Communication Between Hosts Through a MAC Bridge Through a LAN Switch Through a Router The tutorial is divided into four sections. Section 1 looks
Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering
Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls
Network Virtualization and Data Center Networks 263-3825-00 Data Center Virtualization - Basics. Qin Yin Fall Semester 2013
Network Virtualization and Data Center Networks 263-3825-00 Data Center Virtualization - Basics Qin Yin Fall Semester 2013 1 Walmart s Data Center 2 Amadeus Data Center 3 Google s Data Center 4 Data Center
ISOM3380 Advanced Network Management. Spring 2014 15. Course Description
ISOM3380 Advanced Network Management Spring 2014 15 Course Description In an interconnected economy, management of network applications becomes increasingly important. This course helps students develop
SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005. Lecturer: Kartik Krishnan Lecture 1-3
SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005 Lecturer: Kartik Krishnan Lecture 1-3 Communications and Computer Networks The fundamental purpose of a communication network is the exchange
"Charting the Course...
Description "Charting the Course... Course Summary Interconnecting Cisco Networking Devices: Accelerated (CCNAX), is a course consisting of ICND1 and ICND2 content in its entirety, but with the content
APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing
MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the
How To Switch In Sonicos Enhanced 5.7.7 (Sonicwall) On A 2400Mmi 2400Mm2 (Solarwall Nametra) (Soulwall 2400Mm1) (Network) (
You can read the recommendations in the user, the technical or the installation for SONICWALL SWITCHING NSA 2400MX IN SONICOS ENHANCED 5.7. You'll find the answers to all your questions on the SONICWALL
Improving the Security and Efficiency of Network Clients Using OpenFlow
Improving the Security and Efficiency of Network Clients Using OpenFlow Adam Coxhead This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Computing and Mathematical
Technical Support Information Belkin internal use only
The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.
UPPER LAYER SWITCHING
52-20-40 DATA COMMUNICATIONS MANAGEMENT UPPER LAYER SWITCHING Gilbert Held INSIDE Upper Layer Operations; Address Translation; Layer 3 Switching; Layer 4 Switching OVERVIEW The first series of LAN switches
- Hubs vs. Switches vs. Routers -
1 Layered Communication - Hubs vs. Switches vs. Routers - Network communication models are generally organized into layers. The OSI model specifically consists of seven layers, with each layer representing
Howstuffworks "How LAN Switches Work" Click here to go back to the normal view!
Page 1 of 17 Search ComputerStuff AutoStuff ElectronicsStuff ScienceStuff HomeStuff EntertainmentStuff MoneyStuff TravelStuff Main > Computer > Hardware Click here to go back to the normal view! How LAN
Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup.
CEN 007C Computer Networks Fundamentals Instructor: Prof. A. Helmy Homework : Network Layer Assigned: Nov. 28 th, 2011. Due Date: Dec 8 th, 2011 (to the TA) 1. ( points) What are the 2 most important network-layer
Packet Tracer 3 Lab VLSM 2 Solution
Packet Tracer 3 Lab VLSM 2 Solution Objective Create a simulated network topology using Packet Tracer Design an IP addressing scheme using a Class B subnetwork address and VLSM Apply IP addresses to the
College 5, Routing, Internet. Host A. Host B. The Network Layer: functions
CSN-s 5/1 College 5, Routing, Internet College stof 1 Inleiding: geschiedenis, OSI model, standaarden, ISOC/IETF/IRTF structuur Secties: 1.2, 1.3, 1.4, 1.5 2 Fysieke laag: Bandbreedte/bitrate Secties:
Table of Contents. Cisco How Does Load Balancing Work?
Table of Contents How Does Load Balancing Work?...1 Document ID: 5212...1 Introduction...1 Prerequisites...1 Requirements...1 Components Used...1 Conventions...1 Load Balancing...1 Per Destination and
Management Software. Web Browser User s Guide AT-S106. For the AT-GS950/48 Gigabit Ethernet Smart Switch. Version 1.0.0. 613-001339 Rev.
Management Software AT-S106 Web Browser User s Guide For the AT-GS950/48 Gigabit Ethernet Smart Switch Version 1.0.0 613-001339 Rev. A Copyright 2010 Allied Telesis, Inc. All rights reserved. No part of
Communications and Computer Networks
SFWR 4C03: Computer Networks and Computer Security January 5-8 2004 Lecturer: Kartik Krishnan Lectures 1-3 Communications and Computer Networks The fundamental purpose of a communication system is the
Wide Area Networks. Learning Objectives. LAN and WAN. School of Business Eastern Illinois University. (Week 11, Thursday 3/22/2007)
School of Business Eastern Illinois University Wide Area Networks (Week 11, Thursday 3/22/2007) Abdou Illia, Spring 2007 Learning Objectives 2 Distinguish between LAN and WAN Distinguish between Circuit
APPLICATION NOTE 210 PROVIDER BACKBONE BRIDGE WITH TRAFFIC ENGINEERING: A CARRIER ETHERNET TECHNOLOGY OVERVIEW
PROVIDER BACKBONE BRIDGE WITH TRAFFIC ENGINEERING: A CARRIER ETHERNET TECHNOLOGY OVERVIEW By Thierno Diallo, Product Specialist Originally designed as a local-area network (LAN) communication protocol,
Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)
Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol
TRILL for Data Center Networks
24.05.13 TRILL for Data Center Networks www.huawei.com enterprise.huawei.com Davis Wu Deputy Director of Switzerland Enterprise Group E-mail: [email protected] Tel: 0041-798658759 Agenda 1 TRILL Overview
Introduction to IP Multicast Routing
Introduction to IP Multicast Routing by Chuck Semeria and Tom Maufer Abstract The first part of this paper describes the benefits of multicasting, the Multicast Backbone (MBONE), Class D addressing, and
Introduction to Routing and Packet Forwarding. Routing Protocols and Concepts Chapter 1
Introduction to Routing and Packet Forwarding Routing Protocols and Concepts Chapter 1 1 1 Objectives Identify a router as a computer with an OS and hardware designed for the routing process. Demonstrate
How To Learn Cisco Cisco Ios And Cisco Vlan
Interconnecting Cisco Networking Devices: Accelerated Course CCNAX v2.0; 5 Days, Instructor-led Course Description Interconnecting Cisco Networking Devices: Accelerated (CCNAX) v2.0 is a 60-hour instructor-led
Final Exam. Route Computation: One reason why link state routing is preferable to distance vector style routing.
UCSD CSE CS 123 Final Exam Computer Networks Directions: Write your name on the exam. Write something for every question. You will get some points if you attempt a solution but nothing for a blank sheet
Administrative Distance
RIP is a distance vector routing protocol. It shares routing information through the local broadcast in every 30 seconds. In this tutorial we will explain RIP routing fundamentals with examples such as
GregSowell.com. Mikrotik Routing
Mikrotik Routing Static Dynamic Routing To Be Discussed RIP Quick Discussion OSPF BGP What is Routing Wikipedia has a very lengthy explanation http://en.wikipedia.org/wiki/routing In the context of this
Building Secure Network Infrastructure For LANs
Building Secure Network Infrastructure For LANs Yeung, K., Hau; and Leung, T., Chuen Abstract This paper discusses the building of secure network infrastructure for local area networks. It first gives
Link-State Routing Protocols
Link-State Routing Protocols Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Objectives Link-state routing protocol Single-area OSPF concepts Single-area OSPF
Network Layer IPv4. Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS. School of Computing, UNF
Network Layer IPv4 Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF IPv4 Internet Protocol (IP) is the glue that holds the Internet together.
QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)
QoS Switching H. T. Kung Division of Engineering and Applied Sciences Harvard University November 4, 1998 1of40 Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p
Contents. Load balancing and high availability
White Paper Load Balancing in GateDefender Performa The information contained in this document represents the current view of Panda Software International, S.L on the issues discussed herein as of the
640-816: Interconnecting Cisco Networking Devices Part 2 v1.1
640-816: Interconnecting Cisco Networking Devices Part 2 v1.1 Course Introduction Course Introduction Chapter 01 - Small Network Implementation Introducing the Review Lab Cisco IOS User Interface Functions
Chapter 4. Distance Vector Routing Protocols
Chapter 4 Distance Vector Routing Protocols CCNA2-1 Chapter 4 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.
Virtual LANs. http://www.cis.ohio-state.edu/~jain/cis788-97/ or http://www.netlab.ohio-state.edu/~jain/cis788-97/ Raj Jain
Virtual LANs Professor of Computer and Information Sciences Please download and print the handouts from: http://www.cis.ohio-state.edu/~jain/cis788-97/ or http://www.netlab.ohio-state.edu/~jain/cis788-97/
- Multiprotocol Label Switching -
1 - Multiprotocol Label Switching - Multiprotocol Label Switching Multiprotocol Label Switching (MPLS) is a Layer-2 switching technology. MPLS-enabled routers apply numerical labels to packets, and can
Overview of Routing between Virtual LANs
Overview of Routing between Virtual LANs This chapter provides an overview of virtual LANs (VLANs). It describes the encapsulation protocols used for routing between VLANs and provides some basic information
Course Contents CCNP (CISco certified network professional)
Course Contents CCNP (CISco certified network professional) CCNP Route (642-902) EIGRP Chapter: EIGRP Overview and Neighbor Relationships EIGRP Neighborships Neighborship over WANs EIGRP Topology, Routes,
Transport and Network Layer
Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a
LAN Topologies C H A P T E R. Unicast
C H A P T E R 2 LAN Topologies The application in use, such as multimedia, database updates, e-mail, or file and print sharing, generally determines the type of data transmission. LAN transmissions fit
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea ([email protected]) Senior Solutions Architect, Brocade Communications Inc. Jim Allen ([email protected]) Senior Architect, Limelight
Multi-site Datacenter Network Infrastructures
Multi-site Datacenter Network Infrastructures Petr Grygárek rek 1 Why Multisite Datacenters? Resiliency against large-scale site failures (geodiversity) Disaster recovery Easier handling of planned outages
Chapter 9. IP Secure
Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.
Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets)
Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) The diagram below illustrates four routers on the Internet backbone along with two companies that have gateways for their internal
Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur
Module 7 Routing and Congestion Control Lesson 4 Border Gateway Protocol (BGP) Specific Instructional Objectives On completion of this lesson, the students will be able to: Explain the operation of the
Configuring a Gateway of Last Resort Using IP Commands
Configuring a Gateway of Last Resort Using IP Commands Document ID: 16448 Contents Introduction Prerequisites Requirements Components Used Conventions ip default gateway ip default network Flag a Default
8.2 The Internet Protocol
TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface
Virtual PortChannels: Building Networks without Spanning Tree Protocol
. White Paper Virtual PortChannels: Building Networks without Spanning Tree Protocol What You Will Learn This document provides an in-depth look at Cisco's virtual PortChannel (vpc) technology, as developed
Internet Protocol version 4 Part I
Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents
Advanced VSAT Solutions Bridge Point-to-Multipoint (BPM) Overview
2114 West 7 th Street Tempe, AZ 85281 USA Voice +1.480.333.2200 E-mail [email protected] Web www.comtechefdata.com Advanced VSAT Solutions Bridge Point-to-Multipoint (BPM) Overview January 2014 2014
IP Addressing Introductory material.
IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport
ENTERASYS WEBVIEW WEB-BASED MANAGEMENT FOR THE VH-2402S/VH-2402S2 WEB MANAGEMENT GUIDE
ENTERASYS WEBVIEW WEB-BASED MANAGEMENT FOR THE VH-2402S/VH-2402S2 WEB MANAGEMENT GUIDE 9033821 Notice NOTICE Enterasys Networks reserves the right to make changes in specifications and other information
Route Discovery Protocols
Route Discovery Protocols Columbus, OH 43210 [email protected] http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF
