VXLAN: Scaling Data Center Capacity. White Paper
|
|
|
- Virginia Perry
- 10 years ago
- Views:
Transcription
1 VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where VXLAN can be used to implement a virtualized Infrastructure. Arista, Broadcom, Intel, VMware and others developed the VXLAN specification to improve scaling in the virtualized Data Center. A key benefit of virtualization, especially in the case of VMware s vsphere, is the ability to move virtual machines (VMs) among data center servers while the VM is running! This feature, called stateful or live vmotion, simplifies server administration and provisioning without impacting VM functionality or availability. To support vmotion, VMs must always remain in their native IP subnet. This guarantees network connectivity from the VM to users on the rest of the network. Unfortunately, IP subnetting limits the VM mobility domain to the cluster of vsphere servers whose vswitches are on identical subnets. As an example, if a systems administrator wants to move a VM to an underutilized server, he has to make sure that vmotion won t break the VM s network connections. This normally isn t a problem for small clusters of subnets, but as the number of subnets, VMs and servers grow, administrators will run into IP subnet roadblocks that limit vmotion. VXLAN Use Cases: VXLAN s layer 2 tunneling feature overcomes IP subnetting limitations, allowing administrators to move VMS to any server in the data center, regardless of the data center s subnetting scheme. This allows 1
2 administrators to implement a reliable L3 architecture in the data center while also supporting VM mobility across all the servers in the data center. Application Examples: Hosting provider provisioning a cloud for its customer VM Farm that has outgrown its IP address space but wants to preserve the data center network architecture Cloud service provider who s multi-tenant offering needs to scale beyond 802.1q VLANS. Fundamentally, VXLAN provides mechanisms to aggregate and tunnel multiple layer 2 (sub)networks across a Layer 3 infrastructure. The VXLAN base case is to connect two or more layer three network domains and make them look like a common layer two domain. This allows virtual machines on different networks to communicate as if they were in the same layer 2 subnet. Using Virtual Tunnel End Points (VTEPs) to transport multiple virtual networks VXLAN Implementation: The network infrastructure must support the following to support VXLANS: Multicast support: IGMP and PIM Layer 3 routing protocol: OSPF, BGP, IS-IS For the most part, networking devices process VXLAN traffic transparently. That is, IP encapsulated traffic is switched or routed as any IP traffic would be. VXLAN gateways, also called Virtual Tunnel End Points (VTEP), provide the encapsulating/de-encapsulating services central to VXLAN. VTEPS can be virtual bridges in the hypervisor, VXLAN aware VM applications or VXLAN capable switching hardware. VTEPs are key to virtualizing networks across the existing data center infrastructure. 2
3 Well, not really! Each VXLAN network segment is associated with a unique 24bit VXLAN Network Identifier, or VNI. The 24 bit address space allows scaling virtual networks beyond the 4096 available with 802.1Q to 16.7 million possible virtual networks. However, multicast and network hardware limitations will reduce the useable number of virtual networks in most deployments. VMs in a logical L2 domain use the same subnet and are mapped to a common VNI. It s the L2 to VNI mapping that lets VMs communicate with one another. Note that VXLAN doesn t change layer 3 addressing schemes. IP addressing rules employed in a physical L2 still apply to the virtual networks. VXLANs maintain VM identity uniqueness by combining the VM s MAC address and its VNI. This is interesting because it allows for duplicate MAC addresses to exist in a datacenter domain. The only restriction is that duplicate MACs cannot exist on the same VNI. Virtual machines on a VNI subnet don t require any special configuration to support VXLAN because the encap/decap and VNI mapping are managed by the VTEP built into the hypervisor. VXLAN capable switching platforms are similarly responsible for the encap/decap overhead of 802.1q attached network devices. The VTEP must be configured with the layer 2 or ip subnet to VNI network mappings as well as VNI to IP multicast groups. The former mapping allows VTEPS to build forwarding tables for VNI/MAC traffic flows and the latter allows VTEPs to emulate broadcast/multicast functions across the overlay network. Synchronization of VTEP configurations can be automated with common configuration management tools like RANCID, or they can be managed through VMware s vcenter Orchestrator, Open vswitch or other systems. VXLAN frame encapsulation and forwarding: With these elements in place, the VTEP executes its forwarding rules: 1) If the source and destination MAC addresses live on the same host, traffic is locally switched through the vswitch and no VXLAN encap/decap is performed. 2) If the destination MAC address live is not on the ESX host, frames are encapsulated in the appropriate VXLAN header by the source VTEP and are forwarded to the destination VTEP based on its local table. The destination VTEP will unbundle the inner frame from the VXLAN header and deliver it on to the recipient VM. 3) For unknown unicast or broadcast/multicast traffic, the local VTEP encapsulates the frame in a VXLAN header and multicasts the encapsulated frame to the VNI multicast address that is assigned to the VNI at the time of creation. This includes all ARPs, Boot-p/DHCP requests, etc. 3
4 VTEPs on other hosts receive the multicast frame and process them much the same way unicast traffic is (see note 2 above). The implementation of this tunneling scheme is relatively simple compared to other schemes, such as MPLS or OTV, because the administrator only needs to configure VNI or IP mappings and multicast addresses. The rest is managed by the VTEPs. Here are additional details of the frame format: VXLAN header format Ethernet header: Destination address - This is set to the MAC address of the destination VTEP if its on the same subnet. If the VTEP is on a different subnet the address is set to the next hop device, usually a router. VLAN -This is optional for a VXLAN implementation. It will default to the 802.1Q Tagged Prototocol Identifier (TPUD) Ethertype 0X8100 and has an associated VLAN ID tag. Ethertype This is set to 0X0800 to denote an IPv4 payload packet. There s currently no IPV6 support yet but it s under investigation future deployment. IP Header: Protocol This is set to 0! 11 to indicate it s a UDP packet. Source IP This is set to the VTEP source IP address Destination IP This is set to the destination VTEP IP address. If unknown/unlearned or is a broad/multi-cast address, then VXLAN simulates a network broadcast using its multicast group. Here s a brief outline: a) Destination IP is replaced by the IP multicast group that corresponds to the VNI of the source virtual machine. b) Frame is multicast and All VTEPs on the VNI multicast group receive the frame. They in turn unbundle the frame, learn the source ID and VNI mapping for future use and then forward or drop the packet based on the frame type and local forwarding table information. c) The VTEP hosting the target virtual machine will encapsulate and forward the virtual machines reply to the sourcing VTEP. d) The source VTEP receives the response and also caches the ID and VNI mapping for future use. UDP header: Source Port -Set by transmitting VTEP. This value can be hashed from the bundled Ethernet headers so that port channel or ecmp hashing algorithms can leverage this value for traffic balancing. 4
5 VXLAN Port -VXLAN IANA port. Vendor specific. UDP Checksum - Should be set by VTEP source to 0! If the receiving VTEP receives a checksum that isn t 0! 0000, the frame should be checked and discarded if checksum fails. VXLAN Header: VXLAN Flags - Aside from bit 3, the VNI bit, all reserved bits set to zero. The VNI bit is set to 1 for a valid VNI. VNI This 24-bit field is the VXLAN network ID. Reserved Reserved fields of 24 and 8 bits that are set to zero. VXLAN packet walkthrough: VXLAN: VM to VM communication Here s a packet walkthrough of a session initiated between VMs 1 and 2 residing on different hosts in different IP subnets. We assume bring up state: no associations have been learned yet. VM1 sends an ARP packet requesting the MAC address associated with The ARP is encapsulated in a Multicast packet by VTEP1 and is multicast to the group associated to VNI 864. All VTEPs associated with VNI 864 receive the packet and add the VTEP1/VM1 MAC mapping to their tables VTEP2 receives the multicast packet, unbundles the frame and floods it to the port groups in VNI 864. VM2 receives the ARP and responds to VM1 with its MAC address. 5
6 VTEP2 encapsulates the response as a unicast IP packet and forwards it to VTEP1. The response is unicast since VTEP 2 has learned the VTEP1/VM1 MAC mapping from the original simulated ARP. VTEP1 receives, unbundles and forwards the response packet to VM1. At this point, communications between VM1 and 2 are established and associations are programmed into all relevant state machines. For any further unicast traffic being sourced from destined to , VTEP 1 will take the packet and prepend the following headers: a. VNI VXLAN header = 864. b. Standard UDP header with the UDP checksum set to 0! 0000 and the VXLAN destination port set to the correct IANA port based on vendor. c. Destination IP set to the IP address of VTEP 2 and the protocol ID set to UDP, or 0x011. d. Standard MAC header with the next hop MAC address. (In the above example, the next hop is the router interface with MAC address 00:13:73: 0C: 76: 24.) VTEP2 will receive the packet by way of the intermediary router. The unbundling process is triggered by the UDP header value. VTEP 2 now passes the frame to the Vswitch and port groups mapped to VNI 864. The frame is then switched to VM2 for processing. All return traffic is processed in a mirror of the above example. Implementation Considerations: Network datagram payloads and bandwidth utilization: The VXLAN encapsulation header adds 50 bytes to the overall size of an Ethernet frame. Therefore it is imperative the infrastructure support jumbo frames. One should also consider the increased bandwidth used to support VXLAN traffic. Juxtaposing multiple networks with an increased packet size will consume more bandwidth so its prudent to implement this scheme over 10Gb or higher capacity network technologies. Using standard IP datagrams helps VXLAN offer options for implementing long distance vmotion or High Availability (HA). VXLAN frames even take information from the embedded packet to add variability in its packet header to aid load-sharing algorithms. However, if the network designer is interested in leveraging VXLANs in disaster recovery or remote mirrored data center applications, its important to ensure that VMWare vmotion/ha heartbeat round trip delay not exceed 10 milliseconds. Designers can leverage high bandwidth, low latency switching with traffic prioritization services to fulfill these requirements and extend the virtualized data center. Multicast requirements: As previously mentioned, IP multicast services are used to simulate broadcast, unknown unicast and multicasts within the VXLAN network. This is required for VXLANs. While not required, the current recommended configuration is to map one multicast group to each VNI. This ensures MAC table updates are only sent to VTEPs that require them. It is possible to use only one multicast address for every VNI, but this will effectively flood addresses to VTEPs not needing them and create unnecessary traffic flows in the network. PIM sparse, dense mode and BIDIR all provide multicast capabilities to support VXLANs. While some administrators have concerns with PIM, especially those who experienced network outages due to CPU bound PIM processing, its important to note that modern switching platforms support PIM in hardware and can support large scale PIM deployments without adversely impacting the performance or reliability of the network. 6
7 ARP cache and MAC table considerations: VMs in a VXLAN Network communicate to non-virtual networks through a VTEP. VTEPs can either be a software appliance, like a virtual firewall or VMware vshield, or in a VXLAN capable switch. In either case, if the VTEP provides routing services, the ARP cache must accommodate the number of VMs on the virtual networks it services to avoid unnecessary ARPS. VM traffic encapsulated in VXLAN frames use the MAC IDs of the server s VTEP. This reduces the number of MAC address entries in the data center s physical switches. Ideally, a physical VXLAN network would only be required to learn the MAC addresses for the VTEPs and management interfaces of the hosts within the data center. However, while this may work in smaller scale VM deployments, it is prudent to partition VMs and server clusters in subnets to accommodate the traffic volumes sustainable with up to dozens of VMs per server. Summary table of capabilities: Feature and scaling capability 802.1Q VLAN VXLAN Number of virtual networks 4K: limited by spanning tree scaling 16+ million: limited by the number of multicast groups supported by your network s multicast routers As far as PIM Mcast groups are permitted Network diameter As far as 802.1Q VLANS are permitted Network packet size 1.5K or 9K Add 50 bytes for VXLAN header Multicast requirements None PIM, SM, DM, or Bidir. Number of groups defines number of virtual networks Routing support ARP Cache Mac table Any 802.1Q capable router or switch Limits the VMs supported per VLAN VM MAC addresses count against switch MAC table limits Any router or switch working with Vmware vshield, vedge and any VTEP capable router Cache on vmware or VTEPs limits VMs supported per VNI VTEP MAC addresses count against switch MAC table limits Summary: VXLAN is a powerful tool for extending layer 2 subnets across layer 3 network boundaries. It solves VM portability/vmotion limitations by encapsulating traffic and extending it across L3 gateways, allowing VMs to be hosted by servers residing on foreign IP subnets. VXLANs can also overlay multiple subnets across a data center infrastructure. The number of virtual networks is limited only by the raw bandwidth of the underlying network and the multicast subnets available to simulate broadcast/multicast traffic of the VXLAN network. Given the right hardware, VXLANS can eclipse the 4K VLAN limit of 802.1Q without compromising the stability of the network. VXLANs use established IP transport along with routing for encapsulated traffic. Therefore, link aggregation, loop detection and breaking, and path discovery are resolved through tried and proven OSPF, BGP or IS-IS protocols. VXLANs can work on existing infrastructures without the need to retrofit them. Support from VMware, Intel, Broadcom, Arista, Open vswitch and others guarantees interoperability and avoids vendor lock in. With VXLANs, systems and network administrators can scale cloud virtualization to new levels and serve more users cost effectively. For more information, please visit 7
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS
OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea ([email protected]) Senior Solutions Architect, Brocade Communications Inc. Jim Allen ([email protected]) Senior Architect, Limelight
Extending Networking to Fit the Cloud
VXLAN Extending Networking to Fit the Cloud Kamau WangŨ H Ũ Kamau Wangũhgũ is a Consulting Architect at VMware and a member of the Global Technical Service, Center of Excellence group. Kamau s focus at
CLOUD NETWORKING FOR ENTERPRISE CAMPUS APPLICATION NOTE
CLOUD NETWORKING FOR ENTERPRISE CAMPUS APPLICATION NOTE EXECUTIVE SUMMARY This application note proposes Virtual Extensible LAN (VXLAN) as a solution technology to deliver departmental segmentation, business
Expert Reference Series of White Papers. vcloud Director 5.1 Networking Concepts
Expert Reference Series of White Papers vcloud Director 5.1 Networking Concepts 1-800-COURSES www.globalknowledge.com vcloud Director 5.1 Networking Concepts Rebecca Fitzhugh, VMware Certified Instructor
VMware Network Virtualization Design Guide. January 2013
ware Network Virtualization Technical WHITE PAPER January 2013 ware Network Virtualization Table of Contents Intended Audience.... 3 Overview.... 3 Components of the ware Network Virtualization Solution....
VXLAN Overlay Networks: Enabling Network Scalability for a Cloud Infrastructure
W h i t e p a p e r VXLAN Overlay Networks: Enabling Network Scalability for a Cloud Infrastructure Table of Contents Executive Summary.... 3 Cloud Computing Growth.... 3 Cloud Computing Infrastructure
VXLAN Bridging & Routing
VXLAN Bridging & Routing Darrin Machay [email protected] CHI-NOG 05 May 2015 1 VXLAN VM-1 10.10.10.1/24 Subnet A ESX host Subnet B ESX host VM-2 VM-3 VM-4 20.20.20.1/24 10.10.10.2/24 20.20.20.2/24 Load
Using Network Virtualization to Scale Data Centers
Using Network Virtualization to Scale Data Centers Synopsys Santa Clara, CA USA November 2014 1 About Synopsys FY 2014 (Target) $2.055-2.065B* 9,225 Employees ~4,911 Masters / PhD Degrees ~2,248 Patents
Data Center Infrastructure of the future. Alexei Agueev, Systems Engineer
Data Center Infrastructure of the future Alexei Agueev, Systems Engineer Traditional DC Architecture Limitations Legacy 3 Tier DC Model Layer 2 Layer 2 Domain Layer 2 Layer 2 Domain Oversubscription Ports
Analysis of Network Segmentation Techniques in Cloud Data Centers
64 Int'l Conf. Grid & Cloud Computing and Applications GCA'15 Analysis of Network Segmentation Techniques in Cloud Data Centers Ramaswamy Chandramouli Computer Security Division, Information Technology
How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan
Centec s SDN Switch Built from the Ground Up to Deliver an Optimal Virtual Private Cloud Table of Contents Virtualization Fueling New Possibilities Virtual Private Cloud Offerings... 2 Current Approaches
Virtual PortChannels: Building Networks without Spanning Tree Protocol
. White Paper Virtual PortChannels: Building Networks without Spanning Tree Protocol What You Will Learn This document provides an in-depth look at Cisco's virtual PortChannel (vpc) technology, as developed
Network Virtualization for Large-Scale Data Centers
Network Virtualization for Large-Scale Data Centers Tatsuhiro Ando Osamu Shimokuni Katsuhito Asano The growing use of cloud technology by large enterprises to support their business continuity planning
Advanced VSAT Solutions Bridge Point-to-Multipoint (BPM) Overview
2114 West 7 th Street Tempe, AZ 85281 USA Voice +1.480.333.2200 E-mail [email protected] Web www.comtechefdata.com Advanced VSAT Solutions Bridge Point-to-Multipoint (BPM) Overview January 2014 2014
VMware NSX @SoftLayer!!
A VMware@SoftLayer CookBook v1.1 April 30, 2014 VMware NSX @SoftLayer Author(s) & Contributor(s) (IBM) Shane B. Mcelligott Dani Roisman (VMware) Merlin Glynn, [email protected] Chris Wall Geoff Wing Marcos
hp ProLiant network adapter teaming
hp networking june 2003 hp ProLiant network adapter teaming technical white paper table of contents introduction 2 executive summary 2 overview of network addressing 2 layer 2 vs. layer 3 addressing 2
Multitenancy Options in Brocade VCS Fabrics
WHITE PAPER DATA CENTER Multitenancy Options in Brocade VCS Fabrics As cloud environments reach mainstream adoption, achieving scalable network segmentation takes on new urgency to support multitenancy.
SOFTWARE-DEFINED NETWORKING AND OPENFLOW
SOFTWARE-DEFINED NETWORKING AND OPENFLOW Freddie Örnebjär TREX Workshop 2012 2012 Brocade Communications Systems, Inc. 2012/09/14 Software-Defined Networking (SDN): Fundamental Control
NSX TM for vsphere with Arista CloudVision
ARISTA DESIGN GUIDE NSX TM for vsphere with Arista CloudVision Version 1.0 August 2015 ARISTA DESIGN GUIDE NSX FOR VSPHERE WITH ARISTA CLOUDVISION Table of Contents 1 Executive Summary... 4 2 Extending
Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.
Data Networking and Architecture The course focuses on theoretical principles and practical implementation of selected Data Networking protocols and standards. Physical network architecture is described
How To Orchestrate The Clouddusing Network With Andn
ORCHESTRATING THE CLOUD USING SDN Joerg Ammon Systems Engineer Service Provider 2013-09-10 2013 Brocade Communications Systems, Inc. Company Proprietary Information 1 SDN Update -
Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols
Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various
What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates
What is SDN? And Why Should I Care? Jim Metzler Vice President Ashton Metzler & Associates 1 Goals of the Presentation 1. Define/describe SDN 2. Identify the drivers and inhibitors of SDN 3. Identify what
ConnectX -3 Pro: Solving the NVGRE Performance Challenge
WHITE PAPER October 2013 ConnectX -3 Pro: Solving the NVGRE Performance Challenge Objective...1 Background: The Need for Virtualized Overlay Networks...1 NVGRE Technology...2 NVGRE s Hidden Challenge...3
vsphere Networking vsphere 6.0 ESXi 6.0 vcenter Server 6.0 EN-001391-01
vsphere 6.0 ESXi 6.0 vcenter Server 6.0 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more
Ethernet. Ethernet. Network Devices
Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking
White Paper. Juniper Networks. Enabling Businesses to Deploy Virtualized Data Center Environments. Copyright 2013, Juniper Networks, Inc.
White Paper Juniper Networks Solutions for VMware NSX Enabling Businesses to Deploy Virtualized Data Center Environments Copyright 2013, Juniper Networks, Inc. 1 Table of Contents Executive Summary...3
Software Defined Network (SDN)
Georg Ochs, Smart Cloud Orchestrator ([email protected]) Software Defined Network (SDN) University of Stuttgart Cloud Course Fall 2013 Agenda Introduction SDN Components Openstack and SDN Example Scenario
Scalable Approaches for Multitenant Cloud Data Centers
WHITE PAPER www.brocade.com DATA CENTER Scalable Approaches for Multitenant Cloud Data Centers Brocade VCS Fabric technology is the ideal Ethernet infrastructure for cloud computing. It is manageable,
VMware. NSX Network Virtualization Design Guide
VMware NSX Network Virtualization Design Guide Table of Contents Intended Audience... 3 Overview... 3 Components of the VMware Network Virtualization Solution... 4 Data Plane... 4 Control Plane... 5 Management
WHITE PAPER. Network Virtualization: A Data Plane Perspective
WHITE PAPER Network Virtualization: A Data Plane Perspective David Melman Uri Safrai Switching Architecture Marvell May 2015 Abstract Virtualization is the leading technology to provide agile and scalable
Cloud Networking Disruption with Software Defined Network Virtualization. Ali Khayam
Cloud Networking Disruption with Software Defined Network Virtualization Ali Khayam In the next one hour Let s discuss two disruptive new paradigms in the world of networking: Network Virtualization Software
IP - The Internet Protocol
Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network
Avaya VENA Fabric Connect
Avaya VENA Fabric Connect Executive Summary The Avaya VENA Fabric Connect solution is based on the IEEE 802.1aq Shortest Path Bridging (SPB) protocol in conjunction with Avaya extensions that add Layer
IP Multicasting. Applications with multiple receivers
IP Multicasting Relates to Lab 10. It covers IP multicasting, including multicast addressing, IGMP, and multicast routing. 1 Applications with multiple receivers Many applications transmit the same data
Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004
5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 1 43 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same
Juniper / Cisco Interoperability Tests. August 2014
Juniper / Cisco Interoperability Tests August 2014 Executive Summary Juniper Networks commissioned Network Test to assess interoperability, with an emphasis on data center connectivity, between Juniper
Introduction to IP v6
IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation
vsphere Networking ESXi 5.0 vcenter Server 5.0 EN-000599-01
ESXi 5.0 vcenter Server 5.0 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more recent editions
A Dell Technical White Paper Dell Storage Engineering
Networking Best Practices for Dell DX Object Storage A Dell Technical White Paper Dell Storage Engineering THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND
EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE
EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE EXECUTIVE SUMMARY Enterprise network managers are being forced to do more with less. Their networks are growing in size and complexity. They need
Roman Hochuli - nexellent ag / Mathias Seiler - MiroNet AG
Roman Hochuli - nexellent ag / Mathias Seiler - MiroNet AG North Core Distribution Access South North Peering #1 Upstream #1 Series of Tubes Upstream #2 Core Distribution Access Cust South Internet West
ADVANCED NETWORK CONFIGURATION GUIDE
White Paper ADVANCED NETWORK CONFIGURATION GUIDE CONTENTS Introduction 1 Terminology 1 VLAN configuration 2 NIC Bonding configuration 3 Jumbo frame configuration 4 Other I/O high availability options 4
The IP Transmission Process. V1.4: Geoff Bennett
The IP Transmission Process V1.4: Geoff Bennett Contents Communication Between Hosts Through a MAC Bridge Through a LAN Switch Through a Router The tutorial is divided into four sections. Section 1 looks
Cisco Virtual Security Gateway for Nexus 1000V Series Switch
Data Sheet Cisco Virtual Security Gateway for Nexus 1000V Series Switch Product Overview Cisco Virtual Security Gateway (VSG) for Nexus 1000V Series Switch is a virtual appliance that provides trusted
VXLAN, Enhancements, and Network Integration
VXLAN, Enhancements, and Network Integration Apricot 2014 - Malaysia Eddie Parra Principal Engineer, Juniper Networks Router Business Unit (RBU) [email protected] Legal Disclaimer: This statement of product
A Case for Overlays in DCN Virtualization Katherine Barabash, Rami Cohen, David Hadas, Vinit Jain, Renato Recio and Benny Rochwerger IBM
Presenter: Vinit Jain, STSM, System Networking Development, IBM System & Technology Group A Case for Overlays in DCN Virtualization Katherine Barabash, Rami Cohen, David Hadas, Vinit Jain, Renato Recio
Virtualization, SDN and NFV
Virtualization, SDN and NFV HOW DO THEY FIT TOGETHER? Traditional networks lack the flexibility to keep pace with dynamic computing and storage needs of today s data centers. In order to implement changes,
Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)
QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than
CONNECTING PHYSICAL AND VIRTUAL WORLDS WITH VMWARE NSX AND JUNIPER PLATFORMS
White Paper CONNECTING PHYSICAL AND VIRTUAL WORLDS WITH WARE NSX AND JUNIPER PLATFORMS A Joint Juniper Networks-ware White Paper Copyright 2014, Juniper Networks, Inc. 1 Connecting Physical and Virtual
Redefining Data Center Switching. UK Network Operators Group
Redefining Data Center Switching UK Network Operators Group A bit about Arista Networks 10GbE Switches for the Virtualized Datacenter, but a software company at the core >1200 Customers >300 Employees
Cloud Infrastructure Planning. Chapter Six
Cloud Infrastructure Planning Chapter Six Topics Key to successful cloud service adoption is an understanding of underlying infrastructure. Topics Understanding cloud networks Leveraging automation and
Expert Reference Series of White Papers. VMware vsphere Distributed Switches
Expert Reference Series of White Papers VMware vsphere Distributed Switches [email protected] www.globalknowledge.net VMware vsphere Distributed Switches Rebecca Fitzhugh, VCAP-DCA, VCAP-DCD, VCAP-CIA,
Accelerating Network Virtualization Overlays with QLogic Intelligent Ethernet Adapters
Enterprise Strategy Group Getting to the bigger truth. ESG Lab Review Accelerating Network Virtualization Overlays with QLogic Intelligent Ethernet Adapters Date: June 2016 Author: Jack Poller, Senior
Fibre Channel over Ethernet in the Data Center: An Introduction
Fibre Channel over Ethernet in the Data Center: An Introduction Introduction Fibre Channel over Ethernet (FCoE) is a newly proposed standard that is being developed by INCITS T11. The FCoE protocol specification
Nutanix Tech Note. VMware vsphere Networking on Nutanix
Nutanix Tech Note VMware vsphere Networking on Nutanix Nutanix Virtual Computing Platform is engineered from the ground up for virtualization and cloud environments. This Tech Note describes vsphere networking
20. Switched Local Area Networks
20. Switched Local Area Networks n Addressing in LANs (ARP) n Spanning tree algorithm n Forwarding in switched Ethernet LANs n Virtual LANs n Layer 3 switching n Datacenter networks John DeHart Based on
Optimizing Data Center Networks for Cloud Computing
PRAMAK 1 Optimizing Data Center Networks for Cloud Computing Data Center networks have evolved over time as the nature of computing changed. They evolved to handle the computing models based on main-frames,
TRILL Large Layer 2 Network Solution
TRILL Large Layer 2 Network Solution Contents 1 Network Architecture Requirements of Data Centers in the Cloud Computing Era... 3 2 TRILL Characteristics... 5 3 Huawei TRILL-based Large Layer 2 Network
Network Virtualization and Data Center Networks 263-3825-00 Data Center Virtualization - Basics. Qin Yin Fall Semester 2013
Network Virtualization and Data Center Networks 263-3825-00 Data Center Virtualization - Basics Qin Yin Fall Semester 2013 1 Walmart s Data Center 2 Amadeus Data Center 3 Google s Data Center 4 Data Center
Aerohive Networks Inc. Free Bonjour Gateway FAQ
Aerohive Networks Inc. Free Bonjour Gateway FAQ 1. About the Product... 1 2. Installation... 2 3. Management... 3 4. Troubleshooting... 4 1. About the Product What is the Aerohive s Free Bonjour Gateway?
Why Software Defined Networking (SDN)? Boyan Sotirov
Why Software Defined Networking (SDN)? Boyan Sotirov Agenda Current State of Networking Why What How When 2 Conventional Networking Many complex functions embedded into the infrastructure OSPF, BGP, Multicast,
SOFTWARE-DEFINED NETWORKING AND OPENFLOW
SOFTWARE-DEFINED NETWORKING AND OPENFLOW Eric Choi < [email protected]> Senior Manager, Service Provider Business Unit, APJ 2012 Brocade Communications Systems, Inc. EPF 7 2012/09/17 Software-Defined Networking
VMware ESX Server 3 802.1Q VLAN Solutions W H I T E P A P E R
VMware ESX Server 3 802.1Q VLAN Solutions W H I T E P A P E R Executive Summary The virtual switches in ESX Server 3 support VLAN (IEEE 802.1Q) trunking. Using VLANs, you can enhance security and leverage
Reference Design: Deploying NSX for vsphere with Cisco UCS and Nexus 9000 Switch Infrastructure TECHNICAL WHITE PAPER
Reference Design: Deploying NSX for vsphere with Cisco UCS and Nexus 9000 Switch Infrastructure TECHNICAL WHITE PAPER Table of Contents 1 Executive Summary....3 2 Scope and Design Goals....3 2.1 NSX VMkernel
Benefits of virtualizing your network
While server virtulization can improve your infrastructure as a whole, it can affect. Extending virtualization to can eliminate any unnecessary impacts and allow you to maximize your virtual investment.
Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.
Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols
Enhancing Cisco Networks with Gigamon // White Paper
Across the globe, many companies choose a Cisco switching architecture to service their physical and virtual networks for enterprise and data center operations. When implementing a large-scale Cisco network,
Data Center Use Cases and Trends
Data Center Use Cases and Trends Amod Dani Managing Director, India Engineering & Operations http://www.arista.com Open 2014 Open Networking Networking Foundation India Symposium, January 31 February 1,
VM-Series for VMware. PALO ALTO NETWORKS: VM-Series for VMware
VM-Series for VMware The VM-Series for VMware supports VMware NSX, ESXI stand-alone and vcloud Air, allowing you to deploy next-generation firewall security and advanced threat prevention within your VMware-based
Virtual Networking with z/vm 5.1.0 Guest LAN and Virtual Switch
Virtual Networking with z/vm 5.1.0 Guest LAN and Virtual Switch HILLGANG March 2005 Dennis Musselwhite, IBM z/vm Development, Endicott, NY Note References to IBM products, programs, or services do not
Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心
Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 1 SDN Introduction Decoupling of control plane from data plane
TRILL for Data Center Networks
24.05.13 TRILL for Data Center Networks www.huawei.com enterprise.huawei.com Davis Wu Deputy Director of Switzerland Enterprise Group E-mail: [email protected] Tel: 0041-798658759 Agenda 1 TRILL Overview
8.2 The Internet Protocol
TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface
How To Set Up A Virtual Network On Vsphere 5.0.5.2 (Vsphere) On A 2Nd Generation Vmkernel (Vklan) On An Ipv5 Vklan (Vmklan)
Best Practices for Virtual Networking Karim Elatov Technical Support Engineer, GSS 2009 VMware Inc. All rights reserved Agenda Best Practices for Virtual Networking Virtual Network Overview vswitch Configurations
VMware NSX Network Virtualization Design Guide. Deploying VMware NSX with Cisco UCS and Nexus 7000
VMware NSX Network Virtualization Design Guide Deploying VMware NSX with Cisco UCS and Nexus 7000 Table of Contents Intended Audience... 3 Executive Summary... 3 Why deploy VMware NSX on Cisco UCS and
Network Simulation Traffic, Paths and Impairment
Network Simulation Traffic, Paths and Impairment Summary Network simulation software and hardware appliances can emulate networks and network hardware. Wide Area Network (WAN) emulation, by simulating
Objectives. The Role of Redundancy in a Switched Network. Layer 2 Loops. Broadcast Storms. More problems with Layer 2 loops
ITE I Chapter 6 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Implement Spanning Tree Protocols LAN Switching and Wireless Chapter 5 Explain the role of redundancy in a converged
CCNA R&S: Introduction to Networks. Chapter 5: Ethernet
CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.
Data Center Interconnects. Tony Sue HP Storage SA David LeDrew - HPN
Data Center Interconnects Tony Sue HP Storage SA David LeDrew - HPN Gartner Data Center Networking Magic Quadrant 2014 HP continues to lead the established networking vendors with respect to SDN with its
White Paper. Advanced Server Network Virtualization (NV) Acceleration for VXLAN
White Paper Advanced Server Network Virtualization (NV) Acceleration for VXLAN August 2012 Overview In today's cloud-scale networks, multiple organizations share the same physical infrastructure. Utilizing
How to Create VLANs Within a Virtual Switch in VMware ESXi
How to Create VLANs Within a Virtual Switch in VMware ESXi I am not responsible for your actions or their outcomes, in any way, while reading and/or implementing this tutorial. I will not provide support
RARP: Reverse Address Resolution Protocol
SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it
vsphere Networking vsphere 5.5 ESXi 5.5 vcenter Server 5.5 EN-001074-02
vsphere 5.5 ESXi 5.5 vcenter Server 5.5 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more
How Network Virtualization can improve your Data Center Security
How Network Virtualization can improve your Data Center Security Gilles Chekroun SDDC, NSX Team EMEA [email protected] 2014 VMware Inc. All rights reserved. Security IT spending Security spending is
Data Center Networking Designing Today s Data Center
Data Center Networking Designing Today s Data Center There is nothing more important than our customers. Data Center Networking Designing Today s Data Center Executive Summary Demand for application availability
Implementing and Troubleshooting the Cisco Cloud Infrastructure **Part of CCNP Cloud Certification Track**
Course: Duration: Price: $ 4,295.00 Learning Credits: 43 Certification: Implementing and Troubleshooting the Cisco Cloud Infrastructure Implementing and Troubleshooting the Cisco Cloud Infrastructure**Part
Connecting to the Cloud with F5 BIG-IP Solutions and VMware VMotion
F5 Technical Brief Connecting to the Cloud with F5 BIG-IP Solutions and VMware VMotion F5 and VMware partner to enable live application and storage migrations between data centers and clouds, over short
How To Manage A Virtualization Server
Brain of the Virtualized Data Center Contents 1 Challenges of Server Virtualization... 3 1.1 The virtual network breaks traditional network boundaries... 3 1.2 The live migration function of VMs requires
Multi-Tenant Isolation and Network Virtualization in. Cloud Data Centers
Multi-Tenant Isolation and Network Virtualization in. Cloud Data Centers Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of
Fiber Channel Over Ethernet (FCoE)
Fiber Channel Over Ethernet (FCoE) Using Intel Ethernet Switch Family White Paper November, 2008 Legal INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
Cisco Dynamic Workload Scaling Solution
Cisco Dynamic Workload Scaling Solution What You Will Learn Cisco Application Control Engine (ACE), along with Cisco Nexus 7000 Series Switches and VMware vcenter, provides a complete solution for dynamic
Layer 3 Routing User s Manual
User s Manual Second Edition, July 2011 www.moxa.com/product 2011 Moxa Inc. All rights reserved. User s Manual The software described in this manual is furnished under a license agreement and may be used
Software Defined Networking using VXLAN
Thomas Richter IBM Research and Development, Linux Technology Center LinuxCon Edinburgh 21-Oct-2013 Software Defined Networking using VXLAN Thomas Richter 2009 IBM Corporation Agenda Vxlan IETF Draft VXLAN
Data Center Convergence. Ahmad Zamer, Brocade
Ahmad Zamer, Brocade SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations
Cisco Nexus 1000V Series Switches
Cisco Nexus 1000V Series Switches Product Overview Cisco Nexus 1000V Series Switches are virtual machine access switches that are an intelligent software switch implementation for VMware vsphere environments
- Hubs vs. Switches vs. Routers -
1 Layered Communication - Hubs vs. Switches vs. Routers - Network communication models are generally organized into layers. The OSI model specifically consists of seven layers, with each layer representing
VMware and Brocade Network Virtualization Reference Whitepaper
VMware and Brocade Network Virtualization Reference Whitepaper Table of Contents EXECUTIVE SUMMARY VMWARE NSX WITH BROCADE VCS: SEAMLESS TRANSITION TO SDDC VMWARE'S NSX NETWORK VIRTUALIZATION PLATFORM
