UM1575 User manual. Spice model tutorial for Power MOSFETs. Introduction
|
|
|
- Kory Milo Nelson
- 9 years ago
- Views:
Transcription
1 User manual Spice model tutorial for Power MOSFETs Introduction This document describes ST s Spice model versions available for Power MOSFETs. This is a guide designed to support user choosing the best model for his goals. In fact, it explains the features of different model versions both in terms of static and dynamic characteristics and simulation performance, in order to find the right compromise between the computation time and accuracy. For example, the self-heating model (V3 version), which accurately reproduces the thermal response of all electrical parameters, requires a considerable simulation effort. Finally, an example shows how the self-heating model works. Spice models describe the characteristics of typical devices and don't guarantee the absolute representation of product specifications and operating characteristics; the datasheet is the only document providing product specifications. Although simulation is a very important tool to evaluate the device s performance, the exact device s behavior in all situations is not predictable, therefore the final laboratory test is necessary. November 2013 Doc ID Rev 1 1/24
2 Spice model versions UM Spice model versions ST provides 6 model versions on each part number: partnumber_v1c partnumber_v1t partnumber_v2 partnumber_v3 partnumber_v4 partnumber_tn V1C version It is the basic model (LEVEL =3) enclosing C oss and C rss modeling through capacitance profile tables. It is an empirical model, and it assumes a 27 C constant temperature. V1T version It comes directly from V1C version and it also includes the package thermal modeling through a thermal equivalent network and presents two additional external thermal nodes T j and T case. This version hasn't the dynamic link between Power MOSFET temperature and internal parameters. V2 version It is more advanced than V1C, in fact it takes into account the temperature dependence and capacitance profiles too. It allows the static and dynamic behavior to be reproduced by user at fixed temperatures. By using this version, the simulation of self-heating effects isn't possible. V3 version It comes directly from V2 version and includes the package thermal model through a thermal equivalent network and presents two additional external thermal nodes: T j and T case. In this version, during each transient, the current power dissipation is calculated and a current proportional to this power is fed into the thermal network. In this way, the voltage at T j node contains all the information about the junction temperature, which changes internal device s parameters. Since it is a monitoring node, usually T j pin is not connected (however, to avoid warning messages on this node, the user has to add a floating wire - see Figure 1). On contrary, T case node has to be connected, either to a constant voltage source Vdc representing the ambient temperature or to a heat sink modeled by its own thermal network (Figure 1). V4 version It comes directly from V3 version considering the device sited in free air. It includes the package thermal modeling through a thermal equivalent network and presents three additional external thermal nodes: T j, T case and T amb. The voltage at T j node and T case node contains all the information about the junction temperature and case temperature which change internal device s parameters. Since they are monitoring nodes, usually T j and T case pins are not connected (however, to avoid warning messages on this node, the user has to add a floating wire - see Figure 1). Conversely, T amb node has to be connected: to a constant voltage source Vdc, representing the ambient temperature. 2/24 Doc ID Rev 1
3 Spice model versions TN version It includes the RC thermal network only, which represents the thermal model of the package. Its symbol has two pins: T j and T case. Figure 1. Self-heating model (V3 version) D TJ D TJ R1 R2 G S Zth Tcase 25 Tamb G S Zth Tcase C1 C2 25 Tamb 0 0 GIPD FSR Note: T j is a monitoring node and it is not connected; T case is connected either by using a Vdc, representing the ambient temperature (on the left-side), or by heat-sink thermal network (on the right-side). Doc ID Rev 1 3/24 24
4 Spice model symbol UM Spice model symbol For each model version, ST provides the appropriate symbol as shown below: Figure 2. Model symbols V1C version V2 version V4 version D G Zth TJ Tcase S Tamb V1T version V3 version TN version TJ D Tcase G Zth TJ 1 TJ TCASE 2 Tcase S GIPD FSR 4/24 Doc ID Rev 1
5 Spice models - instructions to simulate 3 Spice models - instructions to simulate In Spice simulator, user has to upload the device symbol (.OLB file) and the Spice model (.LIB file) to simulate transistors in the schematic. 3.1 Installation In the package model, there are the following files: name.lib text file representing the model library written as a Spice code; name.olb symbol file to use the model into Orcad capture user interface. In Capture open the menu dialog window "Pspice" "Edit Simulation Profile". Go to "Configuration Files" tab and "Library" category. Select the library (*.lib) path by "Browse " button and click to "Add to Design" (see Figure 3) Figure 3. Capture dialog window to select the library (*.lib) GIPD FSR To include the symbol *.olb in the schematic view, open the menu dialog window "Place" "Part" (or simply pressing "P" key in keyboard) and click the "Add Library " button (or pressing Alt+"A") to select the file (see figure below). Doc ID Rev 1 5/24 24
6 Spice models - instructions to simulate UM1575 Figure 4. Capture dialog window to include the symbol (*.olb) Finally, you can simulate your circuit choosing the simulation type and parameters. GIPD FSR 3.2 Typical simulation parameters / options As our models contain many non-linear elements, the standard simulation parameters are often not suitable. The following values can facilitate convergence (set them in dialog window "Pspice" "Edit Simulation Profile" "Options" tab): ABSTOL= 1nA CHGTOL= 1 pc..10 pc ITL1= 150 ITL2= ITL4= RELTOL= (best accuracy of currents) (best accuracy of charges) (DC and bias 'blind' iteration limit) (DC and bias 'best guess' iteration limit) (transient time point iteration limit) (relative accuracy of voltages and currents) Note: If the following error message appears during the simulation of one of device models: ==> INTERNAL ERROR -- Overflow in device... <== you have to edit the 'PSPICE.INI' file by inserting the following line behind the headline [PSPICE] as follows: [PSPICE] MathExceptions = off... DO NOT CHANGE ANY OTHER LINES ALREADY PRESENT 6/24 Doc ID Rev 1
7 A brief description of self-heating model (V3 version) 4 A brief description of self-heating model (V3 version) Power MOSFET s Spice models are behavioral and achieved by fitting simulated data with static and dynamic characterization results. The behavioral model is the best approach because it reproduces the electrical and thermal behavior of the power device through a simplified physical description of the device consisting in a set of equations ruling its behavior at terminal level. The self-heating model (V3 version) includes different analog behavioral models (ABM) to describe resistors, voltage and current generator, which are temperature-dependent. A curve fit optimization algorithm extracts the mathematical expression for ABM, which yields a good representation of Power MOSFET s static and dynamic characteristics. In Figure 5, the self-heating spice model (V3 version) schematic is shown. Doc ID Rev 1 7/24 24
8 A brief description of self-heating model (V3 version) UM1575 Figure 5. Power MOSFET self-heating model schematic R_g3 Rdd11 G63 IN+ IN- G_Rmos OUT+ OUT- 0Vdc IN+ IN- G_Rs OUT+ OUT- 1 IN+ IN- E22 OUT+ OUT- V_sense3 RTj13 RTj14 RTj15 RTj16 RTj6 T1 T2 T3 T4 IN+ ss IN- OUT+ Cj1 Cj2 Cj3 Cj4 Cj5 OUT- G_power R_Gpower Ecap (table) IN+ IN- OUT+ OUT- IN+ IN- E2 OUT+ OUT- 2 Lg g2 1 2 Rg6 IN+ OUT+ IN- OUT- Gcdg Rdd9 Rdd10 0Vdc Gate Crss modeling alfa 0 40 Cref 50 V2 0 R_cgs Rcap g Crss modeling CGS 0 DC modelling 1 RLd d1k d1y d1x d1 dd d IN+ IN- OUT+ OUT- G_Rmos s Ls 3 Drain Ld Coss modeling Rd Rx1 Vread2 R_Gdiode R_Rmos DC diode modeling d1z G60 OUT+ IN+ OUT- IN- G_R_did G59 OUT+ IN+ OUT- IN- G_R_did Ecap2 (table) IN+ IN- OUT+ OUT alfa2 502 Cref2 V22 Rcap2 R_ds Coss modelling IN+ IN- Gcdg2 OUT+ OUT- OUT+ OUT- d1bvdss1 sx OUT+ IN+ OUT- IN- G_BVdss R_GBDSS BVdss modelling 0 C_Cds 0 d d_dedep edep R_edep OUT+ OUT- IN+ IN- E_E001 Recovery diode modelling R_R003 aa 0 C 0 R_R001 ba IN+ IN- E_E001 Tj Cj6 Tcase RLs 0 0 Source Thermal impedance modeling GIPD FSR 8/24 Doc ID Rev 1
9 A brief description of self-heating model (V3 version) 4.1 Thermal network Thermal impedance network represents the basic element, which is featured inside the macro-model. It is used to transform the power dissipated inside the junction into a voltage representing the temperature (T j ). Figure 6. Physical structure The voltage drop across the network is detected and used as emitter value inside behavioral equations used to model other parameters. Thermal impedance is the experimental data required to obtain the Cauer model (see Figure 6). Figure 7. Thermal impedance profile and Cauer model Doc ID Rev 1 9/24 24
10 A brief description of self-heating model (V3 version) UM Experimental data used to fit the model The model implementation requires the following experimental data: Typ. output characteristics at different temperatures Typ. transfer characteristics at different temperatures Typ. drain source breakdown voltage at different temperatures Typ. drain source on state resistance vs temperature Typ. gate threshold voltage vs temperature Typ. forward diode characteristics Typ. capacitances profile vs VDS Typ. gate charge Typ. switching on resistive load Typ. switching on inductive load Typ. free-wheeling diode characteristics Unclamped inductive switching Switching losses vs gate resistance Equivalent capacitance time related (C o(tr) ) Equivalent capacitance energy related (C o(er) ) Max. transient thermal impedance Figure 8. Simulated and measured output characteristics Figure 9. Simulated curves at V GS = 10 V 10/24 Doc ID Rev 1
11 A brief description of self-heating model (V3 version) Figure 10. Normalized R DS(on) vs temperature Figure 11. Normalized gate threshold voltage vs temperature RDS(on) (norm) 2.1 ID=2.5A AM06484v1 VGS(th) (norm) 1.10 ID=250µA AM06483v TJ( C) TJ( C) 4.3 C OSS and C RSS model Charge and current formulas for a linear capacitor are: Q = C V it () = C dv dt For a non linear (voltage-dependent) time-independent capacitor these formulas become: Q dv = C( V) dv it () = CV ( ) dt The C(V) function is obtained by lookup table. Figure 12. Capacitance profiles C (pf) AM06481v Ciss Coss Crss VDS(V) Doc ID Rev 1 11/24 24
12 A brief description of self-heating model (V3 version) UM Example of dynamic characteristics Gate charge Figure 13. Gate charge - schematic Rload1 Ipulse1 R Vdd1 GIPD FSR Figure 14. Gate charge - simulated waveforms 12/24 Doc ID Rev 1
13 A brief description of self-heating model (V3 version) Figure 15. Gate charge - experimental waveforms GIPD FSR Switching on inductive load Figure 16. Switching on inductive load - schematic Iload1 Lpar1 R127 Vdd1 Rgate1 Vpulse1 L33 0 GIPD FSR Doc ID Rev 1 13/24 24
14 A brief description of self-heating model (V3 version) UM1575 Figure 17. Switching on inductive load - simulated waveforms Figure 18. Switching on inductive load - experimental waveforms GIPD FSR 14/24 Doc ID Rev 1
15 A brief description of self-heating model (V3 version) E off vs R gate Figure 19. E off vs R gate - schematic Iload1 Lpar1 R127 Vdd1 Rgate1 Vpulse1 L33 0 GIPD FSR Figure 20. E off vs R gate - experimental waveforms GIPD FSR Doc ID Rev 1 15/24 24
16 A brief description of self-heating model (V3 version) UM1575 Table 1. E off (comparison simulated/measured) R G (Ω) Measured E off (µj) Simulated E off (µj) Recovery diode Figure 21. Recovery diode - schematic Iload1 Lpar1 R127 Vdd1 Rgate1 Vpulse1 L33 0 GIPD FSR 16/24 Doc ID Rev 1
17 A brief description of self-heating model (V3 version) Figure 22. Recovery diode - simulated waveforms Doc ID Rev 1 17/24 24
18 A brief description of self-heating model (V3 version) UM Unclamped inductive switching Table 2. Simulated test conditions Test T C Energy I drain ΔT j C 0.3 J 83 A 83 C C 0.3 J 203 A 133 C Figure 23. Unclamped inductive switching - schematic Figure 24. Unclamped inductive switching - simulated waveforms (test 1) GIPD FSR 18/24 Doc ID Rev 1
19 A brief description of self-heating model (V3 version) Figure 25. Unclamped inductive switching - simulated waveforms (test 2) GIPD FSR Figure 26. Unclamped inductive switching - experimental waveforms GIPD FSR Doc ID Rev 1 19/24 24
20 A brief description of self-heating model (V3 version) UM Short-circuit test Figure 27. Short-circuit test - schematic Figure 28. Short-circuit test - waveforms 20/24 Doc ID Rev 1
21 A brief description of self-heating model (V3 version) Flyback simulated by self-heating model Figure 29. Flyback simulated by self-heating model - schematic Figure 30. Flyback simulated by self-heating model - simulated waveforms GIPD FSR Doc ID Rev 1 21/24 24
22 A brief description of self-heating model (V3 version) UM1575 where: Blue line = (Tx current sec)/10 Black line = (Tx current Pri) Red line = MOSFET drain current If you have further questions, feel free to contact us via our local sale offices. 22/24 Doc ID Rev 1
23 Revision history 5 Revision history Table 3. Document revision history Date Revision Changes 25-Nov Initial release. Doc ID Rev 1 23/24 24
24 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America 24/24 Doc ID Rev 1
Description. Table 1. Device summary
2 A positive voltage regulator IC Description Datasheet - production data Features TO-220 Output current up to 2 A Output voltages of 5; 7.5; 9; 10; 12; 15; 18; 24 V Thermal protection Short circuit protection
EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at www.hest ore.hu.
EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at www.hest ore.hu. 2N3055, MJ2955 Complementary power transistors Features Datasheet - production
Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Description
Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Data brief Low-drop post regulator and high-efficiency step-up PWM with integrated power N-MOS allowing
LM337. Three-terminal adjustable negative voltage regulators. Features. Description
Three-terminal adjustable negative voltage regulators Datasheet - production data current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional
STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description
N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET Features Type V DSS (@Tjmax) Exceptional dv/dt capability Avalanche rugged technology 100% avalanche tested R DS(on) max STN3NF06L 60 V < 0.1
STP60NF06FP. N-channel 60V - 0.014Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.
N-channel 60V - 0.014Ω - 30A TO-220FP STripFET II Power MOSFET General features Type V DSS R DS(on) I D STP60NF06FP 60V
ULN2801A, ULN2802A, ULN2803A, ULN2804A
ULN2801A, ULN2802A, ULN2803A, ULN2804A Eight Darlington array Datasheet production data Features Eight Darlington transistors with common emitters Output current to 500 ma Output voltage to 50 V Integral
STP60NF06. N-channel 60V - 0.014Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.
N-channel 60V - 0.014Ω - 60A TO-220 STripFET II Power MOSFET General features Type V DSS R DS(on) I D STP60NF06 60V
TDA2003 10W CAR RADIO AUDIO AMPLIFIER
TDA2003 10W CAR RADIO AUDIO AMPLIFIER DESCRIPTION The TDA 2003 has improved performance with the same pin configuration as the TDA 2002. The additional features of TDA 2002, very low number of external
STTH1R04-Y. Automotive ultrafast recovery diode. Features. Description
Automotive ultrafast recovery diode Features Datasheet - production data K SMA STTH1R4AY Table 1. Device summary Symbol Value I F(AV) 1 A V RRM 4 V T j (max) 175 C V F (typ) t rr (typ) A K.9 V 14 ns A
Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking
14-stage ripple carry binary counter/divider and oscillator Applications Automotive Industrial Computer Consumer Description Datasheet - production data Features Medium speed operation Common reset Fully
UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)
General-purpose single operational amplifier Datasheet - production data N DIP8 (plastic package) D SO8 (plastic micropackage) Pin connections (top view) 1 - Offset null 1 2 - Inverting input 3 - Non-inverting
BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor
Low voltage PNP power transistor Features Low saturation voltage PNP transistor Applications Audio, power linear and switching applications Description The device is manufactured in planar technology with
Table 1. Absolute maximum ratings (T amb = 25 C) Symbol Parameter Value Unit. ISO 10605 - C = 330 pf, R = 330 Ω : Contact discharge Air discharge
Automotive dual-line Transil, transient voltage suppressor (TVS) for CAN bus Datasheet - production data Complies with the following standards ISO 10605 - C = 150 pf, R = 330 Ω : 30 kv (air discharge)
STP55NF06L STB55NF06L - STB55NF06L-1
General features STP55NF06L STB55NF06L - STB55NF06L-1 N-channel 60V - 0.014Ω - 55A TO-220/D 2 PAK/I 2 PAK STripFET II Power MOSFET Type V DSS R DS(on) I D STP55NF06L 60V
BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors
BD241A BD241C NPN power transistors Features. NPN transistors Applications Audio, general purpose switching and amplifier transistors Description The devices are manufactured in Planar technology with
MC33079. Low noise quad operational amplifier. Features. Description
Low noise quad operational amplifier Datasheet production data Features Low voltage noise: 4.5 nv/ Hz High gain bandwidth product: 15 MHz High slew rate: 7 V/µs Low distortion: 0.002% Large output voltage
2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description
Low voltage NPN power Darlington transistor Features Good h FE linearity High f T frequency Monolithic Darlington configuration with integrated antiparallel collector-emitter diode TAB Application Linear
Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP
1.2 V to 37 V adjustable voltage regulators Description Datasheet - production data TO-220 TO-220FP The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for
BZW50. Transil, transient voltage surge suppressor (TVS) Features. Description
Transil, transient voltage surge suppressor (TVS) Datasheet production data Features Peak pulse power: 5000 W (10/0 µs) Stand-off voltage range from 10 V to 180 V Unidirectional and bidirectional types
ST13005. High voltage fast-switching NPN power transistor. Features. Applications. Description
High voltage fast-switching NPN power transistor Datasheet production data Features Low spread of dynamic parameters Minimum lot-to-lot spread for reliable operation Very high switching speed Applications
TN0023 Technical note
Technical note Discontinuous flyback transformer description and design parameters Introduction The following is a general description and basic design procedure for a discontinuous flyback transformer.
DDSL01. Secondary protection for DSL lines. Features. Description
Secondary protection for DSL lines Features Stand off voltage: 30 V Surge capability: I pp = 30 A 8/20 µs Low capacitance device: 4.5 pf at 2 V RoHS package Low leakage current: 0.5 µa at 25 C 3 2 Description
ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323
Transil, transient voltage surge suppressor diode for ESD protection Datasheet production data Features Max peak pulse power 160 W (8/0 µs) Asymmetrical bidirectional device Stand-off voltage: 15 and 4
L6234. Three phase motor driver. Features. Description
Three phase motor driver Features Supply voltage from 7 to 52 V 5 A peak current R DSon 0.3 Ω typ. value at 25 C Cross conduction protection TTL compatible driver Operating frequency up to 150 khz Thermal
LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description
Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal
SPC5-FLASHER. Flash management tool for SPC56xx family. Description. Features
Flash management tool for SPC56xx family Data brief Flash verify: check the Flash content with a binary image file Unsecure sequence for censored device: sending the private password selected from the
STP10NK80ZFP STP10NK80Z - STW10NK80Z
STP10NK80ZFP STP10NK80Z - STW10NK80Z N-channel 800V - 0.78Ω - 9A - TO-220/FP-TO-247 Zener-protected supermesh TM MOSFET General features Type V DSS R DS(on) I D Pw STP10NK80Z 800V
P6KE. Transil, transient voltage surge suppressor (TVS) Features. Description. Complies with the following standards
Transil, transient voltage surge suppressor (TVS) Datasheet production data Features Peak pulse power: 600 W (10/0 µs ) Stand-off voltage range 6.8 to 440 V Unidirectional and bidirectional types Low clamping
ULN2001, ULN2002 ULN2003, ULN2004
ULN2001, ULN2002 ULN2003, ULN2004 Seven Darlington array Datasheet production data Features Seven Darlingtons per package Output current 500 ma per driver (600 ma peak) Output voltage 50 V Integrated suppression
BD135 - BD136 BD139 - BD140
BD135 - BD136 BD139 - BD140 Complementary low voltage transistor Features Products are pre-selected in DC current gain Application General purpose Description These epitaxial planar transistors are mounted
Description SO-8. series. Furthermore, in the 8-pin configuration Very low-dropout voltage (0.2 V typ.)
ery low-dropout voltage regulator with inhibit function TO-92 Bag TO-92 Tape and reel Ammopack 1 2 3 SO-8 Description Datasheet - production data The is a very low-dropout voltage regulator available in
LM135-LM235-LM335. Precision temperature sensors. Features. Description
Precision temperature sensors Features Directly calibrated in K 1 C initial accuracy Operates from 450µA to 5mA Less than 1Ω dynamic impedance TO-92 (Plastic package) Description The LM135, LM235, LM335
STB75NF75 STP75NF75 - STP75NF75FP
STB75NF75 STP75NF75 - STP75NF75FP N-channel 75V - 0.0095Ω - 80A - TO-220 - TO-220FP - D 2 PAK STripFET II Power MOSFET General features Type V DSS R DS(on) I D STB75NF75 75V
TDA2004R. 10 + 10 W stereo amplifier for car radio. Features. Description
10 + 10 W stereo amplifier for car radio Features Low distortion Low noise Protection against: Output AC short circuit to ground Overrating chip temperature Load dump voltage surge Fortuitous open ground
L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description
L78MxxAB L78MxxAC Precision 500 ma regulators Features Output current to 0.5 A Output voltages of 5; 6; 8; 9; 10; 12; 15; 18; 24 V Thermal overload protection Short circuit protection Output transition
AN2389 Application note
Application note An MCU-based low cost non-inverting buck-boost converter for battery chargers Introduction As the demand for rechargeable batteries increases, so does the demand for battery chargers.
UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction
User manual 16-pin smartcard interface ST8034P demonstration board Introduction The purpose of this document is to describe, and provide information on, how to efficiently use the ST8034P smartcard interface
AN3110 Application note
Application note Using the STVM100 to automatically adjust VCOM voltage in e-paper Introduction The widespread use of multimedia electronic devices, coupled with environmental concerns over the manufacturing
STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP
STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP N-channel 600 V - 1.76 Ω - 4 A SuperMESH Power MOSFET DPAK - D 2 PAK - IPAK - I 2 PAK - TO-220 - TO-220FP Features Type V DSS R DS(on)
STGB10NB37LZ STGP10NB37LZ
STGB10NB37LZ STGP10NB37LZ 10 A - 410 V internally clamped IGBT Features Low threshold voltage Low on-voltage drop Low gate charge TAB TAB High current capability High voltage clamping feature Applications
AN2703 Application note
Application note list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each
STTH2R06. High efficiency ultrafast diode. Features. Description
STTH2R6 High efficiency ultrafast diode Features Very low conduction losses Negligible switching losses Low forward and reverse recovery times High junction temperature Description A K The STTH2R6 uses
ETP01-xx21. Protection for Ethernet lines. Features. Description. Applications. Benefits. Complies with the following standards
ETP0-xx2 Protection for Ethernet lines Features Differential and common mode protection Telcordia GR089 Intrabuilding: 50 A, 2/0 µs ITU-T K20/2: 40 A, 5/30 µs Low capacitance: 3 pf max at 0 V UL94 V0 approved
AN3332 Application note
Application note Generating PWM signals using STM8S-DISCOVERY Application overview This application user manual provides a short description of how to use the Timer 2 peripheral (TIM2) to generate three
Order code Temperature range Package Packaging
ST485B ST485C Low power RS-485/RS-422 transceiver Features Low quiescent current: 300 µa Designed for RS-485 interface application - 7 V to 12 V common mode input voltage range Driver maintains high impedance
UM1676 User manual. Getting started with.net Micro Framework on the STM32F429 Discovery kit. Introduction
User manual Getting started with.net Micro Framework on the STM32F429 Discovery kit Introduction This document describes how to get started using the.net Micro Framework (alias NETMF) on the STM32F429
M24LRxx/CR95HF application software installation guide
User manual M24LRxx/CR95HF application software installation guide Introduction This user manual describes the procedures to install the different software drivers required to use the DEVKIT-M24LR-A development
AN3353 Application note
Application note IEC 61000-4-2 standard testing Introduction This Application note is addressed to technical engineers and designers to explain how STMicroelectronics protection devices are tested according
STEVAL-IEG001V2. Smart real-time vehicle tracking system. Features
Smart real-time vehicle tracking system Data brief Features Real-time vehicle tracking through GPS/GSM/GPRS. Vehicle location coordinates acquired using a Telit GPS module and sent over GPRS to web server-based
AN2680 Application note
Application note Fan speed controller based on STDS75 or STLM75 digital temperature sensor and ST72651AR6 MCU Introduction This application note describes the method of defining the system for regulating
Obsolete Product(s) - Obsolete Product(s)
Vertical deflection booster for 3 App TV/monitor applications with 0 V flyback generator Features Figure. Heptawatt package Power amplifier Flyback generator Stand-by control Output current up to 3.0 App
STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET
N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET TYPE V DSS (@Tjmax) R DS(on) I D STW20NM50 550V < 0.25Ω 20 A TYPICAL R DS (on) = 0.20Ω HIGH dv/dt AND AVALANCHE CAPABILITIES 100% AVALANCHE TESTED
AN4108 Application note
Application note How to set up a HTTPS server for In-Home display with HTTPS Introduction This application note describes how to configure a simple SSL web server using the EasyPHP free application to
VN05N. High side smart power solid state relay PENTAWATT. Features. Description
High side smart power solid state relay Features Type V DSS R DS(on) I OUT V CC VN05N 60 V 0.18 Ω 13 A 26 V Output current (continuous): 13A @ Tc=25 C 5V logic level compatible input Thermal shutdown Under
DSL01-xxxSC5. Secondary protection for DSL lines. Features. Description. Applications. Benefits. Complies with the following standards
-xxxsc5 Secondary protection for DSL lines Features Low capacitance devices: -xxxsc5: Delta C typ = 3.5 pf High surge capability: 30 A - 8/20 µs Voltage: 8 V, 10.5 V, 16 V, and 24 V RoHS package Benefits
EVL185W-LEDTV. 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L. Features.
Features 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L Data brief Universal input mains range: 90 264 Vac - frequency 45 65 Hz Output voltage 1: 130
STB60N55F3, STD60N55F3, STF60N55F3 STI60N55F3, STP60N55F3, STU60N55F3
STB60N55F3, STD60N55F3, STF60N55F3 STI60N55F3, STP60N55F3, STU60N55F3 N-channel 55 V, 6.5 mω, 80 A, DPAK, IPAK, D 2 PAK, I 2 PAK, TO-220 TO-220FP STripFET III Power MOSFET Features Type V DSS R DS(on)
MC34063AB, MC34063AC, MC34063EB, MC34063EC
MC34063AB, MC34063AC, MC34063EB, MC34063EC DC-DC converter control circuits Description Datasheet - production data Features DIP-8 SO-8 Output switch current in excess of 1.5 A 2 % reference accuracy Low
STLM20. Ultra-low current 2.4 V precision analog temperature sensor. Features. Applications
Ultra-low current 2.4 V precision analog temperature sensor Features Precision analog voltage output temperature sensor ±1.5 C maximum temperature accuracy at 25 C (±0.5 C typical) Ultra-low quiescent
Symbol Parameter Value Unit V DS Drain-source Voltage (V GS =0) 50 V V DGR Drain- gate Voltage (R GS =20kΩ) 50 V
BUZ71A N - CHANNEL 50V - 0.1Ω - 13A TO-220 STripFET POWER MOSFET TYPE V DSS R DS(on) I D BUZ71A 50 V < 0.12 Ω 13 A TYPICAL RDS(on) = 0.1 Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED HIGH CURRENT
Features. Description. Table 1. Device summary. Order code Marking Package Packing. STP110N8F6 110N8F6 TO-220 Tube
N-channel 80 V, 0.0056 Ω typ.,110 A, STripFET F6 Power MOSFET in a TO-220 package Features Datasheet - production data Order code V DS R DS(on)max I D P TOT TAB STP110N8F6 80 V 0.0065 Ω 110 A 200 W TO-220
AN2604 Application note
AN2604 Application note STM32F101xx and STM32F103xx RTC calibration Introduction The real-time clock (RTC) precision is a requirement in most embedded applications, but due to external environment temperature
STW34NB20 N-CHANNEL 200V - 0.062 Ω - 34A TO-247 PowerMESH MOSFET
N-CHANNEL 200V - 0.062 Ω - 34A TO-247 PowerMESH MOSFET Table 1. General Features Figure 1. Package Type V DSS R DS(on) I D STW34NB20 200 V < 0.075 Ω 34 A FEATURES SUMMARY TYPICAL R DS(on) = 0.062 Ω EXTREMELY
STP62NS04Z N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET
N-CHANNEL CLAMPED 12.5mΩ - 62A TO-220 FULLY PROTECTED MESH OVERLAY MOSFET TYPE V DSS R DS(on) I D STP62NS04Z CLAMPED
AN2866 Application note
Application note How to design a 13.56 MHz customized tag antenna Introduction RFID (radio-frequency identification) tags extract all of their power from the reader s field. The tags and reader s antennas
STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET
STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET TYPE V DSS R DS(on) I D STB80NF55-08/-1 STP80NF55-08 55 V 55 V
AN4368 Application note
Application note Signal conditioning for pyroelectric passive infrared (PIR) sensors Sylvain Colliard-Piraud Introduction Pyroelectric passive infrared (PIR) sensors are widely used in daily life. They
VN5R003H-E. 3 mω reverse battery protection switch. Features. Description. Application
3 mω reverse battery protection switch Datasheet production data Features Max supply voltage V CC -16 to 41 V Operating voltage range V CC -16 to 28 V On-state resistance R ON 3mΩ General Optimized electromagnetic
AN3354 Application note
Application note STM32F105/107 in-application programming using a USB host 1 Introduction An important requirement for most Flash-memory-based systems is the ability to update firmware installed in the
IRF740 N-CHANNEL 400V - 0.46Ω - 10A TO-220 PowerMESH II MOSFET
N-CHANNEL 400V - 0.46Ω - 10A TO-220 PowerMESH II MOSFET TYPE V DSS R DS(on) I D IRF740 400 V < 0.55 Ω 10 A TYPICAL R DS (on) = 0.46Ω EXCEPTIONAL dv/dt CAPABILITY 100% AVALANCHE TESTED LOW GATE CHARGE VERY
UM1790 User manual. Getting started with STM32L053 discovery kit software development tools. Introduction
User manual Getting started with STM32L053 discovery kit software development tools Introduction This document describes the software environment recommendations required to build an application using
UM1727 User manual. Getting started with STM32 Nucleo board software development tools. Introduction
User manual Getting started with STM32 Nucleo board software development tools Introduction The STM32 Nucleo board (NUCLEO-F030R8, NUCLEO-F072RB, NUCLEO-F103RB, NUCLEO-F302R8, NUCLEO-F401RE, NUCLEO-L152RE)
SD2942. HF/VHF/UHF RF power N-channel MOSFETs. Features. Description
HF/VHF/UHF RF power N-channel MOSFETs Features Gold metallization Excellent thermal stability Common source configuration, push pull P OUT = 350 W min. with 15 db gain @ 175 MHz Low R DS(on) Description
AN3265 Application note
Application note Handling hardware and software failures with the STM8S-DISCOVERY Application overview This application is based on the STM8S-DISCOVERY. It demonstrates how to use the STM8S window watchdog
STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT
N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT Table 1: General Features STGW40NC60V 600 V < 2.5 V 50 A HIGH CURRENT CAPABILITY HIGH FREQUENCY OPERATION UP TO 50 KHz LOSSES INCLUDE DIODE RECOVERY
LM2901. Low-power quad voltage comparator. Features. Description
Low-power quad voltage comparator Features Wide single supply voltage range or dual supplies for all devices: +2 V to +36 V or ±1 V to ±18 V Very low supply current (1.1 ma) independent of supply voltage
STTH110. High voltage ultrafast rectifier. Description. Features
High voltage ultrafast rectifier Datasheet - production data K Description The STTH110, which is using ST ultrafast high voltage planar technology, is especially suited for free-wheeling, clamping, snubbering,
IRF830. N - CHANNEL 500V - 1.35Ω - 4.5A - TO-220 PowerMESH MOSFET
IRF830 N - CHANNEL 500V - 1.35Ω - 4.5A - TO-220 PowerMESH MOSFET TYPE V DSS R DS(on) I D IRF830 500 V < 1.5 Ω 4.5 A TYPICAL R DS(on) = 1.35 Ω EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY
TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION
TDA2822 DUAL POER AMPLIFIER SUPPLY VOLTAGE DON TO 3 V. LO CROSSOVER DISTORSION LO QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION DESCRIPTION The TDA2822 is a monolithic integrated circuit in 12+2+2 powerdip,
Symbol Parameter Value Unit IAR Avalanche Current, Repetitive or Not-Repetitive
BUZ11 N - CHANNEL 50V - 0.03Ω - 30A -TO-220 STripFET POWER MOSFET TYPE V DSS R DS(on) I D BUZ11 50 V < 0.04 Ω 30 A TYPICAL R DS(on) = 0.03 Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED HIGH CURRENT
VNP5N07 "OMNIFET": FULLY AUTOPROTECTED POWER MOSFET
"OMNIFET": FULLY AUTOPROTECTED POWER MOSFET TYPE Vclamp RDS(on) Ilim VNP5N07 70 V 0.2 Ω 5 A LINEAR CURRENT LIMITATION THERMAL SHUT DOWN SHORT CIRCUIT PROTECTION INTEGRATED CLAMP LOW CURRENT DRAWN FROM
SPC5-CRYP-LIB. SPC5 Software Cryptography Library. Description. Features. SHA-512 Random engine based on DRBG-AES-128
SPC5 Software Cryptography Library Data brief SHA-512 Random engine based on DRBG-AES-128 RSA signature functions with PKCS#1v1.5 ECC (Elliptic Curve Cryptography): Key generation Scalar multiplication
Obsolete Product(s) - Obsolete Product(s)
32 W hi-fi audio power amplifier Features High output power (50 W music power IEC 268.3 rules) High operating supply voltage (50 V) Single or split supply operations Very low distortion Short-circuit protection
IRFP450. N - CHANNEL 500V - 0.33Ω - 14A - TO-247 PowerMESH MOSFET
IRFP450 N - CHANNEL 500V - 0.33Ω - 14A - TO-247 PowerMESH MOSFET TYPE V DSS R DS(on) I D IRFP450 500 V < 0.4 Ω 14 A TYPICAL R DS(on) = 0.33 Ω EXTREMELY HIGH dv/dt CAPABILITY 100% AVALANCHE TESTED VERY
VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description. www.tvsat.com.pl
ISO high side smart power solid state relay Features Type V DSS R DS(on) I n (1) Maximum continuous output current (a) : 4A @ Tc= 25 C 5V logic level compatible input Thermal shutdown Under voltage protection
UM0985 User manual. Developing your STM32VLDISCOVERY application using the IAR Embedded Workbench software. Introduction
User manual Developing your STM32VLDISCOVERY application using the IAR Embedded Workbench software Introduction This document provides an introduction on how to use IAR Embedded Workbench for ARM software
STP6N60FI N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR TYPE VDSS RDS(on) ID STP6N60FI 600 V < 1.2 Ω 3.8 A TYPICAL R DS(on) =1Ω AVALANCHE RUGGED TECHNOLOGY 100% AVALANCHE TESTED REPETITIVE AVALANCHE DATA AT
5A 3A. Symbol Parameter Value Unit
STP5NA50 STP5NA50FI N - CHANNEL ENHANCEMENT MODE FAST POWER MOS TRANSISTOR TYPE VDSS RDS(on) ID STP5NA50 STP5NA50FI 500 V 500 V
AN3998 Application note
Application note PDM audio software decoding on STM32 microcontrollers 1 Introduction This application note presents the algorithms and architecture of an optimized software implementation for PDM signal
UM1680 User manual. Getting started with STM32F429 Discovery software development tools. Introduction
User manual Getting started with STM32F429 Discovery software development tools Introduction This document describes the software environment and development recommendations required to build an application
HCF4001B QUAD 2-INPUT NOR GATE
QUAD 2-INPUT NOR GATE PROPAGATION DELAY TIME: t PD = 50ns (TYP.) at V DD = 10V C L = 50pF BUFFERED INPUTS AND OUTPUTS STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS QUIESCENT CURRENT SPECIFIED UP TO 20V
STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET
STP6NK60Z - STP6NK60ZFP STB6NK60Z - STB6NK60Z-1 N-CHANNEL 600V - 1Ω - 6A TO-220/TO-220FP/D 2 PAK/I 2 PAK Zener-Protected SuperMESH Power MOSFET TYPE V DSS R DS(on) I D Pw STP6NK60Z STP6NK60ZFP STB6NK60Z
NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description
NE555 SA555 - SE555 General-purpose single bipolar timers Features Low turn-off time Maximum operating frequency greater than 500 khz Timing from microseconds to hours Operates in both astable and monostable
Getting started with DfuSe USB device firmware upgrade STMicroelectronics extension
User manual Getting started with DfuSe USB device firmware upgrade STMicroelectronics extension Introduction This document describes the demonstration user interface that was developed to illustrate use
Description. Table 1. Device summary. Order code Package Packing
4 x 41 W quad bridge car radio amplifier Datasheet - production data Features Flexiwatt25 High output power capability: 4 x 41 W / 4 max. Low distortion Low output noise Standby function Mute function
BTW69-1200N. 50 A 1200 V non insulated SCR thyristor. Description. Features. Applications
50 1200 V non insulated SCR thyristor Datasheet - production data G K K G TOP3 non insulated Description vailable in non insulated TOP3 high power package, the BTW69-1200N is suitable for applications
HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)
HEX BUFFER/CONVERTER (NON INVERTING) PROPAGATION DELAY TIME: t PD = 50ns (Typ.) at V DD = 10V C L = 50pF HIGH TO LOW LEVEL LOGIC CONVERSION MULTIPLEXER: 1 TO 6 OR 6 TO 1 HIGH "SINK" AND "SOURCE" CURRENT
AN4128 Application note
Application note Demonstration board for Bluetooth module class 1 SBT2632C1A.AT2 Introduction This document describes the STEVAL-SPBT4ATV3 demonstration board (dongle) for the Bluetooth class 1 SPBT2632C1A.AT2
