Newton s Laws Quiz Review
|
|
|
- Sharyl Chase
- 9 years ago
- Views:
Transcription
1 Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from video clips 3) answer multiple choice questions about gravity, force, acceleration, recording motion, and graphing motion The key to answering problems about force and motion is to understand and to always keep in mind Newton s important discoveries: Newton s 1 st Law - An object at rest remains at rest and an object in motion remains in motion Unless acted on by an unbalanced force. Newton s 2 nd Law- Mathematical model: F = ma The larger the unbalanced force applied to an object, the greater the object s acceleration. The bigger the mass of an object, the harder you must push or pull it to make it accelerate. Newton s 3 rd Law- For every force there is an equal and opposite force. Or, for every action there is an equal and opposite reaction. Simply put, you can t touch something without it touching you back. An object is accelerating if an only if it is changing velocity. Changing velocity includes speeding up, slowing down, and changing direction. An object moving at a constant velocity is not accelerating. This means that an object can change its position (be in motion) and not be accelerating. EXAMPLE: a racecar speeding down the straightaway of a racetrack at a constant velocity of 200 miles/hour is not accelerating. If forces applied to an object are balanced the object will not accelerate. If an object is not accelerating (speeding up, slowing down, or changing direction)then all forces on the object are balanced. Balanced forces cancel each other out. EXAMPLE: if two people pull on the ends of a rope in opposite directions with the same amount of force the rope and the people will not accelerate. If the forces on an object are unbalanced, a net force results. A net force causes an object to accelerate in the direction of the net force. Objects always accelerate in the direction of the net force. If a net force is pushing/pulling you to the right then you will accelerate toward the right. If a net force is pushing/pulling you to the left then you will accelerate toward the left. EXAMPLE: if two people pull on the ends of a rope in opposite directions with different forces then the rope will accelerate in the direction of the net force. Some people think of acceleration as only speeding up. However, slowing down (changing speed) is also an example of acceleration. Mathematically slowing down is expressed as a negative (-) acceleration. Speeding up is represented mathematically as a positive (+) accleration.
2 Sample Test Questions The following problems are the types of problems you ll be expected to know for the test. Read the questions and multiple choices carefully to select the best response available. 1. Which one of the following is NOT consistent with a car that is accelerating? a. The car is moving with an increasing speed. b. The car is moving with a decreasing speed. c. The car is moving with a high speed. 2. Ryan Grant is running down the football field in a straight line. He starts at the 0-yard line at 0 seconds. At 1 second, he is on the 10-yard line; at 2 seconds, he is on the 20-yard line; at 3 seconds, he is on the 30-yard line; and at 4 seconds, he is on the 40-yard line. This is evidence that: a. he is accelerating b. he is covering a greater distance in each consecutive second c. he is moving with a constant speed (on average) d. he is changing direction 3. What is the acceleration of a car that maintains a constant velocity of 100 km/hr for 10 seconds? a. 0 b. 10 km/hr/s c. 10 km/s 2 d km/hr/s 4. Which one of the following statements is NOT true of a free-falling object? An object in a state of free fall (assuming no air resistance): a. falls with a constant speed b. falls with an acceleration c. falls under the sole influence of gravity 5. Ten seconds after starting from rest, a freely-falling object will have: a. more speed than 5 seconds after falling b. less speed than 5 seconds after falling c. the same speed as 5 seconds after falling 6. If you drop an object it will accelerate downward at a rate of 9.8 m/s 2. If you instead throw the object downwards, its acceleration (in the absence of air resistance) will be: a. less than 9.8 m/s 2 b. 9.8 m/s 2 c. more than 9.8 m/s 2
3 7. Renatta Oyle is found driving her '86 Ford down Main St., leaving the following trail of oil drops on the pavement. Assume the drops of oil drip at a constant rate. If her car is moving from right to left, then: a. her velocity has a rightward direction and her acceleration has a rightward direction. b. her velocity has a rightward direction and her acceleration has a leftward direction. c. her velocity has a leftward direction and her acceleration has a rightward direction. d. her velocity has a leftward direction and her acceleration has a leftward direction. 8. Which of the following objects have momentum? Circle all that apply. Remember p=mv a. an electron orbiting the nucleus of an atom b. a UPS truck stopped in front of the school building c. a compact car moving with a constant speed d. a flea moving with constant speed e. Oregon Middle School 9. A freight train rolls along a track with considerable momentum. If the train rolls at the same velocity but has twice as much mass when loaded with freight, its momentum when loaded is: a. zero b. quadrupled c. doubled d. unchanged Use the tape below to answer questions Assume the tape is being pulled from left to right. tape movement During which time interval(s), if any, are the forces acting upon the object balanced? List all that apply. 12. During which time interval(s), if any, is there a net force (unbalanced force) acting upon the object? List all that apply. 13. During which time interval(s), if any, is the net force acting upon the object directed toward the right (+ direction)? List all that apply. 14. During which time interval(s), if any, is the net force acting upon the object directed toward the left (- direction)? List all that apply.
4 15. Which one(s) of the following force diagrams depict an object accelerating to the right? Circle all that apply. 16. A soccer player places a soccer ball at rest in front of the goal, lines up her shot, runs up on the ball, and kicks the ball as hard as she can. During the contact of her leg with the soccer ball, the force of her leg on the ball is the force of the ball on her leg. a. greater than b. less than c. equal to 17. If car A passes car B, then car A must be: a. accelerating at a greater rate than car B b. moving faster than car B and accelerating more than car B c. moving faster than car B, but not necessarily accelerating d. accelerating For the next several questions, consider the velocity-time plot below for the motion of an athlete running straight through an obstacle course from left to right. The motion is divided into several time intervals, each labeled with a letter. 18. During which time interval(s), if any, are the forces acting upon the athlete balanced? List all that apply. 19. During which time interval(s), if any, is a net force acting upon the athlete? List all that apply. 20. During which time interval(s), if any, is the net force acting upon the athlete directed toward the right? List all that apply. 21. During which time interval(s), if any, is the net force acting upon the athlete directed toward the left? List all that apply.
5 22. Which of the following statements are true of the concept of force? Circle all that apply. a. One large football player tackles another smaller football player by running into him. While the smaller player is being tackled, he does not place a force upon the larger player. b. A larger force is required to accelerate a 10kg rock than is required to accelerate a 5kg rock. c. Forces always cause objects to accelerate. d. An object can experience two or more forces and not accelerate. 23. How does Newton s Laws of Motion fit the 2 criteria of science? 24. Why does the scientific community accept Newton s scientific model of motion set forth in his 3 laws of motion?
NEWTON S LAWS OF MOTION
Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict
4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
Worksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
Graphing Motion. Every Picture Tells A Story
Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
Review Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
Newton s Laws Force and Motion
CLIL Project Physics in English Anno scolastico 2013-2014 Newton s Laws Force and Motion Lecture 2 Classe 3 a A Linguistico Istituto Superiore Marini-Gioia - AMALFI Content of the unit: Newton s Laws DYNAMIC
Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
Newton s Laws of Motion
Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off
TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003
Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
Forces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
Speed, velocity and acceleration
Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how
Football Learning Guide for Parents and Educators. Overview
Overview Did you know that when Victor Cruz catches a game winning touchdown, the prolate spheroid he s holding helped the quarterback to throw a perfect spiral? Wait, what? Well, the shape of a football
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
Physics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following
Explore 3: Crash Test Dummies
Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first
On Quiz: Change #2 to 9/23
Wednesday, October 1 (!) Objective: SWBAT read and understand speed graphs 1. Pick up something 2. Write HW: Get Test Signed! Everybody!! 3. Warm up quiz today! Folders between you! On Quiz: Change #2
Practice TEST 2. Explain your reasoning
Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant
5.1 The First Law: The Law of Inertia
The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing
SPEED, VELOCITY, AND ACCELERATION
reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration
Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
Chapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY
LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,
The Physics of Kicking a Soccer Ball
The Physics of Kicking a Soccer Ball Shael Brown Grade 8 Table of Contents Introduction...1 What actually happens when you kick a soccer ball?...2 Who kicks harder shorter or taller people?...4 How much
Newton s Laws of Motion Project
Newton s Laws of Motion Project Sir Isaac Newton lived during the 1s. Like all scientists, he made observations about the world around him. Some of his observations were about motion. His observations
PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION
Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition
Physics 211 Lecture 4
Physics 211 Lecture 4 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 4, Slide 1
Physics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
LAB 6 - GRAVITATIONAL AND PASSIVE FORCES
L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
Balanced & Unbalanced Forces
3 rd Grade Force in Motion An object's motion changes because of force. Pushing and Pulling are Kinds of Forces Motion is movement that changes an object's position. Pushing or pulling forces can be used
Physical Science Chapter 2. Forces
Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components
Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Chapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
Speed (a scalar quantity) is the distance travelled every second.
SCALAR and VECTOR QUANTITIES The following are some of the quantities you will meet in the Intermediate Physics course: DISTANCE, DISPLACEMENT, SPEED, VELOCITY, TIME, FORCE. Quantities can be divided into
Chapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
Freely Falling Objects
Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:
Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion
Balanced and Unbalanced Forces
1 Balanced and Unbalanced Forces Lesson Created by Carlos Irizarry, George B. Swift Specialty School, Chicago, Illinois Purpose To fully appreciate and make a connection to Newton s Laws, students must
Determining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
Friction and Gravity. Friction. Section 2. The Causes of Friction
Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
Educational Innovations
Educational Innovations Background Forces and Motion MAR-600 Wall Coaster Motion is caused by forces. Motion can be described. Motion follows rules. There are many forces and principles involved with motion.
Force Concept Inventory
Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard
LAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
In order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
How Rockets Work Newton s Laws of Motion
How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws
Lecture 7 Force and Motion Practice with Free-body Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and free-body diagrams. Example 1: An eleator
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
Acceleration Introduction: Objectives: Methods:
Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration
AP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
Physics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)
Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each
Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org
Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat
BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.
BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use
Problem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
ACTIVITY 6: Falling Objects
UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.
Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.
Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors
force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.
4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional
Energy - Key Vocabulary
Energy - Key Vocabulary Term Potential Energy Kinetic Energy Joules Gravity Definition The energy an object possesses due to its position. PE = mgh The energy an object possesses when it is in motion.
1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time
PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration
Roanoke Pinball Museum Key Concepts
Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
Astronomy 1140 Quiz 1 Review
Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality
Serway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
GRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity
GRADE 8 SCIENCE INSTRUCTIONAL TASKS Gravity Grade-Level Expectations The exercises in these instructional tasks address content related to the following science grade-level expectation(s): ESS-M-C3 Relate
Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done.
Name Date R. Mirshahi Forces and Movement: Balanced and Unbalanced Forces Forces are all around us. Without forces, nothing can move and no work can be done. There are different types of forces. Some forces
Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55)
Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Name: Date: 2.1: Physical Systems: Simple Machines (Pg. 30 35): Read Pages 30-35. Answer the following questions on pg. 35:
ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY
1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell
5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
Projectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
Chapter 7 Newton s Laws of Motion
Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
Simple Machines. Figure 2: Basic design for a mousetrap vehicle
Mousetrap Vehicles Figure 1: This sample mousetrap-powered vehicle has a large drive wheel and a small axle. The vehicle will move slowly and travel a long distance for each turn of the wheel. 1 People
EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives
EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity
http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM
HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
