SURFACE ELECTROMYOGRAPHY: DETECTION AND RECORDING
|
|
|
- Kevin Gordon
- 9 years ago
- Views:
Transcription
1 SURFACE ELECTROMYOGRAPHY: DETECTION AND RECORDING Carlo J. De Luca 2002 by DelSys Incorporated. All rights reserved. CONTENTS GENERAL CONCERNS... 2 CHARACTERISTICS OF THE EMG SIGNAL... 2 CHARACTERISTICS OF THE ELECTRICAL NOISE... 3 MAXIMIZING THE FIDELITY OF THE EMG SIGNAL... 3 ELECTRODE AND AMPLIFIER DESIGN... 4 ELECTRODE GEOMETRY... 6 THE PARALLEL-BAR ELECTRODE... 7 EMG ELECTRODE PLACEMENT... 8 REFERENCE ELECTRODE PLACEMENT... 9 ELECTRICAL SAFETY CONCERNS... 9 EMG SIGNAL PROCESSING... 9 APPLICATIONS OF THE EMG SIGNAL DelSys Incorporated 1
2 GENERAL CONCERNS GENERAL CONCERNS When detecting and recording the EMG signal, there are two main issues of concern that influence the fidelity of the signal. The first is the signal to noise ratio. That is, the ratio of the energy in the EMG signal to the energy in the noise signal. In general, noise is defined as electrical signals that are not part of the wanted EMG signal. The other is the distortion of the signal, meaning that the relative contribution of any frequency component in the EMG signal should not be altered. CHARACTERISTICS OF THE EMG SIGNAL It is well established that the amplitude of the EMG signal is stochastic (random) in nature and can be reasonably represented by a Gausian distribution function. The amplitude of the signal can range from 0 to 10 mv (peak-to-peak) or 0 to 1.5 mv (rms). The usable energy of the signal is limited to the 0 to 500 Hz frequency range, with the dominant energy being in the Hz range. Usable signals are those with energy above the electrical noise level. An example of the frequency spectrum of the EMG signal is presented in Figure 1. Figure 1: Frequency spectrum of the EMG signal detected from the Tibialis Anterior muscle during a constant force isometric contraction at 50% of voluntary maximum. DelSys Incorporated 2
3 CHARACTERISTICS OF THE ELECTRICAL NOISE CHARACTERISTICS OF THE ELECTRICAL NOISE The noise may emanate from various sources such as: Inherent noise in the electronics components in the detection and recording equipment - All electronics equipment generates electrical noise. This noise has frequency components that range from 0 Hz to several thousand Hz. This noise cannot be eliminated; it can only be reduced by using high quality electronic components, intelligent circuit design and construction techniques. Ambient noise - This noise originates from sources of electromagnetic radiation, such as radio and television transmission, electrical-power wires, light bulbs, fluorescent lamps, etc. In fact, any electromagnetic device generates and may contribute noise. The surfaces of our bodies are constantly inundated with electric-magnetic radiation and it is virtually impossible to avoid exposure to it on the surface of the earth. The dominant concern for the ambient noise arises from the 60 Hz (or 50 Hz) radiation from power sources. The ambient noise signal may have an amplitude that is one to three orders of magnitude greater than the EMG signal. Motion artifacts - There are two main sources of motion artifact: one from the interface between the detection surface of the electrode and the skin, the other from movement of the cable connecting the electrode to the amplifier. Both of these sources can be essentially reduced by proper design of the electronics circuitry. The electrical signals of both noise sources have most of their energy in the frequency range from 0 to 20 Hz. Inherent instability of the signal - The amplitude of the EMG signal is quasi-random in nature. The frequency components between 0 and 20 Hz are particularly unstable because they are affected by the quasi-random nature of the firing rate of the motor units which, in most conditions, fire in this frequency region. Because of the unstable nature of these components of the signal, it is advisable to consider them as unwanted noise and remove them from the signal. MAXIMIZING THE FIDELITY OF THE EMG SIGNAL It is desirable to obtain an EMG signal that contains the maximum amount of information from the EMG signal and the minimum amount of contamination from electrical noise. Thus, the maximization of the signal-to-noise ratio should be done with minimal distortion to the EMG signal. Therefore, it is important that any detecting and recording device process the signal linearly. In particular, the signal should not be clipped, that is, the peaks should not be distorted and no unnecessary filtering should be performed. Because the power line radiation (50 or 60 Hz) is a dominant source of electrical noise, it is tempting to design devices that have a notch-filter at this frequency. Theoretically, this type of filter would only remove the unwanted power line frequency, however, practical implementations also remove portions of the adjacent frequency components. Because the dominant energy of the EMG signal is located in the Hz range, the use of notch filters is not advisable when there are alternative methods of dealing with the power line radiation. DelSys Incorporated 3
4 ELECTRODE AND AMPLIFIER DESIGN ELECTRODE AND AMPLIFIER DESIGN The design of the electrode unit is the most critical aspect of the electronics apparatus which will be used to obtain the signal. The fidelity of the EMG signal detected by the electrode influences all subsequent treatment of the signal. It is very difficult (almost impossible) to improve the fidelity and signal-to-noise ratio of the signal beyond this point. Therefore, it is important to devise an electrode unit that provides minimal distortion and highest signal-to-noise ratio. The following characteristics are important for achieving this requirement. Differential amplification - In order to eliminate the potentially much greater noise signal from power line sources, a differential detecting configuration is employed. The differential amplification technique is shown schematically in Figure 2. The premise is simple. The signal is detected at two sites, electronics circuitry subtracts the two signals and then amplifies the difference. As a result, any signal that is "common" to both detection sites will be removed and signals that are different at the two sites will have a "differential" that will be amplified. Any signal that originates far away from the detection sites will appear as a common signal, whereas signals in the immediate vicinity of the detection surfaces will be different and consequently will be amplified. Thus, relatively distant power lines noise signals will be removed and relatively local EMG signals will be amplified. This explanation requires the availability of a highly accurate "subtractor". In practice, even with the wondrous electronics of today, it is very difficult to subtract signals perfectly. The accuracy with which the differential amplifier can subtract the signals is measured by the Common Mode Rejection Ratio (CMRR). A perfect subtractor would have a CMRR of infinity. A CMRR of 32,000 or 90 db is generally sufficient to suppress extraneous electrical noises. Current technology allows for a CMRR of 120 db, but there are at least three reasons for not pushing the CMRR to the limit:1) Such devices are expensive. 2) They are difficult to maintain electrically stable, and 3) the extraneous noise signals may not arrive at the two detection surfaces in phase, and hence they are not common mode signals in the absolute sense. Figure 2: A schematic of the differential amplifier configuration. The EMG signal is represented by 'm' and the noise signals by 'n'. DelSys Incorporated 4
5 ELECTRODE AND AMPLIFIER DESIGN Input impedance - The source impedance at the junction of the skin and detection surface may range from several thousand ohms to several megohms for dry skin. In order to prevent attenuation and distortion of the detected signal due to the effects of input loading, the input impedance of the differential amplifier should be as large as possible, without causing ancillary complications to the workings of the differential amplifier. Present day electronics devices easily provide input impedances of the order of 1012 ohms in parallel with 5 picofarads. In addition to the magnitude of the input impedance, the balance between the impedances of the two detection sites is also of great importance. This consideration requires careful circuit design. Active electrode design - The requirement for a high input impedance introduces a problem known as capacitance coupling at the input of the differential amplifier. A small capacitance between the wires leading to the input of the differential amplifier and the power line will introduce a power line noise signal into the amplifier. This phenomenon is similar to that which causes a television signal strength to increase when one places ones hand near the antenna input, but does not touch it. The solution is to place the differential amplifier as close as possible to the detection surfaces of the electrode. This solution has become known as the "active electrode". One other advantage of this configuration is that the output impedance of the differential amplifier can be made to be very low, on the order of 10 ohms. Therefore, any movement of the cable from the output of the electrode will not generate significant or even notable noise signals in the cable which feeds into the subsequent amplifier. Filtering - Even with the above considerations, the EMG signal will be contaminated by some noise. The signal to noise ratio can be increased by judicious filtering between Hz with a roll-off of 12 db/oct. (Strict design characteristics could consider 400 Hz as the upper bandwidth cut-off. The 500 Hz value allows for a safety margin in the design of the circuitry.) This filtering is generally accomplished at the amplifier stage located outside the active electrode. Electrode stability - When an electrode is placed on the skin, the detection surfaces come in contact with the electrolytes in the skin. A chemical reaction takes place which requires some time to stabilize, typically in the order of a few seconds if the electrode is correctly designed. But, more importantly, the chemical reaction should remain stable during the recording session and should not change significantly if the electrical characteristics of the skin change from sweating or humidity changes. Preferred method of use - Given the high performance and small size of modern day electronics, it is possible to design active electrodes that satisfy the above requirements without requiring any abrasive skin preparation and removal of hair. DelSys Incorporated 5
6 ELECTRODE GEOMETRY ELECTRODE GEOMETRY Throughout the history of electromyography, the shape and the layout of the detection surface of the electrode have not received much attention. Most likely because past users of electromyography have been interested only in the qualitative aspects of the EMG signal. The advent of new processing techniques for extracting quantitative information from the EMG signal requires greater focus on the configuration of the electrode. The major (but not all) points to consider are: 1.) the signal to noise ratio of the detected signal, 2.) the bandwidth of the signal, 3.) the muscle sample size, and 4.) the susceptibility to crosstalk. Signal-to-noise ratio - The signal-to-noise ratio is a function of complicated interactions between the electrolytes in the skin and the metal of the detection surfaces of the electrode. This is an involved subject that is beyond the scope of this short treatise. Suffice it to say that there are several approaches for reducing the noise, such as using large surface areas for the detection surfaces, employing conductive electrolytes to improve the contact with the skin, and removing dead (less conductive) dermis from the surface of the skin. Through trial and error we have found that detection surfaces made of pure (>99.5%) silver in the form of bars 1 cm in length and 1 mm in width provide a sufficiently good medium for the detection surface. The amplitude of the EMG signal is directly proportional to the distance between the detection surfaces. Hence, this distance should be maximized. But, increasing this distance introduces undesirable characteristics to the electrode design. As the electrode becomes larger, it becomes unwieldy and cannot be used to detect EMG signals from relatively small (in width as well as in length) muscles such as those found in the hand, forearm and the leg. Additionally, as the distance increases the filtering characteristics of the differential amplification decreases in bandwidth. (Explanation of this esoteric point may be found in Chapter 2 of Muscles Alive (1985) by Basmajian and De Luca.) Thus, a compromise is necessary. We have found by calculations and by heuristics that an inter-detection surface spacing of 1 cm provides an acceptable compromise. Bandwith -The bandwidth of the EMG signal is affected by the inter-detection surface spacing and the conduction velocity of the action potentials along the muscle fibers. The differential configuration possesses a spatial filtering feature that can be expresses as a bandpass filter in the spectral frequency region of the EMG signal. Again see Muscles Alive (1985) pp for details. For an average conduction velocity of 4.0 m/s and an inter-detection surface distance of 1.0 cm, the pass frequency is 200 Hz and the null point is at 400 Hz. This bandwidth captures the full frequency spectrum of the EMG signal and suppresses noise at higher frequencies. Muscle sample size - The muscle sample size need not be large because the muscle fibers of motor units are distributed throughout most of the muscle cross-section. Therefore, it is not necessary to cover a large portion of the muscle with the detection surface of the electrode to obtain a representative sample of the EMG signal for a particular set of active motor units. Cross-talk susceptibility - The susceptibility to cross-talk is an often overlooked design aspect of EMG electrodes. The greater the width and length of the detection surfaces and the greater the interdetection surface distance the closer the electrode will be to adjacent muscles. Thus, larger electrodes are more susceptible to detecting signals from adjacent (lateral and below) muscles. In situations where this issue is of concern, it is advisable to reduce the size of the electrode. DelSys Incorporated 6
7 THE PARALLEL-BAR ELECTRODE THE PARALLEL-BAR ELECTRODE From the above discussion, it is apparent that the design of a general-purpose electrode can only be realized by making compromises on the dimensions and configuration of the detection surfaces and the interdetection surface distance. Our experience has led us to use parallel bars (1cm long and 1mm wide) spaces 1 cm apart as shown in the following figure. Figure 3: Schematic representation of bar and circular configurations for electrodes. In addition to satisfying most of the above requirements this configuration also has some practical advantages: 1. It can be constructed so that it is sufficiently small and lightweight as to not be obtrusive to the subject. 2. The spacing of 1 cm between the detection surfaces is sufficiently large so as not to provide a prohibitive electrical shorting path when the skin sweats. DelSys Incorporated 7
8 EMG ELECTRODE PLACEMENT EMG ELECTRODE PLACEMENT Location and orientation of the electrode - The electrode should be placed between a motor point and the tendon insertion or between two motor points, and along the longitudinal midline of the muscle. The longitudinal axis of the electrode (which passes through both detection surfaces) should be aligned parallel to the length of the muscle fibers. Figure 4 provides a schematic representation of the preferred electrode location. Figure 4: The preferred electrode location is between the motor point (or innervation zone) and the tendinous insertion, with the detection surfaces arranged so that they intersect as many muscle fibers as possible. NOT on or near the tendon of the muscle - As the muscle fibers approach the fibers of the tendon, the muscle fibers become thinner and fewer in number, reducing the amplitude of the EMG signal. Also in this region the physical dimension of the muscle is considerably reduced rendering it difficult to properly locate the electrode, and making the detection of the signal susceptible to crosstalk because of the likely proximity of agonistic muscles. NOT on the motor point - During the past one-half century it has been taught that for the purpose of detecting a surface EMG signal the electrode should be located on a motor point of the muscle. The motor point is that point on the muscle where the introduction of minimal electrical current causes a perceptible twitch of the surface muscle fibers. This point usually, but not always, corresponds to that part of the innervation zone in the muscle having the greatest neural density, depending on the anisotropy of the muscle in this region. Presumably, the motor points have been used as landmarks because they were identifiable and provided a fixed anatomical landmark. Unfortunately from the point of view of signal stability, a motor point provides the worst location for detecting an EMG signal. In the region of a motor point, the action potentials travel caudally and rostrally along the muscle fibers, thus the positive and negative phases of the action potentials (detected by the differential configuration) will add and subtract with minor phase differences causing the resulting EMG signal to have higher frequency components. In the time domain, the signal appears as more jagged and with more sharp peaks. The loss of stability occurs from the fact that a minor displacement ( 0.1 mm) will affect in an unpredictable fashion the amount of change in the frequency characteristics of the signal. A note of caution about the motor points and innervation zones. Most muscles have multiple innervation zones throughout the muscle. They can be identified by applying electrical stimulation to the skin above the surface of the muscle or by other more technically complicated surface mapping techniques. If neither procedure is convenient, then place the electrode in the middle of the muscle between the origin and insertion point. DelSys Incorporated 8
9 REFERENCE ELECTRODE PLACEMENT NOT at the outside edges of the muscle - In this region, the electrode is susceptible to detecting crosstalk signals from adjacent muscles. It is good practice to avoid this situation. For some applications, crosstalk signals may be undesirable. Orientation of the electrode with respect to the muscle fibers - The longitudinal axis of the electrode (which passes through both detection surfaces) should be aligned parallel to the length of the muscle fibers. When so arranged, both detection surfaces will intersect most of the same muscle fibers. Hence, the spectral characteristics of the EMG signal will reflect the properties of a fixed set of muscle fibers in the region of the electrode. Also, the frequency spectrum of the EMG signal will be independent of any trigonometric factor that would provide an erroneous estimate of the conduction velocity. The resultant value of the conduction velocity affects the EMG signal by altering the temporal characteristics of the EMG signal, and consequently its frequency spectrum. REFERENCE ELECTRODE PLACEMENT The reference electrode (at times called the ground electrode) is necessary for providing a common reference to the differential input of the preamplifier in the electrode. For this purpose, the reference electrode should be placed as far away as possible and on electrically neutral tissue (say over a bony prominence). Often this arrangement is inconvenient because the separation of the detecting electrode and reference electrode leads requires two wires between the electrodes and the amplifier. It is imperative that the reference electrode make very good electrical contact with the skin. For this reason, the electrode should be large (2 cm x 2 cm). If smaller, the material must be highly conductive and should have strong adhesive properties that will secure it to the skin with considerable mechanical stability. Electrically conductive gels are particularly good for this purpose. Often, power line interference noise may be reduced and eliminated by judicious placement of the ground electrode. ELECTRICAL SAFETY CONCERNS The failure of any electrical instrumentation making direct or indirect galvanic contact with the skin can cause a potentially harmful fault current to pass through the skin of the subject. This concern is less relevant in devices that are powered exclusively by low voltage (3-15 V) batteries. To ensure safety, the subject should be electrically isolated from any electrical connection (to the power line or ground) associated with the power source. This isolation is generally achieved in one of two ways: either through the use of optical isolators or through the use of isolation transformers. Both approaches are satisfactory, but both require careful consideration for not distorting the EMG signal. This is especially true when a transformer is used. This isolation provides the added benefit of reducing the amount of radiated power line noise at the electrode detection surfaces. EMG SIGNAL PROCESSING For several decades it has been commonly accepted that the preferred manner for processing the EMG signal was to calculate the Integrated Rectified signal. This was done by rectifying (rendering the signal to DelSys Incorporated 9
10 APPLICATIONS OF THE EMG SIGNAL have excursions of one polarity) the EMG signal, integrating the signal over a specified interval of time and subsequently forming a time series of the integrated values. This approach became widespread and it was possible to make these calculations somewhat accurately and inexpensively with the limited electronics technology of earlier decades. The advances made in electronics devices during the past decades have made it possible to conveniently and accurately calculate the root-mean-squared (rms) and the average rectified (avr) value of the EMG signal. The avr value is similar to the integrated rectified value, if the calculations are made correctly and accurately. Both these variables provide a measurement of the area under the signal but do not have a specific physical meaning. On the other hand, the rms value is a measure of the power of the signal, thus it has a clear physical meaning. For this reason, the rms value ispreferred for most applications. APPLICATIONS OF THE EMG SIGNAL Currently there are three common applications of the EMG signal. They are: To determine the activation timing of the muscle; that is, when the excitation to the muscle begins and ends To estimate the force produced by the muscle. To obtain an index of the rate at which a muscle fatigues through the analysis of the frequency spectrum of the signal. In the not so distant future, we can expect applications in the assessment of neurological diseases which affect the fiber typing or the fiber cross-sectional area of the muscle. The relationship between the force produced by the muscle and the amplitude of the EMG signal requires further description. During the past five decades, the scientific literature has promulgated an apparent controversy on this issue. Some reports describe a relatively linear relationship, whereas others describe a relative non-linear relationship, with the amplitude of the EMG signal increasing greater than the force. In fact, both positions are correct and the controversy is artificial. It is now known that in small muscles where the firing rate of the motor units has a greater dynamic range and motor unit recruitment is limited to the lower end of the force range, the relationship is relatively linear. Whereas, in larger muscles where motor unit recruitment continues into the upper end of the force range and the firing rate has a lower dynamic range, the relationship is relatively non-linear. DelSys Incorporated 10
Author: Dr. Society of Electrophysio. Reference: Electrodes. should include: electrode shape size use. direction.
Standards for Reportin ng EMG Data Author: Dr. Roberto Merletti, Politecnico di Torino, Italy The Standards for Reporting EMG Data, written by Dr. Robertoo Merletti, are endorsed by the International Society
Nexus Technology Review -- Exhibit A
Nexus Technology Review -- Exhibit A Background A. Types of DSL Lines DSL comes in many flavors: ADSL, ADSL2, ADSL2+, VDSL and VDSL2. Each DSL variant respectively operates up a higher frequency level.
EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.
EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
Important Factors in Surface EMG Measurement. By Dr. Scott Day
Important Factors in Surface EMG Measurement By Dr. Scott Day Bortec Biomedical Ltd 225, 604-1 st ST SW Calgary, AB T2P 1M7 Ph +1 403.237.8144 Email [email protected] Website www.bortec.ca 1 Table of Contents
Standards for surface electromyography: the European project "Surface EMG for non-invasive assessment of muscles (SENIAM)
Standards for surface electromyography: the European project "Surface EMG for non-invasive assessment of muscles (SENIAM) D.F. Stegeman 1,3, H.J. Hermens 2 1 Institute of Neurology, Department of Clinical
WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.
WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,
Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011
Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications June 2011 Application Note Common mode chokes provide an effective EMI filtering solution for Ethernet transformer applications.
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
MICROPHONE SPECIFICATIONS EXPLAINED
Application Note AN-1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This
PIEZO FILTERS INTRODUCTION
For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on
Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements.
T e c h n i c a l N o t e Reflectance Measurements of Materials Used in the Solar Industry UV/Vis/NIR Author: Dr. Jeffrey L. Taylor PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, CT 06484 USA Selecting
Why to use isolated amplifiers
Why to use isolated amplifiers AppNote v1.0 www.dewesoft.com Table of Contents Table Of Contents 1Introduction...1 1.1Amplifier technologies...1 1.1.1Single-ended amplifier...1 1.1.2Differential amplifier...1
Adding Heart to Your Technology
RMCM-01 Heart Rate Receiver Component Product code #: 39025074 KEY FEATURES High Filtering Unit Designed to work well on constant noise fields SMD component: To be installed as a standard component to
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:
4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS
DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display
Determination of source parameters from seismic spectra
Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: [email protected]
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
Laboratory Guide. Anatomy and Physiology
Laboratory Guide Anatomy and Physiology TBME04, Fall 2010 Name: Passed: Last updated 2010-08-13 Department of Biomedical Engineering Linköpings Universitet Introduction This laboratory session is intended
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
White Paper: Electrical Ground Rules
Acromag, Incorporated 30765 S Wixom Rd, Wixom, MI 48393 USA Tel: 248-295-0880 Fax: 248-624-9234 www.acromag.com White Paper: Electrical Ground Rules Best Practices for Grounding Your Electrical Equipment
Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)
Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have
Understanding the Electrical Performance of Category Cables
Understanding the Electrical Performance of Category Cables By: Mike Levesque, Mike Karg & Himmeler Themistocle Obsessed with cable solutions. Understanding the Electrical Performance of Category Cables
Interference in the ECG and its elimination
Interference in the ECG and its elimination General points The signal voltages in ECG recording are known to be very small and are in the millivolt range, i.e. they have amplitudes of only a few thousands
Jitter Measurements in Serial Data Signals
Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
FILTERS - IN RADIO COMMUNICATIONS
Reading 32 Ron Bertrand VK2DQ http://www.radioelectronicschool.com FILTERS - IN RADIO COMMUNICATIONS RADIO SIGNALS In radio communications we talk a lot about radio signals. A radio signal is a very broad
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi
Selecting Receiving Antennas for Radio Tracking
Selecting Receiving Antennas for Radio Tracking Larry B Kuechle, Advanced Telemetry Systems, Inc. Isanti, Minnesota 55040 [email protected] The receiving antenna is an integral part of any radio location
Generic - Hearing Loop - (AFILS) U.S. System Specification
This document is a generic specification for any Hearing Loop (Audio Frequency Induction Loop System). For the remainder of the document, we will refer to using the term Hearing Loop rather than Audio
AN-837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
Application note for Peerless XLS 10" subwoofer drive units
Application note for Peerless XLS 10" subwoofer drive units Introduction: The following is an application note of how to use the Peerless XLS family of subwoofer drive units. The application note is meant
Data Communications Competence Center
Importance of Cable Balance For Improving Noise Susceptibility Data Communications Competence Center DCCC03101702 July 11, 2007 Summary In a study of category 5e and category 6 UTP cables, a strong correlation
Measurement setup for differential-mode and common-mode channels
Measurement setup for differential-mode and common-mode channels Vincent Le Nir, Marc Moonen 1 Abstract Since there is no model available for mixed differential-mode and common-mode transmission, this
Using Pre-Emphasis and Equalization with Stratix GX
Introduction White Paper Using Pre-Emphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes
EMI in Electric Vehicles
EMI in Electric Vehicles S. Guttowski, S. Weber, E. Hoene, W. John, H. Reichl Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25, 13355 Berlin, Germany Phone: ++49(0)3046403144,
Various Technics of Liquids and Solids Level Measurements. (Part 3)
(Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,
The Next Generation of Cable Technology. A technology primer from NORDX/CDT By, Eric d Allmen
A technology primer from NORDX/CDT By, Eric d Allmen Foreword The Telecommunications Industry Association (TIA) and the International Standards Organization (ISO/IEC) are actively engaged in the development
Amplified High Speed Fiber Photodetectors
Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 [email protected] www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
The 2N3393 Bipolar Junction Transistor
The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
APPLICATION NOTE AP050830
APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: [email protected] URL: http://www.prowave.com.tw The purpose of this application note
Considering the effects of UPS operation with leading power factor loads
Considering the effects of UPS operation with leading power factor loads Over the past five years, a new generation of data processing and communications equipment has become prevalent in modern data centers
Antenna Deployment Technical Brief
ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...
Analog and Digital Filters Anthony Garvert November 13, 2015
Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range
SUMMARY. Additional Digital/Software filters are included in Chart and filter the data after it has been sampled and recorded by the PowerLab.
This technique note was compiled by ADInstruments Pty Ltd. It includes figures and tables from S.S. Young (2001): Computerized data acquisition and analysis for the life sciences. For further information
AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
An Engineer s Guide to Full Compliance for CAT 6A Connecting Hardware
for CAT 6A Connecting Hardware Written by: Antoine Pelletier Engineer, Global Cabling Products Intertek www.intertek-etlsemko.com 1-800-WORLDLAB Introduction The telecommunication industry recently achieved
High Voltage Power Supplies for Analytical Instrumentation
ABSTRACT High Voltage Power Supplies for Analytical Instrumentation by Cliff Scapellati Power supply requirements for Analytical Instrumentation are as varied as the applications themselves. Power supply
WHITE PAPER. Source Modeling for Illumination Design. Zemax A Radiant Zemax Company
Source Modeling for Illumination Design Source Modeling for Illumination Design Authored by: Ronald F. Rykowski and C. Benjamin Wooley Abstract As computation speeds have increased dramatically over the
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
Linear Parameter Measurement (LPM)
(LPM) Module of the R&D SYSTEM FEATURES Identifies linear transducer model Measures suspension creep LS-fitting in impedance LS-fitting in displacement (optional) Single-step measurement with laser sensor
GenTech Practice Questions
GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following
DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS
DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
How To Calculate The Power Gain Of An Opamp
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley
Current Probes, More Useful Than You Think
Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998
SECTION 2 TECHNICAL DESCRIPTION OF BPL SYSTEMS
SECTION 2 TECHNICAL DESCRIPTION OF SYSTEMS 2.1 INTRODUCTION Access equipment consists of injectors (also known as concentrators), repeaters, and extractors. injectors are tied to the backbone via fiber
A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved
A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved The summing network in mixing consoles is an easily misunderstood
Product Introduction MyoMuscle. Telemyo DTS-System. Telemetry system for EMG and Biomechanical Sensors. www.noraxon.com
Product Introduction MyoMuscle Telemyo DTS-System Telemetry system for EMG and Biomechanical Sensors DTS Device Family 3 major device categories can be used for the Direct Transmission System technology
This paper will explain some of the more important factors on how UTP wires work; specifically it will cover the following:
UTP Technology In the late 1970s, unshielded twisted pair (UTP) cabling originated in the computer industry as a means of transmitting digital data over computer networks. This cable was designed to be
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the
Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point
Avaya WLAN 9100 External Antennas for use with the WAO-9122 Access Point Overview To optimize the overall performance of a WLAN in an outdoor deployment it is important to understand how to maximize coverage
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
CX Zoner Installation & User Guide
CX Zoner Installation & User Guide Cloud Electronics Limited 140 Staniforth Road, Sheffield, S9 3HF England Tel +44 (0)114 244 7051 Fax +44 (0)114 242 5462 e-mail [email protected] web site http://www.cloud.co.uk
Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
Bagnoli-2 EMG System. User s Guide
Bagnoli-2 EMG System User s Guide Bagnoli TM 2-Channel Handheld EMG System User s Guide August 2009 Edition PM-B06 Copyright 2009 by Delsys Incorporated Specifications and procedures outlined in this document
Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz
Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in
Non-contact surface charge/voltage measurements Fieldmeter and voltmeter methods
Dr. Maciej A. Noras Abstract Methods of measurements of surface electric charges and potentials using electrostatic fieldmeters and voltmeters are discussed. The differences and similarities between those
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)
Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then
Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.
Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is
Tx/Rx A high-performance FM receiver for audio and digital applicatons
Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder
Trigonometric functions and sound
Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude
RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes
Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement
EMC Standards: Standards of good EMC engineering
Electromagnetic Compatibility (EMC) IEEE Definition Origin, control, and measurement of electromagnetic effects on electronic and biologic systems. IEEE EMC Society Areas of Interest EMC Standards: Standards
12 Appendix 12 Earth Electrodes And Earth Electrode
12 Appendix 12 Earth Electrodes And Earth Electrode Testing 12.1 Introduction This appendix provides guidance and background information an earth electrode testing and some limited information on earth
Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19
Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and
MODEL 2202IQ (1991-MSRP $549.00)
F O R T H E L O V E O F M U S I C F O R T H E L O V E O F M U S I C MODEL 2202IQ (1991-MSRP $549.00) OWNER'S MANUAL AND INSTALLATION GUIDE INTRODUCTION Congratulations on your decision to purchase a LINEAR
Electromagnetic Compatibility Considerations for Switching Power Supplies
Electromagnetic Compatibility Considerations Characterization of the EMI problem requires understanding the interference source Switching power supplies generate Electromagnetic Interference (EMI) by virtue
Anatech Electronics, Inc.
Like all types of RF and microwave filters, ceramic filters have unique characteristics that differentiate them from their counterparts and make them useful for specific applications. Ceramic filters are
Lab 1: The Digital Oscilloscope
PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Consequence for a dualband application
rel. bandwidth -6dB [%] DESIGN CONSIDERATIONS FOR INTEGRATED MOBILE PHONE ANTENNAS D. Manteuffel, A. Bahr, D. Heberling, I. Wolff IMST GmbH, Germany, e-mail: [email protected] Abstract Based on the investigation
Impedance Matching and Matching Networks. Valentin Todorow, December, 2009
Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines
Internal GPS Active Patch Antenna Application Note
Internal GPS Active Patch Antenna Application Note APN-13-8-002/A Page 1 of 14 1. BASICS 2. APPLICATIONS 3. SIZE 4. SHAPE 5. GROUND PLANE 6. IMPEDANCE 7. BANDWIDTH 8. VSWR 9. LINK BUDGET 10. GAIN 11. NOISE
UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS
Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com [email protected] Page 2 THE BASIC
