Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06
|
|
|
- Kathleen Blankenship
- 9 years ago
- Views:
Transcription
1 Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift coefficient Υ wing dihedral angle β sideslip angle φ bank angle R turn radius S h S v l h l v AR h V h V v B α V horizontal tail area vertical tail area horizontal tail moment arm vertical tail moment arm horizontal tail aspect ratio horizontal tail volume coefficient vertical tail volume coefficient spiral stability parameter angle of attack velocity Role of Simple Design Rules Aircraft must have a certain amount of inherent stability and controllability to be flyable. It is therefore important to consider these characteristics when designing a new aircraft. Accurate evaluation of the stability characteristics of any given aircraft is a fairly complicated process, and is not well suited for preliminary or intermediate design. Fortunately, we have alternative criteria which give reasonable estimates and are vastly simpler to apply. The criteria involve basic dimensions, shown in Figure 1. Longitudinal x locations are typically y x MAC c b S c l v S v x cg x np Figure 1: Lengths, areas, and angles used in simple stability criteria. l h S h 1
2 measured relative to the leading edge of the wing s Mean Aerodynamic Chord, or MAC, which is the root-mean-square average chord. For most wings this is very nearly equal to the simple-average chord c. The l h and l v tail moment arms are the distances between the Center of Gravity (CG) and the average quarter-chord locations of the horizontal and vertical tail surfaces. The criteria which will use these dimensions are estimates, so it s acceptable to estimate the CG position and to eyeball the tail average quarter-chord locations when measuring l h and l v. Center of Gravity Position An aircraft s horizontal tail size and position, and the CG position are the dominant factors controlling the aircraft s pitch stability, which is the tendency to automatically maintain an angle of attack and airspeed. The basic effects of moving the CG position are: Decrease x cg /c (move CG fwd.): Increase x cg /c (move CG back): increased stability; more resistance to α and V changes. decreased stability; less resistance to α and V changes. There is one particular CG position which gives neutral stability, which is called the Neutral Point (NP). This is shown as x np in Figure 1. The degree of pitch stability or instability is traditionally specified by the Stability Margin. x np x cg S.M. = (1) c Figure 2 illustrates the natural behaviors of an airplane after a pitch disturbance, for different values of S.M. The unstable behavior occurs when S.M. is negative, i.e. when the CG is behind the NP. Because pitch instability makes the aircraft very difficult or impossible to control, the NP position is considered to be a practical aft CG limit. neutral (S.M. = 0) weakly unstable (S.M. = 0.05) strongly unstable (S.M. = 0.4) weakly stable (S.M. = +0.05) nose up pitch upset strongly stable (S.M. = +0.4) strongly stable (S.M. = +0.4) trimmed level flight weakly stable (S.M. = +0.05) nose down pitch upset neutral (S.M. = 0) weakly unstable (S.M. = 0.05) strongly unstable (S.M. = 0.4) Figure 2: Natural aircraft responses to a pitch disturbance, for different amounts of pitch stability. Making the S.M. strongly positive by moving the CG far forward will give plenty of pitch stability and a strong resistance to pitch upsets, but it also has undesirable side effects. One large drawback 2
3 of a large S.M. is that it causes large (and annoying) pitch trim changes with changing airspeed. Figure 3 shows the flight paths of airplanes with different nonnegative S.M., immediately after an airspeed increase caused by a power increase. The straight-ahead acceleration of the weakly stable or neutral airplane is more desirable for the pilot. strongly stable (S.M. = +0.4 ) weakly stable (S.M. = +0.05) neutral speed increased trimmed level flight (S.M. = 0) Figure 3: Pitch-up behavior from an airspeed increase, for large and small Static Margin. More specifically, the strongly stable airplane shown in Figure 3 requires a relatively large elevator angle change commanded by the pilot to restore it to level flight. Figure 4 compares the situation for the strongly and weakly stable airplanes. In effect, a large positive S.M. degrades the pitch trim authority of the elevator, since large trim deflections are needed to maintain level flight in response to airspeed changes. strongly stable (S.M. = +0.4) Fast flight Slow flight Large elevator trim change required with airspeed change weakly stable (S.M. = +0.05) Fast flight Slow flight Small elevator trim change required with airspeed change Figure 4: Elevator trim adjustment with changing airspeed, for large and small Static Margin. This situation illustrates the benefit of reducing the S.M., by moving the CG closer to the NP. However, if the CG is moved behind the NP, the airplane will now have a negative S.M., and be unstable in pitch to some degree, with the results illustrated in Figure 2. This makes it difficult or even impossible to fly. In general, the small positive S.M. suggested by rule (2) is the ideal situation. x np x cg S.M. = (2) c 3
4 Horizontal Tail Sizing Criteria The Neutral Point location x np is primarily controlled by size of the horizontal tail and its moment arm from the CG. A measure of this tail effectiveness is the horizontal tail volume coefficient: S h l h V h (3) S c A well-behaved aircraft typically has a V h which falls in the following range: V h = (4) If V h is too small, the aircraft s pitch behavior will be very sensitive to the CG location. It will also show poor tendency to resist gusts or other upsets, and generally wander in pitch attitude, making precise pitch control difficult. The V h also directly affects the NP location x np, which can be estimated by the following expression. x np /AR V h (5) c /AR h AR + 2 The derivation of this formula is beyond scope here, but it is straighforward to evaluate for any aircraft configuration. With x np estimated via (5), the CG location x cg can be positioned at a good and safe location using rule (2). Vertical Tail Sizing Criteria The primary role of the vertical tail is to provide yaw damping, which is the tendency of yaw oscillations of the aircraft to subside. The vertical tail also provides yaw stability, although this will be almost certainly ensured if the yaw damping is sufficient. One measure of the vertical tail s effectiveness is the vertical tail volume coefficient: S v l v V v (6) S b Most well-behaved aircraft typically have a V v which falls in the following range: V v = (7) If V v is too small, the aircraft will tend to oscillate or wallow in yaw as the pilot gives rudder or aileron inputs. This oscillation, shown in Figure 5, is called Dutch Roll, and makes precise directional control difficult. A V v which is too small will also give poor rudder roll authority in an aircraft which uses only the rudder to turn. Picking suitable V h and V v values for any new aircraft design is partly a matter of experience. One common approach is to simply duplicate the V h and V v values of an existing aircraft which is known to have good stability and control characteristics. Dihedral Sizing Criteria Spiral Stability The dihedral angle of the wing, denoted by Υ in Figure 1, provides some degree of natural spiral stability. A spirally-unstable aircraft tends to constantly increase its bank angle at some rate, and therefore requires constant attention by the pilot. Conversely, a spirally-stable aircraft will tend to 4
5 Figure 5: Dutch roll oscillation tendency from insufficient vertical tail volume. spiral instability spiral stability Figure 6: Spiral instability and spiral stability, depending on amount of dihedral. roll upright with no control input from the pilot, and thus make the aircraft easier to fly. Figure 6 compares the two types of behavior. Whether an aircraft is spirally stable or unstable can be determined via the spiral parameter B (named after its originator Blaine Rawdon, from Douglas Aircraft): l v Υ B (Υ in degrees) (8) b C L 5
6 B > 5, spirally stable B = 5, spirally neutral (9) B < 5, spirally unstable The main parameter which is used to adjust B in the design phase is the dihedral angle Υ. Spiral stability is not a hard requirement, and most aircraft are in fact spirally unstable. Level flight is then ensured either by the pilot, or by a wing-levelling autopilot, provided the instability is slow enough. RC aircraft which can fly stably hands-off must be spirally stable, although a small amount of instability (B = , say) does not cause major difficulties for an experienced pilot. Dihedral Sizing Roll Control On rudder/elevator aircraft, the rudder acts to generate a sideslip angle β, which then combines with dihedral to generate a roll moment and thus provide roll control. The effect is shown in Figure 7. A criterion for adequate roll authority is obtained by the product of V v and B: V v B = (10) The 0.10 value will likely give marginal roll control, while 0.20 will give very effective control. M yaw from rudder deflection V L β sideslip angle L increased local α decreased local α M roll result Figure 7: Rudder causes sideslip angle β, which acts with dihedral to create roll moment. 6
7 Dihedral Sizing Criteria Steady Sideslip in Turns An aircraft in a steady level turn must have a bank angle φ, equal to where R is the turn radius. The turning aircraft also sees a linear relative velocity variation across the span, y u(y) = V 1 R as shown in Figure 8. This increases the lift on the outboard tip relative to the inboard tip, and causes a roll moment tending to increase the bank angle and thus steepen the turn. V 2 φ = arctan gr "inside track" "outside track" R y u(y) V L ~ u 2 L ~ u 2 φ Figure 8: Curved flight path in a turn causes a relative velocity u(y) variation across the span, which produces an inward rolling moment from the resulting lift imbalance. On most airplans, the inward rolling moment is normally cancelled by a very slight outward aileron deflection, as shown in Figure 9. On aircraft without ailerons, this inward rolling moment can only be neutralized by a steady sideslip angle with the nose pointing outside of the flight circle, as shown in Figure 10. The sideslip angle 7 M roll
8 Figure 9: Outward roll moment from ailerons cancels inward roll moment from curved flight path, thus maintaining a constant bank angle. β turn β turn Figure 10: Outward roll moment from sideslip angle cancels inward roll moment from curved flight path, thus maintaining a constant bank angle. Smaller dihedral requires larger sideslip. necessary to cancel the roll moment effect of the u(y) variation is approximately β turn 1 C L b Υ dc L /dα 2R cos φ (β, Υ in radians) (11) Note that β turn is inversely proportional to Υ. So in order to keep the drag-producing sideslip sufficiently small, especially in a slow turn at high C L, the dihedral must be made sufficiently large. 8
APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1
APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane
Flightlab Ground School 5. Longitudinal Static Stability
Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal
Airplane/Glider Design Guidelines and Design Analysis Program
Airplane/Glider Design Guidelines and Design Analysis Program Ever have the urge to design your own plane but didn t feel secure enough with your usual TLAR (that looks about right) methods to invest all
Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics
Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics 6.11 General discussions on control surface 6.11.1 Aerodynamic balancing 6.11.2 Set back hinge or over hang balance 6.11.3 Horn balanace
Lecture 8 : Dynamic Stability
Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic
The aerodynamic center
The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate
High Alpha 3D Maneuvers
High Alpha 3D Maneuvers Harrier Pass Elevator Back Flip Parachute Whip Stalls Rolling Harrier 3D Rolling Turn 3D Knife Edge C-82 Rudder Warmup Note: Every flight mode and maneuver presented in this section
Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist
Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design
Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014
Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established
parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series
National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting
TOTAL ENERGY COMPENSATION IN PRACTICE
TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected ILEC GmbH, all
SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of
SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement
AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS
www.theaviatornetwork.com GTM 1.1 CONTENTS INTRODUCTION... 1.2 GENERAL AIRPLANE... 1.2 Fuselage... 1.2 Wing... 1.2 Tail... 1.2 PROPELLER TIP CLEARANCE... 1.2 LANDING GEAR STRUT EXTENSION (NORMAL)... 1.2
High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter
High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.
FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1
Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 FLIGHT CONTROLS 1. GENERAL The primary flight controls, ailerons, elevators and rudders, are hydraulically powered. Hydraulic power is provided from hydraulic
Certification Specifications for Very Light Aeroplanes CS-VLA
European Aviation Safety Agency Certification Specifications for Very Light Aeroplanes CS-VLA Amendment 1 5 March 2009 1-0-1 CONTENTS (Layout) CS VLA VERY LIGHT AEROPLANES BOOK 1 AIRWORTHINESS CODE SUBPART
What did the Wright brothers invent?
What did the Wright brothers invent? The airplane, right? Well, not exactly. Page 1 of 15 The Wrights never claimed to have invented the airplane, or even the first airplane to fly. In their own words,
Fundamentals of Airplane Flight Mechanics
Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables 123 David G. Hull The University of Texas at Austin Aerospace Engineering
Light Aircraft Design
New: Sport Pilot (LSA) The Light Aircraft Design Computer Program Package - based on MS-Excelapplication was now extented with the new Sport Pilots (LSA) loads module, which includes compliance for the
Requirements to servo-boosted control elements for sailplanes
Requirements to servo-boosted control elements for sailplanes Aerospace Research Programme 2004 A. Gäb J. Nowack W. Alles Chair of Flight Dynamics RWTH Aachen University 1 XXIX. OSTIV Congress Lüsse, 6-136
APPLICATION OF A SIX DEGREES OF FREEDOM ADAPTIVE CONTROLLER TO A GENERAL AVIATION AIRCRAFT. A Thesis by. Kimberly Ann Lemon
APPLICATION OF A SIX DEGREES OF FREEDOM ADAPTIVE CONTROLLER TO A GENERAL AVIATION AIRCRAFT A Thesis by Kimberly Ann Lemon Bachelor of Science, Wichita State University, 2009 Submitted to the Department
HALE UAV: AeroVironment Pathfinder
HALE UAV: AeroVironment Pathfinder Aerodynamic and Stability Analysis Case Study: Planform Optimization Desta Alemayehu Elizabeth Eaton Imraan Faruque Photo courtesy NASA Dryden Photo Gallery 1 Pathfinder
Introduction to Aircraft Stability and Control Course Notes for M&AE 5070
Introduction to Aircraft Stability and Control Course Notes for M&AE 57 David A. Caughey Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York 14853-751 211 2 Contents
Lecture L5 - Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.
The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events
AE 430 - Stability and Control of Aerospace Vehicles
AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing
VARIABLE STABILITY FLIGHT OPERATIONS MANUAL
SPACE INSTITUTE VARIABLE STABILITY FLIGHT OPERATIONS MANUAL Prepared by the Aviation Systems and Flight Research Department September 2004 Index 1.1 General Description...1 1.2 Variable Stability System...5
Unit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE
ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE Adapted from Dr. Leland M. Nicolai s Write-up (Technical Fellow, Lockheed Martin Aeronautical Company) by Dr. Murat Vural (Illinois Institute of Technology)
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft
Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft Gautam H. Shah 1 NASA Langley Research Center, Hampton VA 23681 and Melissa A. Hill 2 Unisys Corporation, Hampton VA 23666 A study
Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques
AIAA Guidance, Navigation, and Control Conference 08-11 August 2011, Portland, Oregon AIAA 2011-6253 Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques Brian
Introduction to RC Airplanes. RC Airplane Types - Trainers, Sport RC Planes, 3D Acrobat RC Airplanes, Jets & More
Introduction to RC Airplanes RC Airplane Types - Trainers, Sport RC Planes, 3D Acrobat RC Airplanes, Jets & More RC Airplane Types RC airplanes come in a few distinct categories. Each category generally
Behavioral Animation Simulation of Flocking Birds
Behavioral Animation Simulation of Flocking Birds Autonomous characters determine their actions Simulating the paths of individuals in: flocks of birds, schools of fish, herds of animals crowd scenes 1.
Aerodynamics of Flight
Chapter 2 Aerodynamics of Flight Introduction This chapter presents aerodynamic fundamentals and principles as they apply to helicopters. The content relates to flight operations and performance of normal
Lecture L29-3D Rigid Body Dynamics
J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L29-3D Rigid Body Dynamics 3D Rigid Body Dynamics: Euler Angles The difficulty of describing the positions of the body-fixed axis of
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby
This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby Background papers and links to formal FAA and EASA Aviation Regulations and
NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry
0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge
Wright Brothers Flying Machine
Original broadcast: November, 00 Wright Brothers Flying Machine Program Overview NOVA presents the story of Orville and Wilbur Wright, who invented the first powered airplane to achieve sustained, controlled
Design and Structural Analysis of the Ribs and Spars of Swept Back Wing
Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,
TopSky DLG Installation Manual
TopSky DLG Installation Manual Attention: Because after the compound materials solidify, there will be ammonia iris on the surface, which affect the bonding strength afterwards. Please polish with sandpaper
Cessna Skyhawk II / 100. Performance Assessment
Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction
Certification Specifications for Large Rotorcraft CS-29
European Aviation Safety Agency Certification Specifications for Large Rotorcraft CS-29 11 December 2012 CS-29 CONTENTS (general layout) CS 29 LARGE ROTORCRAFT BOOK 1 CERTIFICATION SPECIFICATIONS SUBPART
CYCLOPS OSD USER MANUAL 5.0
CYCLOPS OSD USER MANUAL 5.0 Thank you for choosing CYCLOPS OSD V5.0 New features: CYCLOPS OSD V5.0 is incorporated with Autopilot function and infrared attitude sensor capable of controlling aircraft's
Aircraft Weight and Balance Handbook
Aircraft Weight and Balance Handbook 2007 U.S. DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Flight Standards Service i ii Preface P FAA-H-8083-1A, Aircraft Weight and Balance Handbook,
Digital Avionics: A Computing Perspective
Digital Avionics: A Computing Perspective Elisabeth A. Strunk John C. Knight (Eds.) IEEE, Elisabeth A. Strunk, John C. Knight IEEE, Elisabeth A. Strunk, John C. Knight Preface This is a book about the
Heli Radio Optimization (Dual Rates and Exponential)
EFL R S75 EFL R S75 Heli Radio Optimization (Dual Rates and Exponential) Nearly all transmitters today come with dual rates or multiple flight modes that allow the pilot of a fixed pitch heli to switch
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
Model Aircraft Design
Model Aircraft Design A teaching series for secondary students Contents Introduction Learning Module 1 How do planes fly? Learning Module 2 How do pilots control planes? Learning Module 3 What will my
Thin Airfoil Theory. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078
13 Thin Airfoil Theory Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 7478 Project One in MAE 3253 Applied Aerodynamics and Performance March
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,
Chapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
Flight Operations Briefing Notes
Flight Operations Briefing Note I Introduction Operations in crosswind conditions require strict adherence to applicable crosswind limitations or maximum recommended crosswind values, operational recommendations
Preface. This handbook supersedes Advisory Circular (AC) 91-23A, Pilot s Weight and Balance Handbook, revised in 1977. iii
i ii Preface FAA-H-8083-1, Aircraft Weight and Balance Handbook, has been prepared in recognition of the importance of weight and balance technology in conducting safe and efficient flight. The objective
NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL
NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL Sarfaraj Nawaz Shaha 1, M. Sadiq A. Pachapuri 2 1 P.G. Student, MTech Design Engineering, KLE Dr. M S Sheshgiri College of Engineering
Understanding Drag, Thrust, and Airspeed relationships
Understanding Drag, Thrust, and Airspeed relationships Wayne Pratt May 30, 2010 CFII 1473091 The classic curve of drag verses airspeed can be found in any aviation textbook. However, there is little discussion
Teacher Edition. Written By Tom Dubick. 2011 by Fly To Learn. All rights reserved.
Teacher Edition Written By Tom Dubick TABLE OF CONTENTS First Flight... 3 May The Force(s) Be With You... 9 Lift A Real Pick Me Up... 17 What a Drag, Man... 23 Thrust It s All About Altitude... 29 Flight
Welcome to FBL Gyro Configuration software
Welcome to FBL Gyro Configuration software If you have gone flybarless and are using the ALZRC 3GYS, CopterX 3X1000, Helicox TG-1, Hobby King ZYX or Tarot ZYX then this software may be useful to you. Based
NIFA NATIONAL SAFECON
NIFA NATIONAL SAFECON 2007 Manual Flight Computer Accuracy Explanations Note to competitor: This will offer some basic help in solving the problems on the test. There is often more than one way to correctly
A380 Flight Controls overview
Presented by Xavier Le tron Airbus Flight Controls A380 Flight Controls overview A380 Flight Control and uidance Systems main novelties Aircraft configuration and control surfaces Actuator technology Power
Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i
No Amendment List Date Amended by Date Incorporated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i ACP 33 FLIGHT CONTENTS Volume 1... History of Flight Volume 2... Principles of Flight Volume 3... Propulsion
Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing
Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing Lana Osusky, Howard Buckley, and David W. Zingg University of Toronto Institute
Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M.
Information regarding the Lockheed F-104 Starfighter F-104 LN-3 An article published in the Zipper Magazine #48 December-2001 Author: Country: Website: Email: Theo N.M.M. Stoelinga The Netherlands http://www.xs4all.nl/~chair
rarecorvettes.com, [email protected], (831) 475-4442 Pacific Time Zone
INTRODUCTION TO WHEEL ALIGNMENT A SHORT COURSE ON WHEEL ALIGNMENT, FRONT AND REAR PREPARED FOR THE N.C.R.S. NATIONAL CONVENTION JUNE 29 TO JULY 5, 2012 by: JOE CALCAGNO, RARE CORVETTES rarecorvettes.com,
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and
16. Beam-and-Slab Design
ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil
Instruction Manual Bedienungsanleitung Manuel d utilisation Manuale di Istruzioni
Instruction Manual Bedienungsanleitung Manuel d utilisation Manuale di Istruzioni EN Getting Started To get more information, including details on downloading the Spektrum AS3X Mobile Programming Application,
Project Flight Controls
Hogeschool van Amsterdam Amsterdamse Hogeschool voor techniek Aviation studies Project Flight Controls ALA Group: 2A1Q Jelle van Eijk Sander Groenendijk Robbin Habekotte Rick de Hoop Wiecher de Klein Jasper
Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control
Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control Dennis Keller Abstract The aim of the investigation is to gain more
ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF
ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF According to RYANAIR Procedures PF PM REMARKS Control the aircraft (FULL T/O thrust can be manually selected) Announce «ENGINE FAILURE» or «ENGINE FIRE»
Acceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
Learning to 3D and 3D well. A Building Blocks Approach. By Jeremy Chinn
Learning to 3D and 3D well. A Building Blocks Approach. By Jeremy Chinn Radio Controlled Aerobatics has always been one of the most exciting elements of the Radio Controlled Airplane hobby. This discipline
A MATTER OF STABILITY AND TRIM By Samuel Halpern
A MATTER OF STABILITY AND TRIM By Samuel Halpern INTRODUCTION This short paper deals with the location of Titanic s Center of Buoyancy (B), Center of Gravity (G) and Metacenter Height (M) on the night
Using CEASIOM-SUMO RapidMeshing in Computational Study of. Asymmetric Aircraft Design
Using CEASIOM-SUMO RapidMeshing in Computational Study of Asymmetric Aircraft Design Mengmeng Zhang, Arthur Rizzi Royal Institute of Technology (KTH), Stockholm, Sweden & D. Raymer Conceptual Research
Chapter 6 Tail Design
apter 6 Tail Design Moammad Sadraey Daniel Webster ollege Table of ontents apter 6... 74 Tail Design... 74 6.1. Introduction... 74 6.. Aircraft Trim Requirements... 78 6..1. Longitudinal Trim... 79 6...
CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length.
length. PAGE [1] CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length. Summary: In CFD work produced by G. Kowaleczko (GK) and sent to the author of this report in 2013
Formulas for gear calculation external gears. Contents:
Formulas for gear calculation external gears Contents: Relationship between the involute elements Determination of base tooth thickness from a known thickness and vice-versa. Cylindrical spur gears with
1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
0 28 November 2011 N/A First Release of Manual 1 24 February 2012 Page 21 Error in FY31AP connection diagram corrected.
Rev 1: 24 February 2012 FEIYU TECH FY31AP Autopilot System Installation & Operation Guide Guilin Feiyu Electronic Technology Co., Ltd Rm. B305, Innovation Building, Information Industry Park, Chaoyang
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
European Aviation Safety Agency
European Aviation Safety Agency ED Decision 2003/2/RM Final 17/10/2003 The Executive Director DECISION NO. 2003/2/RM OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 17 October 2003 on certification specifications,
IR Flight Training Handbook
IR Flight Training Handbook (in accordance with Part-FCL and Global Aviation Training Manual) Copyright 2013 by Global Aviation SA Version 1.6 PREFACE This IR Flight Training Handbook is developed by Global
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
How do sails work? Article by Paul Bogataj
How do sails work? Article by Paul Bogataj Sails are wings that use the wind to generate a force to move a boat. The following explanation of how this occurs can help understand how to maximize the performance
Cessna 172SP & NAV III Maneuvers Checklist
Cessna 172SP & NAV III Maneuvers Checklist Introduction Power Settings This document is intended to introduce to you the standard method of performing maneuvers in Sunair Aviation s Cessna 172SP and NAV
Parameter identification of a linear single track vehicle model
Parameter identification of a linear single track vehicle model Edouard Davin D&C 2011.004 Traineeship report Coach: dr. Ir. I.J.M. Besselink Supervisors: prof. dr. H. Nijmeijer Eindhoven University of
Progettazione Funzionale di Sistemi Meccanici e Meccatronici
Camme - Progettazione di massima prof. Paolo Righettini [email protected] Università degli Studi di Bergamo Mechatronics And Mechanical Dynamics Labs November 3, 2013 Timing for more coordinated
Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com
The Pilot s Manual 1: Flight School Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com Originally published by Aviation Theory Centre 1990 1993. Fourth
Boom and fly capacities for this machine are listed by the following sections:
Lifting Capacities Telescopic Hydraulic Truck Crane HTC 8650 50 ton (45.36 metric ton) and fly capacities for this machine are listed by the following sections: Fully Extended Outriggers Working Range
Sport Aviation Specialties
Sport Aviation Specialties 2707 NW Cedar Brook, Lee s Summit, MO 64081, 816-838-6235, www.sportaviationspecialties.com WEIGHT & BALANCE FOR ELSA In certificating light-sport aircraft and conducting ELSA
FRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction
2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes
