HALE UAV: AeroVironment Pathfinder
|
|
|
- Patrick Pearson
- 9 years ago
- Views:
Transcription
1 HALE UAV: AeroVironment Pathfinder Aerodynamic and Stability Analysis Case Study: Planform Optimization Desta Alemayehu Elizabeth Eaton Imraan Faruque Photo courtesy NASA Dryden Photo Gallery 1
2 Pathfinder History Designed and fabricated by AeroVironment in 1981 Determined technology insufficient to support mutli-day duration flights under solar power and Pathfinder was put into storage In 1993, brought back to flight by Ballistic Missile Defense Organization Transferred to NASA in 1994 to support Environmental Research Aircraft and Sensor Technology (ERAST) program ERAST program demonstrated that a high AR, solar-powered lightweight craft could take off and land at an airport and fly at extremely high altitudes (50-80K ft) ERAST also determines feasibility of such UAVs for carrying instruments used in scientific studies Photo courtesy NASA Dryden Photo Gallery 2
3 ERAST Milestones Sept. 11, 1995: Sets first altitude record for solar-powered aircraft at 50,000 ft during 12-hour flight October 21, 1995: Damaged in hangar mishap July 7, 1997: Sets new altitude record for solar-powered and propeller-driven aircraft at 71,530 ft Modified into the longer-winged Pathfinder Plus, still used for tests at NASA DFRC Aug. 6, 1998: Pathfinder Plus breaks old record with flight at altitude a of 80,201 ft Aug. 13, 2001: Helios sets record at 96,863 ft in near 17-hour flight June 26, 2003: Helios lost in flight mishap near Kauai, Hawaii Photo courtesy NASA Dryden Photo Gallery 3
4 Pathfinder Configuration Span: 99 ft Chord: 8 ft Wing Area: 792 ft 2 AR: Elevator Chord: 0.89 ft Center Panel: 22.1 ft span and 0 dihedral Mid Panel: 18.9 ft span (each) and 3 dihedral Tip Panel: 18.8 ft span (each) and 6.5 dihedral # Elevators: 26 (full span) x cg : 0.5 in fwd LE 4 Three-View Drawing courtesy AeroVironment, Inc.
5 Specs and Performance W=550 lbs (includes 50 lbs payload) - W/S=0.694 psf Solar array covers 75% of upper surface and can generate near 8000 W at solar noon Six gearless 1.5 hp electric motors consisting of fixed-pitched, 2-bladed 2 79-inch diameter props, brushless DC motor, nacelle, cooling fins, and composite mounting strut - T/W=0.10 at 60,000 ft, P/W = 13.6 W/lb Composed of carbon composite spar, lightweight composite ribs and transparent plastic wing skin - Can withstand 3.2g Flight speed of 94 ft/s at altitude of 60,000 ft 5
6 Airfoil: LA2573A y/c Modified Liebeck Airfoil Max t/c = x/c of max t = x/c Max camber/c = x/c of max camber =
7 Pressure Distribution C P Angle of Attack = 7 x/c 7
8 Lift Curve C L α, degrees C Lα = 6.97 C Lmax = 1.3 Stall occurs at α = 11 Zero lift angle α =
9 Moment Curve C m α, degrees C mα = Requires positive C m to trim so must not exceed α = 18 9
10 Drag Polar C L C D C D0 = (L/D) max = 25 Best performance of airfoil when CL does not exceed 1.2 (α = 10 ) 10
11 Wind Tunnel Data Wind tunnel data courtesy of R.H. Liebeck 11
12 Analysis in AVL Mach = C D0 = CL = # Panels = 20 x 6 Wing tip panels had 1º twist 12
13 Span Loading at α =
14 14 Derivatives Derivatives C n C m C l C Y C L δ e r q p β α
15 Derivatives, ¾ chord elevator α β p q r δ e C L C Y C l C m C n
16 Results e = 0.92 Neutral Point = 26% of chord (C lβ C nr )/(C lr C nβ ) = This must be greater than 1 to be spirally stable Photo courtesy NASA Dryden Photo Gallery 16
17 Optimization of Planform Objectives: - Maximize Power - Minimize Weight - Minimize Drag Design Variables: - Spans of center, mid, and tip panels -Chord Create model in Model Center using MATLAB modules for weight, drag and power Use the Darwin genetic algorithm to perform multiobjective optimization 17
18 Modules Weight: Assumed evenly distributed Drag: Assumed a drag polar, C D = C D0 + C L2 /(πare) C D0 : Used equations from friction to obtain C D0, assuming a high laminar to turbulent ratio Power: Solar panels cover 75% of the upper surface Constants for Optimization: - e = 0.92 (from AVL) - ρ = sl/ft 3 (60,000 ft) - µ = sl/ft-s - M = (V=94 ft/s at 60K ft) - FF = Q = W/S = psf - P/S = 13.5 W/ft 2 18
19 Optimization Results Pareto designs are those that have a better value for at least one objective function than similar designs. Nearly linear relationship between objective functions for the non-dominated frontier. Ideally look for designs with comparatively higher power than those with similar weight and drag. These designs are referred to as knees in the curve. 19
20 Best Design for W=550 Pounds Weight Drag Power Center b Mid b Tip b Chord Pathfinder 542 lbs 19.3 lbs 7879 W 11 ft 18.9 ft 18.8 ft 8 ft Optimized 550 lbs 21.8 lbs W 13.3 ft 14.9 ft 16 ft 8.96 ft 20
21 References Curtin, Bob and Kirk Flittie. Pathfinder Solar-Powered Aircraft Flight Performance. AIAA, Noll, Thomas E, et al. Investigation of the Helios Prototype Aircraft Mishap. NASA, Liebeck,, R. H. Laminar Separation Bubbles And Airfoil Design at Low Reynolds Numbers. mbers. AIAA, Solar-Powered Research and Dryden Fact Sheet, avail. at NASA DFRC website: DFRC.html NASA Dryden Photo Gallery, avail at NASA DFRC website: UIUC Airfoil Coordinates Database, avail. at UIUC website: The Incomplete Guide to Airfoil Usage, avail. at UIUC website: Xfoil Source and Materials: AVL Source and Materials: MATLAB, courtesy MathWorks Model Center, courtesy Phoenix Integration 21 Photo courtesy NASA Dryden Photo Gallery
22 T/W and P/W supporting calculations P total =(6)(1.5hp) =9hp 550ftlb/s 1hp = 4950ftlb/s T = P/V = 4950ftlb/s 94ft/s =52.66lb T/W = =0.096 P/W =(9hp)(832W/hp)/550lb =13.6 Watts/lb 22
NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry
0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge
ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE
ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE Adapted from Dr. Leland M. Nicolai s Write-up (Technical Fellow, Lockheed Martin Aeronautical Company) by Dr. Murat Vural (Illinois Institute of Technology)
Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist
Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design
Cessna Skyhawk II / 100. Performance Assessment
Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction
The aerodynamic center
The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate
Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06
Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift
APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example
APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.
AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS
www.theaviatornetwork.com GTM 1.1 CONTENTS INTRODUCTION... 1.2 GENERAL AIRPLANE... 1.2 Fuselage... 1.2 Wing... 1.2 Tail... 1.2 PROPELLER TIP CLEARANCE... 1.2 LANDING GEAR STRUT EXTENSION (NORMAL)... 1.2
Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing
Aerodynamic Design Optimization Discussion Group Case 4: Single- and multi-point optimization problems based on the CRM wing Lana Osusky, Howard Buckley, and David W. Zingg University of Toronto Institute
Flap Optimization for Take-off and Landing
Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2004 Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004
High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter
High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.
A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
Design and Structural Analysis of the Ribs and Spars of Swept Back Wing
Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,
XFlow CFD results for the 1st AIAA High Lift Prediction Workshop
XFlow CFD results for the 1st AIAA High Lift Prediction Workshop David M. Holman, Dr. Monica Mier-Torrecilla, Ruddy Brionnaud Next Limit Technologies, Spain THEME Computational Fluid Dynamics KEYWORDS
Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge
Programme Discussions Wissenschaftstag Braunschweig 2015 Kevin Nicholls, EIVW Prepared by Heinz Hansen TOP-LDA Leader, ETEA Presented by Bernhard Schlipf, ESCRWG Laminarität für zukünftige Verkehrsflugzeuge
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and
AE 430 - Stability and Control of Aerospace Vehicles
AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing
Toward Zero Sonic-Boom and High Efficiency. Supersonic Bi-Directional Flying Wing
AIAA Paper 2010-1013 Toward Zero Sonic-Boom and High Efficiency Supersonic Flight: A Novel Concept of Supersonic Bi-Directional Flying Wing Gecheng Zha, Hongsik Im, Daniel Espinal University of Miami Dept.
Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon
International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,
NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL
NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL Sarfaraj Nawaz Shaha 1, M. Sadiq A. Pachapuri 2 1 P.G. Student, MTech Design Engineering, KLE Dr. M S Sheshgiri College of Engineering
APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1
APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane
MICRO AERIAL VEHICLE DEVELOPMENT: DESIGN, COMPONENTS, FABRICATION, AND FLIGHT-TESTING
MICRO AERIAL VEHICLE DEVELOPMENT: DESIGN, COMPONENTS, FABRICATION, AND FLIGHT-TESTING Gabriel Torres and Thomas J. Mueller 117 Hessert Center, University of Notre Dame Notre Dame, IN 46556 Phone: (219)
A NUMERICAL METHOD TO PREDICT THE LIFT OF AIRCRAFT WINGS AT STALL CONDITIONS
Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 3, 24 A NUMERICAL METHOD TO PREDICT THE LIFT OF AIRCRAFT WINGS AT STALL CONDITIONS Marcos A. Ortega ITA
Theory of turbo machinery / Turbomaskinernas teori. Chapter 3
Theory of turbo machinery / Turbomaskinernas teori Chapter 3 D cascades Let us first understand the facts and then we may seek the causes. (Aristotle) D cascades High hub-tip ratio (of radii) negligible
CFD simulations of flow over NASA Trap Wing Model
CFD simulations of flow over NASA Trap Wing Model Andy Luo Swift Engineering Pravin Peddiraju, Vangelis Skaperdas BETA CAE Systems Introduction A cooperative study was undertaken by BETA and Swift Engineering
Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels
NASA/CR 2008-215434 Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels David A. Spera Jacobs Technology, Inc., Cleveland, Ohio An errata was added
DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS 51
DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS Wojciech KANIA, Wieńczysław STALEWSKI, Bogumiła ZWIERZCHOWSKA Institute of Aviation Summary The paper presents results of numerical design and experimental
Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP
Propeller Efficiency Rule of Thumb David F. Rogers, PhD, ATP Theoretically the most efficient propeller is a large diameter, slowly turning single blade propeller. Here, think the Osprey or helicopters.
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map
Visualization and Data Mining of Solutions Using Self-Organizing Map Shigeru Obayashi and Daisuke Sasaki Institute of Fluid Science, Tohoku University, Sendai, 980-8577 JAPAN [email protected], [email protected]
The Use of VSAero CFD Tool in the UAV Aerodynamic Project
DIASP Meeting #6 Turin 4-5 February 2003 The Use of VSAero CFD Tool in the UAV Aerodynamic Project Alberto PORTO Massimiliano FONTANA Porto Ricerca FDS Giulio ROMEO - Enrico CESTINO Giacomo FRULLA Politecnico
SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of
SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement
Airplane/Glider Design Guidelines and Design Analysis Program
Airplane/Glider Design Guidelines and Design Analysis Program Ever have the urge to design your own plane but didn t feel secure enough with your usual TLAR (that looks about right) methods to invest all
PARAMETRIC INVESTIGATION OF A HIGH-LIFT AIRFOIL AT HIGH REYNOLDS NUMBERS. John C. Lin* NASA Langley Research Center, Hampton, VA 23681-0001.
PARAMETRIC INVESTIGATION OF A HIGH-LIFT AIRFOIL AT HIGH REYNOLDS NUMBERS John C. Lin* NASA Langley Research Center, Hampton, VA 23681-0001 and Chet J. Dominik McDonnell Douglas Aerospace, Long Beach, CA
Light Aircraft Design
New: Sport Pilot (LSA) The Light Aircraft Design Computer Program Package - based on MS-Excelapplication was now extented with the new Sport Pilots (LSA) loads module, which includes compliance for the
Understanding High Advance Ratio Flight
Alfred Gessow Rotorcraft Center University of Maryland Understanding High Advance Ratio Flight Graham Bowen-Davies Graduate Research Assistant Adviser: Inderjit Chopra Alfred Gessow Professor and Director
New Airfoil in LM s Wind Tunnel: High Efficiency and Roughness Insensitivity
New Airfoil in LM s Wind Tunnel: High Efficiency and Roughness Insensitivity Christian Bak, Helge A. Madsen, Mac Gaunaa, Peter B. Andersen, Mads Døssing Risø DTU Peter Fuglsang, Stefano Bove LM Glasfiber
Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics
Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics 6.11 General discussions on control surface 6.11.1 Aerodynamic balancing 6.11.2 Set back hinge or over hang balance 6.11.3 Horn balanace
High-Speed Demonstration of Natural Laminar Flow Wing & Load Control for Future Regional Aircraft through innovative Wind Tunnel Model
High-Speed Demonstration of Natural Laminar Flow Wing & Load Control for Future Regional Aircraft through innovative Wind Tunnel Model Project organization The project tackles the CfP JTI-CS-2012-1-GRA-02-019
From A to F: The F/A-18 Hornet
From A to F: The F/A-18 Hornet F/A-18 Breaking the Sound Barrier. Source: www.boeing.com By: Kevin Waclawicz 4/28/00 Some History On January 6, 1972, the USAF issued a request for proposals for a lightweight
Front landing gear legs. Carve from balsa block
0 Carve these parts from balsa blocks C-1(2) C-2(3) Note: these cross pieces do not have formers attached. They help establish the proper curve of each fuselage side. Front landing gear legs Carve from
CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length.
length. PAGE [1] CFD results for TU-154M in landing configuration for an asymmetrical loss in wing length. Summary: In CFD work produced by G. Kowaleczko (GK) and sent to the author of this report in 2013
VARIABLE STABILITY FLIGHT OPERATIONS MANUAL
SPACE INSTITUTE VARIABLE STABILITY FLIGHT OPERATIONS MANUAL Prepared by the Aviation Systems and Flight Research Department September 2004 Index 1.1 General Description...1 1.2 Variable Stability System...5
Lab 1a Wind Tunnel Testing Principles & Lift and Drag Coefficients on an Airfoil
Lab 1a Wind Tunnel Testing Principles & Lift and Drag Coefficients on an Airfoil OBJECTIVES - Calibrate the RPM/wind speed relation of the wind tunnel. - Measure the drag and lift coefficients of an airfoil
Performance. 13. Climbing Flight
Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:
Wichita State University AeroShock Page 2 of 57
Table of Contents Acronyms, Abbreviations, and Symbols... 4 1.0 Executive Summary...5 2.0 Management Summary... 6 2.1 Design Team Composition and Responsibilities...6 2.2 Scheduling...7 3.0 Conceptual
QUT Digital Repository: http://eprints.qut.edu.au/
QUT Digital Repository: http://eprints.qut.edu.au/ El-Atm, Billy and Kelson, Neil A. and Gudimetla, Prasad V. (2008) A finite element analysis of the hydrodynamic performance of 3- and 4-Fin surfboard
Prediction of airfoil performance at high Reynolds numbers
Downloaded from orbit.dtu.dk on: Jul 01, 2016 Prediction of airfoil performance at high Reynolds numbers. Sørensen, Niels N.; Zahle, Frederik; Michelsen, Jess Publication date: 2014 Document Version Publisher's
CFD Analysis on Airfoil at High Angles of Attack
CFD Analysis on Airfoil at High Angles of Attack Dr.P.PrabhakaraRao¹ & Sri Sampath.V² Department of Mechanical Engineering,Kakatiya Institute of Technology& Science Warangal-506015 1 [email protected],
Introduction to Flight
Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL
Thin Airfoil Theory. Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078
13 Thin Airfoil Theory Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 7478 Project One in MAE 3253 Applied Aerodynamics and Performance March
Florida Institute of Technology Phoenix SAE Aero Design Final Report
Florida Institute of Technology Phoenix SAE Aero Design Final Report Team Members: Jeff Gibson (L) Dan Denmark Kathleen Murray Steven Tucker Ray Klingerman Jenn Allison Sarah Lagerquist MAE 4292 Submitted
Smart Fixed Wing Aircraft Integrated Technology Demonstrator (SFWA-ITD): New Wing Concepts
Aerodays 2011 conference CleanSky Scenarios for 2020: Conceptual Aircraft Smart Fixed Wing Aircraft Integrated Technology Demonstrator (SFWA-ITD): New Wing Concepts Madrid, 30. March 01. April 2010 J.
Flightlab Ground School 5. Longitudinal Static Stability
Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal
Skywalker X8. Assembly manual January 2013
Skywalker X8 Assembly manual January 2013 This Manual Was Created by Ray Grauberger www.raygrauberger.com Technical Data This is the X-8 FPV wing from Skywalker Technology. The BIG FPV wing! The X-8 has
Technologies for Re-entry Vehicles. SHEFEX and REX FreeFlyer, DLR s Re-Entry Program. Hendrik Weihs. Folie 1. Vortrag > Autor > Dokumentname > Datum
Technologies for Re-entry Vehicles SHEFEX and REX FreeFlyer, DLR s Re-Entry Program Hendrik Weihs Folie 1 DLR`s Re-Entry Program, Why? Re-entry or return technology respectively, is a strategic key competence
INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011
MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale
Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar
Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,
Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations.
Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations. By: Anthony Livanos (10408690) Supervisor: Dr Philippa O Neil Faculty of Engineering University of Western Australia For
Understanding Drag, Thrust, and Airspeed relationships
Understanding Drag, Thrust, and Airspeed relationships Wayne Pratt May 30, 2010 CFII 1473091 The classic curve of drag verses airspeed can be found in any aviation textbook. However, there is little discussion
SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET
SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very
Design and Characterization of a Small Wind Turbine Model equipped with a Pitching System
Design and Characterization of a Small Wind Turbine Model equipped with a Pitching System In Partial Fulfilment of the Requirements for the degree Master of Science in Engineering Renewable Energy and
NACA airfoil geometrical construction
The NACA airfoil series The early NACA airfoil series, the 4-digit, 5-digit, and modified 4-/5-digit, were generated using analytical equations that describe the camber (curvature) of the mean-line (geometric
CFD Analysis of Civil Transport Aircraft
IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar
98 Turbine Vulcan Build photos
98 Turbine Vulcan Build photos Just some of the useful tools needed plus a quality razor plane FUSELAGE Note: Fitting parts back to front is an easy mistake to make with this build, so mark all part with
Junkers Ju 88 Manual Version 1.2 13 March 2008
Junkers Ju 88 Manual Version 1.2 13 March 2008 Specifications Wingspan: 49.75 inches Area: 339 square inches Length: 36.12 inches Power: 2x BP21 Brushless 2x Speed-400 Copyright 2007 Thomas A. Jacoby and
Company Presentation AHK Business trip to DENVER 6/27 7/1
Company Presentation AHK Business trip to DENVER 6/27 7/1 hb Solar of Southern California, Inc. 811 E G Street, Suite F Wilmington, CA 90744 Phone: (310) 707-1117 [email protected] 1-2 lbs/sq ft hb Solar of
Modeling the Performance of the Standard Cirrus Glider using Navier-Stokes CFD
Modeling the Performance of the Standard Cirrus Glider using Navier-Stokes CFD Thomas Hansen Norwegian University of Science and Technology N-7491, NTNU Trondheim, Norway t s s t Abstract The performance
Interactive Aircraft Design for Undergraduate Teaching
Interactive Aircraft Design for Undergraduate Teaching Omran Al-Shamma, Dr. Rashid Ali University of Hertfordshire Abstract: This paper presents new software package developed for Aircraft Design. It is
Summary of Aerodynamics A Formulas
Summary of Aerodynamics A Formulas 1 Relations between height, pressure, density and temperature 1.1 Definitions g = Gravitational acceleration at a certain altitude (g 0 = 9.81m/s 2 ) (m/s 2 ) r = Earth
Prof. Ing. Giulio ROMEO, Politecnico di Torino (Turin Polytechnic University), Dept. of Aerospace Eng. [email protected]
: High Altitude Very-long Endurance Solar Powered Platform for Border Patrol and Forest Fire Detection. CAPECON: SHAMPO Solar HALE-UAV ESA STRATOS: Stratospheric Platform Prof. Ing. Giulio ROMEO, Politecnico
Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640
Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and
Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors
Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors Dr. Lance Richards, Allen R. Parker, Dr. William L. Ko, Anthony Piazza Dryden Flight Research Center, Edwards, CA Space Sensors
parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series
National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting
Solar Water Heating and Photovoltaic Electrical Systems Installed on One or Two Family Dwellings
Solar Water Heating and Photovoltaic Electrical Systems Installed on One or Two Family Dwellings I. BACKGROUND As awareness of renewable energy and green building options increases, solar energy systems
Conceptual Design Tool for Micro Air Vehicles with Hybrid Power Systems
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 5-8 July 010, Nashville, TN AIAA 010-6688 Conceptual Design Tool for Micro Air Vehicles with Hybrid Power Systems Paul M. Hrad 1 and Frederick
AIAA CFD DRAG PREDICTION WORKSHOP: AN OVERVIEW
5 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AIAA CFD DRAG PREDICTION WORKSHOP: AN OVERVIEW Kelly R. Laflin Cessna Aircraft Company Keywords: AIAA, CFD, DPW, drag, transonic Abstract An overview
Wind Turbine Design of Turbine Blade
Wind Turbine Design of Turbine Blade Ryo S. Amano University of Wisconsin, Milwaukee, U.S.A. Abstract As renewable energy sources become increasingly popular, wind power provides a safe and dependable
Experimental investigation of golf driver club head drag reduction through the use of aerodynamic features on the driver crown
Available online at www.sciencedirect.com Procedia Engineering 00 (2013) 000 000 www.elsevier.com/locate/procedia The 2014 conference of the International Sports Engineering Association Experimental investigation
Circulation Control NASA activities
National Aeronautics and Space Administration Circulation Control NASA activities Dr. Gregory S. Jones Dr. William E. Millholen II Research Engineers NASA Langley Research Center Active High Lift and Impact
Prop Rotor Acoustics for Conceptual Design. Final Report NASA Grant NAG 2-918. Valana L. Wells Arizona State University
Prop Rotor Acoustics for Conceptual Design Final Report NASA Grant NAG 2-918 Valana L. Wells Arizona State University April 1996 Abstract The report describes a methodology for the simple prediction of
Airborne Internet. R.Praveenkumar Department of Computer Applications IFET College of Engineering Villupuram parveenkumarrms@gmail.
Airborne Internet R.Praveenkumar Department of Computer Applications IFET College of Engineering Villupuram [email protected] Abstract-The word on just about every Internet user's lips these days
TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy
TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy EA-2011T03-02 Sheet 01 TECNAM P2006T 04 May 2012 This data
Table of Contents. 1.0! Executive Summary... 3! 2.0! Management Summary... 4! 3.0! Conceptual Design... 6! 4.0! Preliminary Design... 18!
Table of Contents 1.0! Executive Summary... 3! 2.0! Management Summary... 4! 2.1! Team Organization... 4! 2.2! Project Milestone Chart... 6! 3.0! Conceptual Design... 6! 3.1! Design Constraints... 6! 3.2!
Analysis of NASA Common Research Model Dynamic Data
Analysis of NASA Common Research Model Dynamic Data S. Balakrishna 1 Vigyan Inc, Hampton, Va, 23666 Michael J Acheson 2 Project manager, NFMTC, LaRC, Hampton, Va, 23681 Recent NASA Common Research Model
CFD Calculations of S809 Aerodynamic Characteristics 1
Walter P. Wolfe Engineering Sciences Center Sandia National Laboratories Albuquerque, NM 87185-0836 Stuart S. Ochs Aerospace Engineering Department Iowa State University Ames, IA 50011 CFD Calculations
Electric Motors and Drives
EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,
Introduction to Aircraft Stability and Control Course Notes for M&AE 5070
Introduction to Aircraft Stability and Control Course Notes for M&AE 57 David A. Caughey Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York 14853-751 211 2 Contents
XB-70 VALKYRIE ENGINEERING TEAMS / PART II
XB-70 VALKYRIE ENGINEERING TEAMS / PART II Students will learn about the development of the XB-70 Valkyrie research aircraft, and they will also learn about some of the incredible features of this airplane.
FLIGHT RESEARCH ON NATURAL LAMINAR FLOW. B. J. Holmes, C. C. Cr, and E. C. Hastings, Jr. NASA Langley Research Center Hampton, Virginia
.88-495 FLIGHT RESEARCH ON NATURAL LAMINAR FLOW B. J. Holmes, C. C. Cr, and E. C. Hastings, Jr. NASA Langley Research Center Hampton, Virginia C. J. Obara Kentron Internatlonal, Incorporated Hampton, Virginia
Drag Prediction of Engine Airframe Interference Effects with CFX-5
JOURNAL OF AIRCRAFT Vol. 42, No. 6, November December 2005 Drag Prediction of Engine Airframe Interference Effects with CFX-5 R. B. Langtry, M. Kuntz, and F. R. Menter ANSYS CFX Germany, 83624 Otterfing,
Development of a Common Research Model for Applied CFD Validation Studies
Development of a Common Research Model for Applied CFD Validation Studies John C. Vassberg *, Mark A. DeHaan The Boeing Company, Huntington Beach, CA 92647 S. Melissa Rivers, Richard A. Wahls NASA Langley
Some scientific challenges in aerodynamics for wind turbines
Some scientific challenges in aerodynamics for wind turbines Christian Bak Senior Scientist Team Leader: Aerodynamics, aeroacoustics, airfoil and blade design Technical University of Denmark DTU Wind Energy
