Brain Signal Analysis
|
|
|
- Derrick Gregory
- 9 years ago
- Views:
Transcription
1 Brain Signal Analysis Jeng-Ren Duann, Tzyy-Ping Jung, Scott Makeig Institute for Neural Computation, University of California, San Diego CA Computational Neurobiology Lab, The Salk Institute, La Jolla CA RUNNING HEAD: Brain signal analysis Artificial neural networks (ANNs) have now been applied to a wide variety of real-world problems in many fields of application. The attractive and flexible characteristics of ANNs, such as their parallel operation, learning by example, associative memory, multifactorial optimization and extensibility, make them well suited to the analysis of biological and medical signals. In this study, we review applications of ANNs to brain signal analysis, for instance, for analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG), or electromyogram (EMG), and as applied to computed tomographic (CT) images and magnetic resonance (MR) brain images, and to series of functional MR brain images (i.e. fmri). 1
2 1. INTRODUCTION Artificial neural networks (ANNs) are computational framework inspired by our expanding knowledge of the activity of networks of biological neurons in the brain. ANNs cannot hope to reproduce all the still not well-understood complexities of actual brain networks. Rather, most ANNs are implemented as sets of nonlinear summing elements interconnected by weighted links, forming a highly simplified model of brain connectivity. The basic operation of such artificial neurons is to pass a weighted sum of their inputs through a nonlinear hard-limiting or soft squashing function. To form an ANN, these basic calculating elements (artificial neurons) are most often arranged in interconnected layers. Some neurons, usually those in the layer furthest from the input, are designated as output neurons. The initial weight values of the interconnections are usually assigned randomly. The operation of most ANNs proceeds in two stages. Rules used in the first stage, training (or learning), can be categorized as supervised, unsupervised, or reinforced. During training, the weight values for each interconnection in the network are adjusted either to minimize the error between desired and computed outputs (supervised learning) else to maximize differences (or to minimize similarities) between the output categories (unsupervised or competitive learning). In reinforced learning, an input-output mapping is learned during continued interaction with the environment so as to maximize a scalar index of performance (Haykin, 1999). The second stage is recall, in which the ANN generates output for the problem the ANN is designed to solve, based on new input data without (or sometimes with) further training signals. Because of their multifactorial character, ANNs have proven suitable for practical use in many medical applications. Since most medical signals of interest are usually not produced by variations in a single variable or factor, many medical problems, particularly those involving 2
3 decision-making, must involve a multifactorial decision process. In these cases, changing one variable at a time to find the best solution may never reach the desired objective (Dayhoff and DeLeo, 2001), whereas multifactorial ANN approaches may be more successful. In this chapter, we review recent applications of ANNs to brain signal processing, organized according to the nature of brain signals to be analyzed and the role that ANNs play in the applications. 3
4 2. ROLES OF ANNS IN BRAIN SIGNAL PROCESS To date, ANNs have been applied to brain data for the following purposes: a. Feature extraction, classification, and pattern recognition: ANNs here serve mainly as non-linear classifiers. The inputs are preprocessed so as to form a feature space. ANNs are used to categorize the collected data into distinct classes. In other cases, inputs are not subjected to preprocessing but are given directly to an ANN to extract features of interest from the data. b. Adaptive filtering and control: ANNs here operate within closed loop systems to process changing inputs, adapting their weights on the fly to filter out unwanted parts of the input (adaptive filtering), or mapping their outputs to parameters used in online control (adaptive control). c. Linear or nonlinear mapping: Here ANNs are used to transform inputs to outputs of a desired form. For example, an ANN might remap its rectangular input data coordinates to circular or more general coordinate systems. d. Modeling: ANNs can be thought of as function generators that generate an output data series based on a learned function or data model. ANNs with two layers of trainable weights have been proven capable of approximating any nonlinear function. e. Signal separation and deconvolution: These ANNs separate their input signals into the weighted sum or convolution of a number of underlying sources using assumptions about the nature of the sources or of their interrelationships (e.g., their independence). f. Texture analysis and image segmentation: Image texture analysis is becoming increasingly important in image segmentation, recognition and understanding. ANNs 4
5 are being used to learn spatial or spatial-frequency texture features and, accordingly, to categorize images or to separate an image into subimages (image segmentation). g. Edge detection: In an image, an edge or boundary between two objects can be mapped to a dark band between two lighter areas (objects). By using the properties of intensity discontinuity, ANNs can be trained to recognize these dark bands as edges, or can learn to "draw" such edges based on contrast and other information. 5
6 3. APPLICATION AREAS In this section, we illustrate applications of ANNs to brain signals through some examples involving neurobiological time series and brain images. Neurobiological signals of clinical interest recorded noninvasively from humans include EEG, MEG, and EMG data. Research in brain imaging includes the analysis of structural brain images, mainly focused on the extraction of 3-dimensional structural information, from various kinds of brain images (e.g., magnetic resonance images, MRI), as well as analysis of functional brain imaging series that mainly reveal changes in the brain state during cognitive tasks using medical imaging techniques (e.g., fmri and positron emission tomography or PET). These examples, however, by no means cover all the publications in the field, whose number is growing rapidly. Neurobiological signals Electroencephalogram and Magnetoencephalogram The electroencephalogram (EEG) is a non-invasive measure of brain electrical activity recorded as changes in the potential difference between two points on the scalp. The magnetoencephalogram (MEG) is its magnetic counterpart. In accordance with the assumption that the ongoing EEG can be alternated correspondingly by stimulus or event to form the event-related potential (ERP) or the evoked potential (EP), these changes, though tiny, can be recorded through the scalp. It is possible for researchers to apply pattern recognition algorithms to search for the differences in brain status while the brain is performing different tasks. Thus, Peters and colleagues (2001) applied an autoregressive (AR) model to four-channel EEG potentials to obtain features that were used to train an ANN using a backpropagation algorithm to differentiate the subject's intention to move the left or right index finger or right foot. They suggested the framework might be useful for designing a direct brain-computer interface. In the 6
7 study of Zhang et al. (2001), ANNs were trained to determine the stage of anesthesia based on features extracted from the middle-latency auditory evoked potential (MLAEP) plus other physiological parameters. By combining power spectral estimation, principal component analysis and ANNs, Jung et al. (1997) demonstrated that continuous, accurate, noninvasive, and near real-time estimation of an operator's global level of alertness is feasible using EEG measures recorded from as few as two scalp sites. Results of their ANN-based estimation compare favorably to those using a linear regression model applied to the same PCA-reduced EEG power spectral data. As a linear mapping device, Sun and Sclabassi (2000) employed an ANN to transform the EEG topography obtained from a forward solution in a simple spherical model to a more realistic spheroidal model whose forward solution was difficult to compute directly. Here, a backpropagation learning algorithm was used to train an ANN to convert spatial locations between spherical and spheroid models. Instead of computing the infinite sums of the Legendre functions required in the asymmetric spheriodal model, the calculations were carried out in the spherical model and then converted by the ANN to the more realistic model for display and evaluation. Recently, ANNs have made an important impact on the analysis of EEG and MEG by separating the problem of EEG or MEG source identification from that of source localization, a mathematically underdetermined problem -- any scalp potential distribution can be produced by a limitless number of potential distributions within the head. Because of volume conduction through cerebrospinal fluid, skull and scalp, EEG and MEG data collected from any point on the scalp may include activity arising in multiple locally synchronous but relatively independent neural processes within a large brain volume. This has made it difficult to relate EEG 7
8 measurements to underlying brain processes and to localize the sources of EEG and MEG signals. Progress has been made by several groups in separating and identifying the distinct brain sources from their mixtures in scalp EEG or MEG recordings assuming only their temporal independence and spatial stationarity (Makeig et al., 1997; Jung et al., 2001), using a class of independent component analysis (ICA) or blind source separation (BSS) algorithms. Muscle and Movement Signals From recordings of muscle stretching (mainly, the electromyogram or EMG), it is possible to predict the intent of subjects to perform actions such as hand or finger movements, or to judge the disability of a specific bundle of muscle cells. For example, Khalil and Duchene used wavelet coefficients obtained from uterine electromyography to train ANNs (Khalil and Duchene, 2000) to separate the inputs into four labeled categories: uterine contractions, fetal movements, Alvarez waves, and long-duration low-frequency band (LDBF) waves. They reported that the system was useful for maintaining preterm births. On the other hand, Stites and Abbas (2000) used an ANN as a pattern shaper to refine the output patterns of a functional neuromuscular stimulation system (FNS) that served as a pattern generator of control signals for cyclic movements to help the paraplegic patient stand using FNS. Brain Images Structural Images In structural brain image analysis, ANNs may play roles in image segmentation, image labeling and/or edge detection. Image segmentation is the first, and probably the most important step in digital image processing. Segmentation may be a labeling problem in which the goal is to assign, to each voxel in a gray-level image, a unique label that represents it s belonging to an anatomical structure. The results of image segmentation can be used for the image understanding 8
9 and recognition, three-dimensional reconstruction, visualization, and for measurements including brain volume changes in developmental brain diseases such as Alzheimer s disease and autism. The rapid pace of development of medical imaging devices such as magnetic resonance imaging (MRI) and computerized tomography (CT), allows to better understanding of anatomical brain structure without, prior to, or even during neurosurgery. However, results are highly dependent upon the quality of the image segmentation processes. Here, we give some examples using ANNs in image segmentation: Dawant et al. (1991) presented a backpropagation (BP) neural network approach to the automatic characterization of brain tissues from multi-modal MR images. The ability of a three-layer BP neural network to perform segmentation based on a set of MR images (T1-weighted, T2-weight and proton density weighted) acquired from a patient was studied. The results were compared to those obtained using a Maximum Likelihood Classifier. They showed there was no significant difference in the results obtained by both methods, though BP neural network gave cleaner segmentation images. By using the same analysis strategy, Reddick et al. (1997) first trained a self-organizing map (SOM) on multi-modal MR brain images to efficiently extract and convert the 3-D inputs (from T1-, T2- and PD-weighted images) into a feature space and utilized a BP neural network to separate them into classes of white matter, gray matter, and cerebral spinal fluid (CSF). Their work demonstrated high intraclass correlation between the automated segmentation and classification of tissues and standard radiologist identification as well as high intrasubject reproducibility. Functional Images Nowadays, not only does medical imaging device provide impressive spatial resolution and details of the fine structure of the human brain, it is also able to reveal changes in brain status 9
10 while awake subjects perform a task or even daydream by measuring ongoing metabolic changes including cerebral blood flow (CBF), cerebral blood volume (CBV) (by Positron Emission Tomography, PET), and blood oxygenation level-dependent (BOLD) signal levels (by functional MR imaging, fmri). We will give some examples mainly from fmri analysis. Functional brain imaging emerged in the early 90 s based on the observation that increase in local neuronal activity are followed by local changes in oxygen concentration. Changing the amount of oxygen carried by hemoglobin changes the degree to which hemoglobin disturbs a magnetic field is able to demonstrate that in vivo changes blood oxygenation could be detected by MRI (Ogawa et al., 1992). The subsequent changes in the MRI signal became known as the blood-oxygenation- level-dependent or BOLD signal. This technique was soon applied to normal humans during functional brain activation, by cognitive task performance, giving birth to the rapid growing field of functional magnetic resonance imaging. Theoretically, the fmri BOLD signal from a given brain voxel can be interpreted as a linear combination of different sources with distinguishable time courses and spatial distributions, including use-dependent hemodynamic changes, blood or central spinal fluid flows, plus subject movement and machine artifacts. Recently, ANNs (especially independent component analysis, ICA), applied to fmri data, have proven to be a powerful method for detecting and separating task-related activations with either known or unanticipated time courses (McKeown et al., 1998) that could not be detected by standard hypothesis-driven analyses. Duann et al. (2002) have given further details of applying ICA to fmri BOLD signal showing that the hemodynamic response to even widely spaced stimulus presentations may be trial, site, stimulus and subject dependent. Thus, the standard regression based method of applying a fixed hemodynamic response model to find stimulus- or task-related BOLD activations needs to be reconsidered. 10
11 4. DISCUSSION Uses of ANNs as classifiers currently dominates their applications to the field of brain signal analysis. This includes classification of brain or related signals as exhibiting normal or abnormal features or processes. Not surprisingly, all published studies report promising results. If the measurements can be modeled as an additive mixture of different sources, including task-related signals and artifacts, applying blind source separation (BSS) prior to the further processing, visualization, or interpretation may better reveal the underlying physical phenomena such as different brain processes) which in the raw data could be contaminated or overwhelmed by other processes of no interest. A survey of relevant papers shows that the most popular architecture for artificial neural network used is the multilayer perceptron (MLP). The MLP architecture is both simple and straightforward to implement and use. In MLPs, information flows in one direction except during training, when error terms are back-propagated. Backpropagation updates network weights in a supervised manner. Although it cannot guarantee a globally minimal solution, backpropagation at least arrives at a local minimum through gradient descent. Various techniques have been derived to attempt to avoid overfitting to a local minimum. Once the network weights have been learned and fixed, feedforward networks can be implemented in hardware and made to run in real-time. All these characteristics make the backpropagation algorithm most popular in biomedical applications. In some applications, target outputs may not be available or may be too expensive to acquire. In these cases, unsupervised learning algorithms may be used. Among unsupervised learning algorithms, self-organizing maps (SOMs) are the most popular for biomedical applications. During training, SOMs attempt to assign their input patterns to different output regions. Often 11
12 SOMs may converge after only few learning cycles. APPLICATION ISSUES Although most published papers have concluded that ANNs are appropriate for their domain of interest, many issues still have to be resolved before ANNs may be claimed to be the general method of choice. Unfortunately, most published studies have not gone beyond demonstrating application to a very limited amount of data. As with any type of method, ANNs have their limitations that should be carefully considered: Every study should provide a rationale for the data chosen as input. For example, ANN-based computer-aided-diagnosis (CAD) systems may give misleading results if the ANNs are not given adequately representative features and sufficient naturally occurring data variations in their training data. Using ANNs, any input may yield some sort of output, correct and useful or not ( garbage in, garbage out ). Therefore, keys for success of ANN applications are not only to pick an appropriate architecture or learning algorithm, but also to choose the right data and data features to train the network. Although methods of applying ANNs to biomedical signals have already shown great promise, great care must be taken to examine the results obtained. The issue of trust in the outputs of ANNs always deserves informed as well as statistical consideration. Since medical diagnosis is nearly always a multifactorial and multidisciplinary problem, medical experts should always evaluate network outputs in light of other direct or indirect convergent evidence before making final decisions affecting the health of patients. Before practical implementation is planned, ANN methods should be compared to more direct ways of obtaining the same answers, as these might sometimes prove more accurate or cost-effective. 12
13 MODEL MINING Since the first wave of popularization of backpropagation networks, nearly two decades ago, an ever-growing number and variety of ANN models have been devised to tackle an ever-widening variety of problems. The overall insight that ANNs both embody and exemplify is perhaps that our human intelligence is multifactorial and highly adaptable to using whatever forms of information are available to us. In this spirit, we suggest that researchers always attempt to interpret the physiological meaning both of the features of their input data and of the data models that their trained ANNs represent. Too often ANNs have been treated like black boxes. We believe it is time to open the black boxes and interpret what is happening inside them. Such interpretations might even give new insights into the nature of the biomedical signals, or suggest new or more efficient ways to look at the input data. It is also possible that the ANN models and methods might suggest more efficient methods to collect input data. Such 'model mining' might even prove to be the most rewarding result of applying ANNs. Researchers who simply recount classification accuracy may ignore nuggets of novel information about brain processes hidden in the ANN models that they and the data have jointly constructed. 13
14 REFERENCES Dawant B. M., Ozkan, M., Zijdenbos, A. and Margolin, R., 1991, A computer environment for 2D and 3D quantitation of MR images using neural networks. Mag. Reson. Imaging, 20: * Dayhoff, J. E. and DeLeo, J. M., 2001, Artificial neural networks: opening the black box. Cancer, 91: * Duann, J. R., Jung, T. P., Kuo, W. J., Yeh, T. C., Makeig, S., Hsieh, J. C. and Sejnowski, T. J., 2002, Single-trial variability in event-related BOLD signals. NeuroImage, 15: * Haykin, S., 1999, Neural Network: A Comprehensive Foundation, New Jersey: Prentice Hall International Inc. Jung, T.-P., Makeig, S., Stensmo, M., and Sejnowski, T. J., 1997, Estimating alertness from the EEG power spectrum, IEEE Trans Biomedical Engineering, 44: * Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T.-W. and Sejnowski, T. J., 2001, Imaging brain dynamics using independent component analysis, Proc. of the IEEE, 89: Khalil, M. and Duchene, J., 2000, Uterine EMG analysis, a dynamic approach for change detection and classification, IEEE Trans Biomedical Engineering, 47: * Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., and Sejnowski, T. J., 1997, Blind separation of auditory event-related brain responses into independent components, Proc. Natl. Acad. Sci. USA., 94: * McKeown, M. J., Jung, T.-P., Makeig, S., Brown, G. G., Kindermann, S. S., Lee, T.-W. and Sejnowski, T. J., 1998, Spatially independent activity patterns in functional MRI data during the stroop color-naming task, Proc. Natl. Acad. Sci. USA., 95: * Ogawa, S., Tank, D., Menon, R., Ellermann, J., Kim, S., Merkle, H., and Ugurbil, K., 1992, 14
15 Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. USA., 89: Peters, B. O., Pfurtscheller, G., and Flyvbjerg, H., 2001, Automatic differentiation of multichannel EEG signals, IEEE Trans Biomedical Engineering, 48: Reddick, W. E., Glass, J. O., Cook, E. N., Elkin, T. D. and Deaton R. J., 1997, Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks, IEEE Trans Medical Imaging, 16: * Stites, E. C. and Abbas, J. J., 2000, Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation, IEEE Trans Biomedical Engineering, 47: * Sun, M. and Sclabassi, R. J., 2000, The forward EEG solution can be computed using artificial neural networks, IEEE Trans Biomedical Engineering, 47: Zhang, X.-S., Roy, R. J., Schwender, D., and Daunderer, M., 2001, Discrimination of anesthetic states using mid-latency auditory evoked potential and artificial neural networks, Ann. Biomedical Engineering, 29:
Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).
Functional neuroimaging Imaging brain function in real time (not just the structure of the brain). The brain is bloody & electric Blood increase in neuronal activity increase in metabolic demand for glucose
Cognitive Neuroscience. Questions. Multiple Methods. Electrophysiology. Multiple Methods. Approaches to Thinking about the Mind
Cognitive Neuroscience Approaches to Thinking about the Mind Cognitive Neuroscience Evolutionary Approach Sept 20-22, 2004 Interdisciplinary approach Rapidly changing How does the brain enable cognition?
2 Neurons. 4 The Brain: Cortex
1 Neuroscience 2 Neurons output integration axon cell body, membrane potential Frontal planning control auditory episodes soma motor Temporal Parietal action language objects space vision Occipital inputs
Obtaining Knowledge. Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology.
Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology 1.Obtaining Knowledge 1. Correlation 2. Causation 2.Hypothesis Generation & Measures 3.Looking into
Digital image processing
746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common
NEURAL NETWORKS IN DATA MINING
NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,
6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Machine Learning. 01 - Introduction
Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
How are Parts of the Brain Related to Brain Function?
How are Parts of the Brain Related to Brain Function? Scientists have found That the basic anatomical components of brain function are related to brain size and shape. The brain is composed of two hemispheres.
Neural Networks in Data Mining
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department
How To Use Neural Networks In Data Mining
International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and
SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH
330 SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH T. M. D.Saumya 1, T. Rupasinghe 2 and P. Abeysinghe 3 1 Department of Industrial Management, University of Kelaniya,
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
Self Organizing Maps: Fundamentals
Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen
Recurrent Neural Networks
Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time
NEURAL NETWORKS A Comprehensive Foundation
NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments
Novelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep
Engineering, 23, 5, 88-92 doi:.4236/eng.23.55b8 Published Online May 23 (http://www.scirp.org/journal/eng) Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep JeeEun
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT
Brain Computer Interfaces (BCI) Communication Training of brain activity
Brain Computer Interfaces (BCI) Communication Training of brain activity Brain Computer Interfaces (BCI) picture rights: Gerwin Schalk, Wadsworth Center, NY Components of a Brain Computer Interface Applications
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
FUNCTIONAL EEG ANALYZE IN AUTISM. Dr. Plamen Dimitrov
FUNCTIONAL EEG ANALYZE IN AUTISM Dr. Plamen Dimitrov Preamble Autism or Autistic Spectrum Disorders (ASD) is a mental developmental disorder, manifested in the early childhood and is characterized by qualitative
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
Neural Network Design in Cloud Computing
International Journal of Computer Trends and Technology- volume4issue2-2013 ABSTRACT: Neural Network Design in Cloud Computing B.Rajkumar #1,T.Gopikiran #2,S.Satyanarayana *3 #1,#2Department of Computer
Medical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected].
Medical Image Processing on the GPU Past, Present and Future Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected] Outline Motivation why do we need GPUs? Past - how was GPU programming
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
ParaVision 6. Innovation with Integrity. The Next Generation of MR Acquisition and Processing for Preclinical and Material Research.
ParaVision 6 The Next Generation of MR Acquisition and Processing for Preclinical and Material Research Innovation with Integrity Preclinical MRI A new standard in Preclinical Imaging ParaVision sets a
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
Steps to getting a diagnosis: Finding out if it s Alzheimer s Disease.
Steps to getting a diagnosis: Finding out if it s Alzheimer s Disease. Memory loss and changes in mood and behavior are some signs that you or a family member may have Alzheimer s disease. If you have
Data quality in Accounting Information Systems
Data quality in Accounting Information Systems Comparing Several Data Mining Techniques Erjon Zoto Department of Statistics and Applied Informatics Faculty of Economy, University of Tirana Tirana, Albania
Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
runl I IUI%I/\L Magnetic Resonance Imaging
runl I IUI%I/\L Magnetic Resonance Imaging SECOND EDITION Scott A. HuetteS Brain Imaging and Analysis Center, Duke University Allen W. Song Brain Imaging and Analysis Center, Duke University Gregory McCarthy
Colour Image Segmentation Technique for Screen Printing
60 R.U. Hewage and D.U.J. Sonnadara Department of Physics, University of Colombo, Sri Lanka ABSTRACT Screen-printing is an industry with a large number of applications ranging from printing mobile phone
OUTLIER ANALYSIS. Data Mining 1
OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,
Bayesian probability theory
Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
Magnetic Resonance Imaging
Magnetic Resonance Imaging What are the uses of MRI? To begin, not only are there a variety of scanning methodologies available, but there are also a variety of MRI methodologies available which provide
Supervised and unsupervised learning - 1
Chapter 3 Supervised and unsupervised learning - 1 3.1 Introduction The science of learning plays a key role in the field of statistics, data mining, artificial intelligence, intersecting with areas in
Data Mining and Neural Networks in Stata
Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca [email protected] [email protected]
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption
Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems
2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems
Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease
1 Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease The following contains a summary of the content of the neuroimaging module I on the postgraduate
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC
777 TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC M.R. Walker. S. Haghighi. A. Afghan. and L.A. Akers Center for Solid State Electronics Research Arizona State University Tempe. AZ 85287-6206 [email protected]
Advanced MRI methods in diagnostics of spinal cord pathology
Advanced MRI methods in diagnostics of spinal cord pathology Stanisław Kwieciński Department of Magnetic Resonance MR IMAGING LAB MRI /MRS IN BIOMEDICAL RESEARCH ON HUMANS AND ANIMAL MODELS IN VIVO Equipment:
Application of Neural Networks to Character Recognition
Proceedings of Students/Faculty Research Day, CSIS, Pace University, May 4th, 2007 Application of Neural Networks to Character Recognition Abstract Dong Xiao Ni Seidenberg School of CSIS, Pace University,
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
Price Prediction of Share Market using Artificial Neural Network (ANN)
Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter
BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION
BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION P. Vanroose Katholieke Universiteit Leuven, div. ESAT/PSI Kasteelpark Arenberg 10, B 3001 Heverlee, Belgium [email protected]
Tennis Winner Prediction based on Time-Series History with Neural Modeling
Tennis Winner Prediction based on Time-Series History with Neural Modeling Amornchai Somboonphokkaphan, Suphakant Phimoltares, and Chidchanok Lursinsap Abstract Tennis is one of the most popular sports
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
Random Forest Based Imbalanced Data Cleaning and Classification
Random Forest Based Imbalanced Data Cleaning and Classification Jie Gu Software School of Tsinghua University, China Abstract. The given task of PAKDD 2007 data mining competition is a typical problem
Blood Vessel Classification into Arteries and Veins in Retinal Images
Blood Vessel Classification into Arteries and Veins in Retinal Images Claudia Kondermann and Daniel Kondermann a and Michelle Yan b a Interdisciplinary Center for Scientific Computing (IWR), University
An Artificial Neural Networks-Based on-line Monitoring Odor Sensing System
Journal of Computer Science 5 (11): 878-882, 2009 ISSN 1549-3636 2009 Science Publications An Artificial Neural Networks-Based on-line Monitoring Odor Sensing System Yousif Al-Bastaki The College of Information
American International Journal of Research in Science, Technology, Engineering & Mathematics
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-349, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
ScienceDirect. Brain Image Classification using Learning Machine Approach and Brain Structure Analysis
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 50 (2015 ) 388 394 2nd International Symposium on Big Data and Cloud Computing (ISBCC 15) Brain Image Classification using
Utilization of Neural Network for Disease Forecasting
Utilization of Neural Network for Disease Forecasting Oyas Wahyunggoro 1, Adhistya Erna Permanasari 1, and Ahmad Chamsudin 1,2 1 Department of Electrical Engineering and Information Technology, Gadjah
Neural network software tool development: exploring programming language options
INEB- PSI Technical Report 2006-1 Neural network software tool development: exploring programming language options Alexandra Oliveira [email protected] Supervisor: Professor Joaquim Marques de Sá June 2006
Impelling Heart Attack Prediction System using Data Mining and Artificial Neural Network
General Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Impelling
Introducing MIPAV. In this chapter...
1 Introducing MIPAV In this chapter... Platform independence on page 44 Supported image types on page 45 Visualization of images on page 45 Extensibility with Java plug-ins on page 47 Sampling of MIPAV
2. MATERIALS AND METHODS
Difficulties of T1 brain MRI segmentation techniques M S. Atkins *a, K. Siu a, B. Law a, J. Orchard a, W. Rosenbaum a a School of Computing Science, Simon Fraser University ABSTRACT This paper looks at
NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS
NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor
Physiological Basis of the BOLD Signal. Kerstin Preuschoff Social and Neural systems Lab University of Zurich
Physiological Basis of the BOLD Signal Kerstin Preuschoff Social and Neural systems Lab University of Zurich Source: Arthurs & Boniface, 2002 From Stimulus to Bold Overview Physics of BOLD signal - Magnetic
CHAPTER 2: CLASSIFICATION AND ASSESSMENT IN CLINICAL PSYCHOLOGY KEY TERMS
CHAPTER 2: CLASSIFICATION AND ASSESSMENT IN CLINICAL PSYCHOLOGY KEY TERMS ABC chart An observation method that requires the observer to note what happens before the target behaviour occurs (A), what the
3 An Illustrative Example
Objectives An Illustrative Example Objectives - Theory and Examples -2 Problem Statement -2 Perceptron - Two-Input Case -4 Pattern Recognition Example -5 Hamming Network -8 Feedforward Layer -8 Recurrent
Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features
Remote Sensing and Geoinformation Lena Halounová, Editor not only for Scientific Cooperation EARSeL, 2011 Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification R. Sathya Professor, Dept. of MCA, Jyoti Nivas College (Autonomous), Professor and Head, Dept. of Mathematics, Bangalore,
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016
Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00
Biological Neurons and Neural Networks, Artificial Neurons
Biological Neurons and Neural Networks, Artificial Neurons Neural Computation : Lecture 2 John A. Bullinaria, 2015 1. Organization of the Nervous System and Brain 2. Brains versus Computers: Some Numbers
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI. Douglas C. Noll* and Walter Schneider
THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI Douglas C. Noll* and Walter Schneider Departments of *Radiology, *Electrical Engineering, and Psychology University
Learning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
Numerical Algorithms Group
Title: Summary: Using the Component Approach to Craft Customized Data Mining Solutions One definition of data mining is the non-trivial extraction of implicit, previously unknown and potentially useful
Monotonicity Hints. Abstract
Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: [email protected] Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology
A Simple Feature Extraction Technique of a Pattern By Hopfield Network
A Simple Feature Extraction Technique of a Pattern By Hopfield Network A.Nag!, S. Biswas *, D. Sarkar *, P.P. Sarkar *, B. Gupta **! Academy of Technology, Hoogly - 722 *USIC, University of Kalyani, Kalyani
Volume visualization I Elvins
Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting
Neural Networks and Support Vector Machines
INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
NEW HYBRID IMAGING TECHNOLOGY MAY HAVE BIG POTENTIAL FOR IMPROVING DIAGNOSIS OF PROSTATE CANCER
Media Release April 7, 2009 For Immediate Release NEW HYBRID IMAGING TECHNOLOGY MAY HAVE BIG POTENTIAL FOR IMPROVING DIAGNOSIS OF PROSTATE CANCER London, Ontario Improved hybrid imaging techniques developed
Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected]
Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected] What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
THE HUMAN BRAIN. observations and foundations
THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
Comparing Methods to Identify Defect Reports in a Change Management Database
Comparing Methods to Identify Defect Reports in a Change Management Database Elaine J. Weyuker, Thomas J. Ostrand AT&T Labs - Research 180 Park Avenue Florham Park, NJ 07932 (weyuker,ostrand)@research.att.com
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
CHAPTER 1. Introduction to CAD/CAM/CAE Systems
CHAPTER 1 1.1 OVERVIEW Introduction to CAD/CAM/CAE Systems Today s industries cannot survive worldwide competition unless they introduce new products with better quality (quality, Q), at lower cost (cost,
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du [email protected] University of British Columbia
Alzheimer s Disease Image Segmentation with SelfOrganizing Map Network
Alzheimer s Disease Image Segmentation with SelfOrganizing Map Network R. Sampath*, A. Saradha Anna University, Chennai, India. Institute of Road Transport and Technology, Erode, Tamil Nadu, India. *Corresponding
APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION
LJMS 2008, 2 Labuan e-journal of Muamalat and Society, Vol. 2, 2008, pp. 9-16 Labuan e-journal of Muamalat and Society APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED
