# Lecture 6. Artificial Neural Networks

Size: px
Start display at page:

## Transcription

1 Lecture 6 Artificial Neural Networks 1

2 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm for Data Mining applications. Neural nets have gone through two major development periods -the early 60 s and the mid 80 s. They were a key development in the field of machine learning. Artificial Neural Networks were inspired by biological findings relating to the behavior of the brain as a network of units called neurons. The human brain is estimated to have around 10 billion neurons each connected on average to 10,000 other neurons. Each neuron receives signals through synapses that control the effects of the signal on the neuron. These synaptic connections are believed to play a key role in the behavior of the brain. The fundamental building block in an Artificial Neural Network is the mathematical model of a neuron as shown in Figure 1. The three basic components of the (artificial) neuron are: 1. The synapses or connecting links that provide weights, w j, to the input values, x j for j = 1,...m; 2. An adder that sums the weighted input values to compute the m input to the activation function v = w 0 + w j x j,where w 0 is called the j=1 bias (not to be confused with statistical bias in prediction or estimation) is a numerical value associated with the neuron. It is convenient to think of the bias as the weight for an input x 0 whose value is always equal to one, m so that v = w j x j ; j=0 3. An activation function g (also called a squashing function) that maps v to g(v) the output value of the neuron. This function is a monotone function. 2

3 Figure 1 While there are numerous different (artificial) neural network architectures that have been studied by researchers, the most successful applications in data mining of neural networks have been multilayer feedforward networks. These are networks in which there is an input layer consisting of nodes that simply accept the input values and successive layers of nodes that are neurons as depicted in Figure 1. The outputs of neurons in a layer are inputs to neurons in the next layer. The last layer is called the output layer. Layers between the input and output layers are known as hidden layers. Figure 2 is a diagram for this architecture. Figure 2 In a supervised setting where a neural net is used to predict a numerical quantity there is one neuron in the output layer and its output is the prediction. When the network is used for classification, the output layer typically has as many nodes as the number of classes and the output layer node with 3

4 the largest output value gives the network s estimate of the class for a given input. In the special case of two classes it is common to have just one node in the output layer, the classification between the two classes being made by applying a cut-off to the output value at the node. 1.1 Single layer networks Let us begin by examining neural networks with just one layer of neurons (output layer only, no hidden layers). The simplest network consists of just one neuron with the function g chosen to be the identity function, g(v) = v for all v. In this case notice that the output of the network is m w j x j,a j=0 linear function of the input vector x with components x j. If we are modeling the dependent variable y using multiple linear regression, we can interpret the neural network as a structure that predicts a value y for a given input vector x with the weights being the coefficients. If we choose these weights to minimize the mean square error using observations in a training set, these weights would simply be the least squares estimates of the coefficients. The weights in neural nets are also often designed to minimize mean square error in a training data set. There is, however, a different orientation in the case of neural nets: the weights are learned. The network is presented with cases from the training data one at a time and the weights are revised after each case in an attempt to minimize the mean square error. This process of incremental adjustment of weights is based on the error made on training cases and is known as training the neural net. The almost universally used dynamic updating algorithm for the neural net version of linear regression is known as the Widrow-Hoff rule or the least-mean-square (LMS) algorithm. It is simply stated. Let x(i) denote the input vector x for the i th case used to train the network, and the weights before this case is presented to the net by the vector w(i). The updating rule is w(i+1) = w(i)+η(y(i) y (i))x(i) with w(0) = 0. It can be shown that if the network is trained in this manner by repeatedly presenting test data observations one-at-a-time then for suitably small (absolute) values of η the network will learn (converge to) the optimal values of w. Note that the training data may have to be presented several times for w(i) to be close to the optimal w. The advantage of dynamic updating is that the network tracks moderate time trends in the underlying linear model quite effectively. If we consider using the single layer neural net for classification into c classes, we would use c nodes in the output layer. If we think of classical 4

5 discriminant analysis in neural network terms, the coefficients in Fisher s classification functions give us weights for the network that are optimal if the input vectors come from Multivariate Normal distributions with a common covariance matrix. For classification into two classes, the linear optimization approach that we examined in class, can be viewed as choosing optimal weights in a single layer neural network using the appropriate objective function. Maximum likelihood coefficients for logistic regression can also be considered as weights in a neural network to minimize a function of the residuals e called the deviance. In this case the logistic function g(v) = v 1+e v is the activation function for the output node. 1.2 Multilayer Neural networks Multilayer neural networks are undoubtedly the most popular networks used in applications. While it is possible to consider many activation functions, in practice it has been found that the logistic (also called the sigmoid) function e g(v) = v 1+e v as the activation function (or minor variants such as the tanh function) works best. In fact the revival of interest in neural nets was sparked by successes in training neural networks using this function in place of the historically (biologically inspired) step function (the perceptron }. Notice that using a linear function does not achieve anything in multilayer networks that is beyond what can be done with single layer networks with linear activation functions. The practical value of the logistic function arises from the fact that it is almost linear in the range where g is between 0.1 and 0.9 but has a squashing effect on very small or very large values of v. In theory it is sufficient to consider networks with two layers of neurons one hidden and one output layer and this is certainly the case for most applications. There are, however, a number of situations where three and sometimes four and five layers have been more effective. For prediction the output node is often given a linear activation function to provide forecasts that are not limited to the zero to one range. An alternative is to scale the output to the linear part (0.1 to 0.9) of the logistic function. Unfortunately there is no clear theory to guide us on choosing the number of nodes in each hidden layer or indeed the number of layers. The common practice is to use trial and error, although there are schemes for combining 5

6 optimization methods such as genetic algorithms with network training for these parameters. Since trial and error is a necessary part of neural net applications it is important to have an understanding of the standard method used to train a multilayered network: backpropagation. It is no exaggeration to say that the speed of the backprop algorithm made neural nets a practical tool in the manner that the simplex method made linear optimization a practical tool. The revival of strong interest in neural nets in the mid 80s was in large measure due to the efficiency of the backprop algorithm. 1.3 Example1: Fisher s Iris data Let us look at the Iris data that Fisher analyzed using Discriminant Analysis. Recall that the data consisted of four measurements on three types of iris flowers. There are 50 observations for each class of iris. A part of the data is reproduced below. 6

7 OBS# SPECIES CLASSCODE SEPLEN SEPW PETLEN PETW 1 Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica If we use a neural net architecture for this classification problem we will need 4 nodes (not counting the bias node) one for each of the 4 independent variables in the input layer and 3 neurons (one for each class) in the output layer. Let us select one hidden layer with 25 neurons. Notice that there will be a total of 25 connections from each node in the input layer to nodes in the hidden layer. This makes a total of 4x25=100 connections between 7

8 the input layer and the hidden layer. In addition there will be a total of 3 connections from each node in the hidden layer to nodes in the output layer. This makes a total of 25 x3=75 connections between the hidden layer and the output layer. Using the standard logistic activation functions, the network was trained with a run consisting of 60,000 iterations. Each iteration consists of presentation to the input layer of the independent variables in a case, followed by successive computations of the outputs of the neurons of the hidden layer and the output layer using the appropriate weights. The output values of neurons in the output layer are used to compute the error. This error is used to adjust the weights of all the connections in the network using the backward propagation ( backprop ) to complete the iteration. Since the training data has 150 cases, each case was presented to the network 400 times. Another way of stating this is to say the network was trained for 400 epochs where an epoch consists of one sweep through the entire training data. The results for the last epoch of training the neural net on this data are shown below: Iris Output 1 Classification Confusion Matrix Desired Computed Class Class Total Total Error Report Class Patterns # Errors % Errors StdDev ( 0.00) ( 1.98) ( 1.98) Overall ( 0.92) The classification error of 1.3% is better than the error using discriminant analysis which was 2% (See lecture note on Discriminant Analysis). Notice that had we stopped after only one pass of the data (150 iterations) the 8

9 error is much worse (75%) as shown below: Iris Output 2 Classification Confusion Matrix Desired Computed Class Class Total Total The classification error rate of 1.3% was obtained by careful choice of key control parameters for the training run by trial and error. If we set the control parameters to poor values we can have terrible results. To understand the parameters involved we need to understand how the backward propagation algorithm works. 1.4 The Backward Propagation Algorithm We will discuss the backprop algorithm for classification problems. There is a minor adjustment for prediction problems where we are trying to predict a continuous numerical value. In that situation we change the activation function for output layer neurons to the identity function that has output value=input value. (An alternative is to rescale and recenter the logistic function to permit the outputs to be approximately linear in the range of dependent variable values). The backprop algorithm cycles through two distinct passes, a forward pass followed by a backward pass through the layers of the network. The algorithm alternates between these passes several times as it scans the training data. Typically, the training data has to be scanned several times before the networks learns to make good classifications. Forward Pass: Computation of outputs of all the neurons in the network The algorithm starts with the first hidden layer using as input values the independent variables of a case (often called an exemplar in the machine learning community) from the training data set. The neuron outputs are computed for all neurons in the first hidden layer by performing 9

10 the relevant sum and activation function evaluations. These outputs are the inputs for neurons in the second hidden layer. Again the relevant sum and activation function calculations are performed to compute the outputs of second layer neurons. This continues layer by layer until we reach the output layer and compute the outputs for this layer. These output values constitute the neural net s guess at the value of the dependent variable. If we are using the neural net for classification, and we have c classes, we will have c neuron outputs from the activation functions and we use the largest value to determine the net s classification. (If c = 2, we can use just one output node with a cut-off value to map an numerical output value to one of the two classes). Let us denote by w ij the weight of the connection from node i to node j. The values of w ij are initialized to small (generally random) numbers in the range 0.00 ± These weights are adjusted to new values in the backward pass as described below. Backward pass: Propagation of error and adjustment of weights This phase begins with the computation of error at each neuron in the output layer. A popular error function is the squared difference between o k the output of node k and y k the target value for that node. The target value is just 1 for the output node corresponding to the class of the exemplar and zero for other output nodes.(in practice it has been found better to use values of 0.9 and 0.1 respectively.) For each output layer node compute its error term as δ k = o k (1 o k )(y k o k ). These errors are used to adjust the weights of the connections between the last-but-one layer of the network and the output layer. The adjustment is similar to the simple Widrow-Huff rule that we saw earlier in this note. The new value of the weight w jk of the connection from node j to node k is given by: wjk new = wjk old + ηo j δ k. Here η is an important tuning parameter that is chosen by trial and error by repeated runs on the training data. Typical values for η are in the range 0.1 to 0.9. Low values give slow but steady learning, high values give erratic learning and may lead to an unstable network. The process is repeated for the connections between nodes in the last hidden layer and the last-but-one hidden layer. The weight for the connection between nodes i and j is given by: wij new = wij old + ηo i δ j where δ j = o j (1 o j ) k w jk δ k, for each node j in the last hidden layer. The backward propagation of weight adjustments along these lines continues until we reach the input layer. At this time we have a new set of weights on which we can make a new forward pass when presented with a training data observation. 10

11 1.4.1 Multiple Local Optima and Epochs The backprop algorithm is a version of the steepest descent optimization method applied to the problem of finding the weights that minimize the error function of the network output. Due to the complexity of the function and the large numbers of weights that are being trained as the network learns, there is no assurance that the backprop algorithm (and indeed any practical algorithm) will find the optimum weights that minimize error. the procedure can get stuck at a local minimum. It has been found useful to randomize the order of presentation of the cases in a training set between different scans. It is possible to speed up the algorithm by batching, that is updating the weights for several exemplars in a pass. However, at least the extreme case of using the entire training data set on each update has been found to get stuck frequently at poor local minima. A single scan of all cases in the training data is called an epoch. Most applications of feedforward networks and backprop require several epochs before errors are reasonably small. A number of modifications have been proposed to reduce the epochs needed to train a neural net. One commonly employed idea is to incorporate a momentum term that injects some inertia in the weight adjustment on the backward pass. This is done by adding a term to the expression for weight adjustment for a connection that is a fraction of the previous weight adjustment for that connection. This fraction is called the momentum control parameter. High values of the momentum parameter will force successive weight adjustments to be in similar directions. Another idea is to vary the adjustment parameter δ so that it decreases as the number of epochs increases. Intuitively this is useful because it avoids overfitting that is more likely to occur at later epochs than earlier ones Overfitting and the choice of training epochs A weakness of the neural network is that it can be easily overfitted, causing the error rate on validation data to be much larger than the error rate on the training data. It is therefore important not to overtrain the data. A good method for choosing the number of training epochs is to use the validation data set periodically to compute the error rate for it while the network is being trained. The validation error decreases in the early epochs of backprop but after a while it begins to increase. The point of minimum validation error is a good indicator of the best number of epochs for training and the weights at that stage are likely to provide the best error rate in new data. 11

12 1.5 Adaptive Selection of Architecture One of the time consuming and complex aspects of using backprop is that we need to decide on an architecture before we can use backprop. The usual procedure is to make intelligent guesses using past experience and to do several trial and error runs on different architectures. Algorithms exist that grow the number of nodes selectively during training or trim them in a manner analogous to what we have seen with CART. Research continues on such methods. However, as of now there seems to be no automatic method that is clearly superior to the trial and error approach. 1.6 Successful Applications There have been a number of very successful applications of neural nets in engineering applications. One of the well known ones is ALVINN that is an autonomous vehicle driving application for normal speeds on highways. The neural net uses a 30x32 grid of pixel intensities from a fixed camera on the vehicle as input, the output is the direction of steering. It uses 30 output units representing classes such as sharp left, straight ahead, and bear right. It has 960 input units and a single layer of 4 hidden neurons. The backprop algorithm is used to train ALVINN. A number of successful applications have been reported in financial applications (see reference 2) such as bankruptcy predictions, currency market trading, picking stocks and commodity trading. Credit card and CRM applications have also been reported. 2 References 1. Bishop, Christopher: Neural Networks for Pattern Recognition, Oxford, Trippi, Robert and Turban, Efraim (editors): Neural Networks in Finance and Investing, McGraw Hill

### Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

### 6.2.8 Neural networks for data mining

6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural

### Chapter 4: Artificial Neural Networks

Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/

### Data Mining Techniques Chapter 7: Artificial Neural Networks

Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................

### Machine Learning: Multi Layer Perceptrons

Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons

### APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION

LJMS 2008, 2 Labuan e-journal of Muamalat and Society, Vol. 2, 2008, pp. 9-16 Labuan e-journal of Muamalat and Society APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED

### An Introduction to Neural Networks

An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,

### Neural Networks and Support Vector Machines

INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

### Neural Networks and Back Propagation Algorithm

Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland mirzac@gmail.com Abstract Neural Networks (NN) are important

### Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption

### 3F3: Signal and Pattern Processing

3F3: Signal and Pattern Processing Lecture 3: Classification Zoubin Ghahramani zoubin@eng.cam.ac.uk Department of Engineering University of Cambridge Lent Term Classification We will represent data by

### Self Organizing Maps: Fundamentals

Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen

### Machine Learning and Data Mining -

Machine Learning and Data Mining - Perceptron Neural Networks Nuno Cavalheiro Marques (nmm@di.fct.unl.pt) Spring Semester 2010/2011 MSc in Computer Science Multi Layer Perceptron Neurons and the Perceptron

### Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis

Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt

### Horse Racing Prediction Using Artificial Neural Networks

Horse Racing Prediction Using Artificial Neural Networks ELNAZ DAVOODI, ALI REZA KHANTEYMOORI Mathematics and Computer science Department Institute for Advanced Studies in Basic Sciences (IASBS) Gavazang,

### Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

### Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

### IBM SPSS Neural Networks 22

IBM SPSS Neural Networks 22 Note Before using this information and the product it supports, read the information in Notices on page 21. Product Information This edition applies to version 22, release 0,

### Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

### Prediction Model for Crude Oil Price Using Artificial Neural Networks

Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 3953-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks

### NEURAL networks [5] are universal approximators [6]. It

Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 183 190 An Investment Strategy for the Stock Exchange Using Neural Networks Antoni Wysocki and Maciej Ławryńczuk

### A Content based Spam Filtering Using Optical Back Propagation Technique

A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT

### Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems

2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems

### Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

### New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

### Power Prediction Analysis using Artificial Neural Network in MS Excel

Power Prediction Analysis using Artificial Neural Network in MS Excel NURHASHINMAH MAHAMAD, MUHAMAD KAMAL B. MOHAMMED AMIN Electronic System Engineering Department Malaysia Japan International Institute

### CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

### Data Mining Practical Machine Learning Tools and Techniques

Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

### Data Mining and Neural Networks in Stata

Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca mario.lucchini@unimib.it maurizio.pisati@unimib.it

### Neural Computation - Assignment

Neural Computation - Assignment Analysing a Neural Network trained by Backpropagation AA SSt t aa t i iss i t i icc aa l l AA nn aa l lyy l ss i iss i oo f vv aa r i ioo i uu ss l lee l aa r nn i inn gg

### Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network

Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Prince Gupta 1, Satanand Mishra 2, S.K.Pandey 3 1,3 VNS Group, RGPV, Bhopal, 2 CSIR-AMPRI, BHOPAL prince2010.gupta@gmail.com

### NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

### Design call center management system of e-commerce based on BP neural network and multifractal

Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):951-956 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Design call center management system of e-commerce

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### Follow links Class Use and other Permissions. For more information, send email to: permissions@pupress.princeton.edu

COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Computational Economics is published by Princeton University Press and copyrighted, 2006, by Princeton University Press. All rights

### Forecasting Stock Prices using a Weightless Neural Network. Nontokozo Mpofu

Forecasting Stock Prices using a Weightless Neural Network Nontokozo Mpofu Abstract In this research work, we propose forecasting stock prices in the stock market industry in Zimbabwe using a Weightless

### Designing a neural network for forecasting financial time series

Designing a neural network for forecasting financial time series 29 février 2008 What a Neural Network is? Each neurone k is characterized by a transfer function f k : output k = f k ( i w ik x k ) From

### Neural network software tool development: exploring programming language options

INEB- PSI Technical Report 2006-1 Neural network software tool development: exploring programming language options Alexandra Oliveira aao@fe.up.pt Supervisor: Professor Joaquim Marques de Sá June 2006

### AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### EFFICIENT DATA PRE-PROCESSING FOR DATA MINING

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College

### Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

### Neural Networks algorithms and applications

Neural Networks algorithms and applications By Fiona Nielsen 4i 12/12-2001 Supervisor: Geert Rasmussen Niels Brock Business College 1 Introduction Neural Networks is a field of Artificial Intelligence

### CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER

93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed

### NEURAL NETWORKS A Comprehensive Foundation

NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments

### Analecta Vol. 8, No. 2 ISSN 2064-7964

EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

### Stock Prediction using Artificial Neural Networks

Stock Prediction using Artificial Neural Networks Abhishek Kar (Y8021), Dept. of Computer Science and Engineering, IIT Kanpur Abstract In this work we present an Artificial Neural Network approach to predict

### Role of Neural network in data mining

Role of Neural network in data mining Chitranjanjit kaur Associate Prof Guru Nanak College, Sukhchainana Phagwara,(GNDU) Punjab, India Pooja kapoor Associate Prof Swami Sarvanand Group Of Institutes Dinanagar(PTU)

### Iranian J Env Health Sci Eng, 2004, Vol.1, No.2, pp.51-57. Application of Intelligent System for Water Treatment Plant Operation.

Iranian J Env Health Sci Eng, 2004, Vol.1, No.2, pp.51-57 Application of Intelligent System for Water Treatment Plant Operation *A Mirsepassi Dept. of Environmental Health Engineering, School of Public

### Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

### SEMINAR OUTLINE. Introduction to Data Mining Using Artificial Neural Networks. Definitions of Neural Networks. Definitions of Neural Networks

SEMINAR OUTLINE Introduction to Data Mining Using Artificial Neural Networks ISM 611 Dr. Hamid Nemati Introduction to and Characteristics of Neural Networks Comparison of Neural Networks to traditional

### Neural Network Design in Cloud Computing

International Journal of Computer Trends and Technology- volume4issue2-2013 ABSTRACT: Neural Network Design in Cloud Computing B.Rajkumar #1,T.Gopikiran #2,S.Satyanarayana *3 #1,#2Department of Computer

### A hybrid financial analysis model for business failure prediction

Available online at www.sciencedirect.com Expert Systems with Applications Expert Systems with Applications 35 (2008) 1034 1040 www.elsevier.com/locate/eswa A hybrid financial analysis model for business

### Weather forecast prediction: a Data Mining application

Weather forecast prediction: a Data Mining application Ms. Ashwini Mandale, Mrs. Jadhawar B.A. Assistant professor, Dr.Daulatrao Aher College of engg,karad,ashwini.mandale@gmail.com,8407974457 Abstract

### Data Mining Lab 5: Introduction to Neural Networks

Data Mining Lab 5: Introduction to Neural Networks 1 Introduction In this lab we are going to have a look at some very basic neural networks on a new data set which relates various covariates about cheese

### Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *

Send Orders for Reprints to reprints@benthamscience.ae 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network

### AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING

AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING Abhishek Agrawal*, Vikas Kumar** 1,Ashish Pandey** 2,Imran Khan** 3 *(M. Tech Scholar, Department of Computer Science, Bhagwant University,

### Neural Networks for Sentiment Detection in Financial Text

Neural Networks for Sentiment Detection in Financial Text Caslav Bozic* and Detlef Seese* With a rise of algorithmic trading volume in recent years, the need for automatic analysis of financial news emerged.

### SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96. Özer CIFTCIOGLU Istanbul Technical University, ITU. and

NEA/NSC-DOC (96)29 AUGUST 1996 SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96 Özer CIFTCIOGLU Istanbul Technical University, ITU and Erdinç TÜRKCAN Netherlands Energy Research

### Event driven trading new studies on innovative way. of trading in Forex market. Michał Osmoła INIME live 23 February 2016

Event driven trading new studies on innovative way of trading in Forex market Michał Osmoła INIME live 23 February 2016 Forex market From Wikipedia: The foreign exchange market (Forex, FX, or currency

### Cash Forecasting: An Application of Artificial Neural Networks in Finance

International Journal of Computer Science & Applications Vol. III, No. I, pp. 61-77 2006 Technomathematics Research Foundation Cash Forecasting: An Application of Artificial Neural Networks in Finance

### Predict Influencers in the Social Network

Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

### Neural Networks in Data Mining

IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department

### NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor

### Price Prediction of Share Market using Artificial Neural Network (ANN)

Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter

### An Augmented Normalization Mechanism for Capacity Planning & Modelling Elegant Approach with Artificial Intelligence

An Augmented Normalization Mechanism for Capacity Planning & Modelling Elegant Approach with Artificial Intelligence 13th Annual International Software Testing Conference 2013 Bangalore, 4 th -5 th December

### PLAANN as a Classification Tool for Customer Intelligence in Banking

PLAANN as a Classification Tool for Customer Intelligence in Banking EUNITE World Competition in domain of Intelligent Technologies The Research Report Ireneusz Czarnowski and Piotr Jedrzejowicz Department

### Application of Neural Network in User Authentication for Smart Home System

Application of Neural Network in User Authentication for Smart Home System A. Joseph, D.B.L. Bong, D.A.A. Mat Abstract Security has been an important issue and concern in the smart home systems. Smart

### University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons

University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y

### Feedforward Neural Networks and Backpropagation

Feedforward Neural Networks and Backpropagation Feedforward neural networks Architectural issues, computational capabilities Sigmoidal and radial basis functions Gradient-based learning and Backprogation

### COMBINED NEURAL NETWORKS FOR TIME SERIES ANALYSIS

COMBINED NEURAL NETWORKS FOR TIME SERIES ANALYSIS Iris Ginzburg and David Horn School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Science Tel-Aviv University Tel-A viv 96678,

### American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-349, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

### NEURAL NETWORKS IN DATA MINING

NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,

### A Property & Casualty Insurance Predictive Modeling Process in SAS

Paper AA-02-2015 A Property & Casualty Insurance Predictive Modeling Process in SAS 1.0 ABSTRACT Mei Najim, Sedgwick Claim Management Services, Chicago, Illinois Predictive analytics has been developing

### IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...

IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic

### Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks

Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.

### Introduction to Artificial Neural Networks

POLYTECHNIC UNIVERSITY Department of Computer and Information Science Introduction to Artificial Neural Networks K. Ming Leung Abstract: A computing paradigm known as artificial neural network is introduced.

### Neural Network Applications in Stock Market Predictions - A Methodology Analysis

Neural Network Applications in Stock Market Predictions - A Methodology Analysis Marijana Zekic, MS University of Josip Juraj Strossmayer in Osijek Faculty of Economics Osijek Gajev trg 7, 31000 Osijek

### FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,

### Recurrent Neural Networks

Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time

### An Artificial Neural Networks-Based on-line Monitoring Odor Sensing System

Journal of Computer Science 5 (11): 878-882, 2009 ISSN 1549-3636 2009 Science Publications An Artificial Neural Networks-Based on-line Monitoring Odor Sensing System Yousif Al-Bastaki The College of Information

### IBM SPSS Neural Networks 19

IBM SPSS Neural Networks 19 Note: Before using this information and the product it supports, read the general information under Notices on p. 95. This document contains proprietary information of SPSS

### Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations

Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations

### 1. Classification problems

Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification

### Numerical Algorithms Group

Title: Summary: Using the Component Approach to Craft Customized Data Mining Solutions One definition of data mining is the non-trivial extraction of implicit, previously unknown and potentially useful

### Linear Models for Classification

Linear Models for Classification Sumeet Agarwal, EEL709 (Most figures from Bishop, PRML) Approaches to classification Discriminant function: Directly assigns each data point x to a particular class Ci

### Artificial neural networks

Artificial neural networks Now Neurons Neuron models Perceptron learning Multi-layer perceptrons Backpropagation 2 It all starts with a neuron 3 Some facts about human brain ~ 86 billion neurons ~ 10 15

### Lecture 8 February 4

ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt

### Algorithmic Scoring Models

Applied Mathematical Sciences, Vol. 7, 2013, no. 12, 571-586 Algorithmic Scoring Models Kalamkas Nurlybayeva Mechanical-Mathematical Faculty Al-Farabi Kazakh National University Almaty, Kazakhstan Kalamkas.nurlybayeva@gmail.com

2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously

### Feature Engineering in Machine Learning

Research Fellow Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia August 21, 2015 Outline A Machine Learning Primer Machine Learning and Data Science Bias-Variance Phenomenon

### Data Mining. Supervised Methods. Ciro Donalek donalek@astro.caltech.edu. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot.

Data Mining Supervised Methods Ciro Donalek donalek@astro.caltech.edu Supervised Methods Summary Ar@ficial Neural Networks Mul@layer Perceptron Support Vector Machines SoLwares Supervised Models: Supervised

### Neural network models: Foundations and applications to an audit decision problem

Annals of Operations Research 75(1997)291 301 291 Neural network models: Foundations and applications to an audit decision problem Rebecca C. Wu Department of Accounting, College of Management, National

### Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network

Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the

### Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)

### Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department

DOI: 10.5769/C2012010 or http://dx.doi.org/10.5769/c2012010 Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department Antonio Manuel Rubio Serrano (1,2), João Paulo

### Predictive time series analysis of stock prices using neural network classifier

Predictive time series analysis of stock prices using neural network classifier Abhinav Pathak, National Institute of Technology, Karnataka, Surathkal, India abhi.pat93@gmail.com Abstract The work pertains

### The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network

, pp.67-76 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and