6.2.8 Neural networks for data mining
|
|
|
- Nickolas West
- 10 years ago
- Views:
Transcription
1 6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural networks, we shall give an informal description of the way they work internally (just for one distinctive member of the large family of neural networks), and we finally focus on their usefulness for data mining. In particular we shall not deal with biological or psychological backgrounds. We only notice that the idea of neural networks originates from the physiology of the human brain. 1 Dr W.A. Kosters, [email protected], Leiden University, LIACS, Leiden, The Netherlands General background Neural networks are powerful general purpose learning devices. This sentence shows the strength (the general purpose character), which is also its weakness: its generality. Another weakness is the complex internal structure, which if one finally understands the algorithms involved still shows black box behavior: it is very hard to get an idea of the meaning of the internal computations. Neural networks perform well in pattern recognition tasks, such as recognition of handwritten characters or spoken text. It should be noted that the way these networks learn (their training ) is often supervised: the user should provide as many positive examples as possible; negative examples are also helpful. So for classification and clustering it is necessary to have classified or clustered input available. Note, however, that special neural networks are available that can cope with unsupervised situations. It is easy to build a neural network that tries to solve a given problem. In fact, many software packages contain plug and play neural networks. But still many parameters need to be set, the training stage may take a while, and the tuning therefore can be awkward. State of the art hardware is a prerogative. Another feature of neural networks is their random behavior. This does not mean that they act or react randomly, but that their training process contains random elements. For instance, in the beginning the network is carefully initialized with random numbers. When this is repeated, the same input set may yield very different networks. Sometimes they differ in performance, one showing good behavior, while others behave badly. Note that it is perfectly possible for a neural network to get stuck in some suboptimal situation; this unfortunate situation can sometimes be avoided through sophisticated techniques. Neural networks have many parameters, such as learning rate, number of layers, number of neurons, and so on. It always pays off to use different settings for a given problem, thereby trying to find an at least for the time being optimal setting in an empiric way. It is not necessarily true that larger networks outperform smaller ones. Not only will the training process take longer, it might 641
2 also be the case that the smaller network is more capable of catching the problem at hand. One difficult problem is to decide whether or not the training has finished. In fact, training can go on as long as one likes, but this sometimes leads to a phenomenon known as overfitting : the network gets better and better on the examples it uses during training, but looses its generalizing power. Careful schemata using independent validation sets can avoid these pitfalls. If done carefully, neural networks are perfectly capable of dealing with noisy data, but the danger of overfitting is always present. Working principles In this section we describe a simple neural network, officially called a multilayer feed forward neural network. The presentation is kept simple in order to achieve enough understanding of the matter. We focus on what is known as Backpropagation, the most common neural network algorithm. In the next section we shall discuss other architectures. Network In our simple network we have one real variable x which is our input. We try to learn f(x), where the function f is unknown to us, but correct pairs (x,f(x)) are available. This function (or the value f(x)) is called the target. Often x and f(x) are normalized between 0 and 1. For instance, x may be a time variable and f(x) may be the height of the water in a harbor, or x may indicate the distance from the wall and f(x) may be the desired speed of a robot, or x is a zip code and f(x) is the mean income in the corresponding area. The network has to be trained in such a way that, given input x, it delivers output O with the property that O and f(x) differ as little as possible. The difference f(x) O between target and output is called the error. Note that the error depends on the particular choice of x. Figure 1 An example neural network with one input neuron, two hidden neurons and one output neuron. Note the two special bias neurons. Every directed connection has an associated weight, denoted by a. bias bias hidden output input hidden 642
3 The network itself consists of several so-called neurons. These can be considered as very simple input-output devices. A very simple neural network (see Figure 1) may have one input neuron, one output neuron, and two other neurons: the so-called hidden ones. The input neuron receives the input x and hands it to the two hidden neurons. It does so by multiplying x by some weight, one for every connection. A weight can be viewed as being attached to the directed connection between two neurons. A hidden neuron receives its input, and delivers its output to the output neuron, again multiplying it by some weight. The internal function of a neuron is usually very simple: if its input is low, its output will be low (near zero), and if its input is high, its output will be high (near one). This transfer function is governed by some parameters, one being the threshold or bias, which is often implemented by means of extra neurons, one for every layer. Note that in this example network we have four independent weights, or seven if the bias neurons are added. In Figure 1 they are indicated by means of s. Training The purpose of the training stage is to update the weights in such a way that errors approach, if possible. The change of weights is directed by the errors. Larger errors will lead to larger changes, where the weights that contribute the most are heavily adapted. The so-called learning rate determines the relative change in this process. The algorithm that is used here is called Backpropagation: it propagates the error back through the network, from output to input. The training usually takes place in the following way. The network is presented with a (random) series of correct input-output pairs. For every pair Backpropagation is used to update (and improve) the weights. After some fixed period, or if the errors are small enough, the training is stopped. The network found can be judged by giving it fresh input-output pairs: the so-called test set. It should come as no surprise that on these pairs the performance of the network will be inferior to that on the training examples. Nevertheless, it gives a good measure of the quality of the network. The performance on a special validation set may be used for the decision to stop training or not: if the error on the validation set starts to increase, this may indicate over fitting. Many variations are possible. Let us briefly describe some possibilities: Training and testing requires a large quantity of examples. In some cases, not enough examples are available. Methods like bootstrapping can be used to artificially increase the number of input-output pairs. The behavior of the network is that of a black box. In some cases it is possible to manipulate the internal structure to match the problem at hand. In particular cases this might be extremely difficult, and it is sometimes preferable 643
4 to restrict oneself to more complex and hard to interpret networks that give adequate output. In line with Occam s razor, which says that in case of several acceptable solutions the simplest one should be preferred, neural network researchers developed all sorts of schemata to decrease network complexity. This results in more complex learning rules, that for instance cause weights to be zero (corresponding to the elimination of weights). It might be useful to train several networks at the same time, giving an ensemble of networks. Their independent results can then be combined to obtain a better joined output. In this case statistical techniques can improve the outcome. The training can be adapted in many ways. It can or cannot keep track of infeasible solutions. The price paid is that it can become harder to find the proper training algorithm and the proper parameters. But there are many other possibilities. For instance, instead of just using the current input-output pair one can also use information on the previous pair(s) in the form of momentum. Instead of separate incremental training for every example, it is also possible to combine several examples in so-called batch mode. The learning rate can also be adapted during the training process. In our example we dealt with a situation in which there was only one input variable and one output variable. By adding adequate neurons it is easy to generalize to more complex situations. It is easy to add hidden neurons, which can also be layered. The layered neurons sum all their incoming signals. In this more general setting the error measure is a sum of the squares error. Note that this generalization makes the network much more complex. It is even possible to let the number of neurons grow or shrink during training. A small problem occurs if one or more variables are not real-valued. As an example, think of a situation where an output variable should contain the day of the week in the form of an integer between 1 and 7. The network may provide as output, which can be interpreted as day 3. It is also possible to represent the output by means of seven neurons, each one corresponding to a certain day of the week. Hopefully the network will produce situations where only one of the seven outputs has a value near one, indicating that this day is the proper output. Data mining with neural networks In this section we briefly describe some other architectures, especially suited to data mining purposes. For more details and yet even more possibilities the interested reader is referred to texts like [Bishop, 1995] and [Silipo, 1999]. These works cover Hopfield nets, Boltzmann machines, specialized networks for time series analysis, and so on. 644
5 The Radial Basis Function The Radial Basis Function (RBF) architecture is especially suited for clustering. Special units try to catch prototypes for each cluster. Variants like probabilistic neural networks are meant for classification tasks. For all these nets a training set of labeled data is necessary. If not, other methods are needed. Unsupervised learning In unsupervised learning the network itself tries to find patterns in the data. Competitive learning In competitive learning, the neurons compete for an unclassified input example; during the training process their weights gradually converge to some sort of equilibrium, providing an adequate description of the clustering that is hopefully learned. Self-Organizing Map One particular successful technique is Kohonen s Self-Organizing Map (SOM, see Section 6.3.2), which can be viewed as a non-linear projection: the number of dimensions of the data diminishes, showing underlying structure. This socalled feature map has the property that inputs which are close together activate neurons that are close together in the network. Other variants pursue Principal Components Analysis (see Section 6.2.4). Rule extraction There are several ways to extract rules from neural networks. In a local approach one tries to understand the local behavior of (part of) the network, in a global approach the overall behavior is examined. As an example of the latter, in sensitivity analysis the effect of changes in one variable are studied: how does the output vary? Conclusion We may conclude that the family of neural network techniques contains a large number of data mining tools, especially suited for clustering, classification and prediction. See also the CD-rom: tutorial [Andina, 2001] Literature Andina de la Fuente, D. (2001). Artificial Neural Networks. Universidad Politecnica de Madrid, Spain Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford University Press Silipo, R. (1999). Neural Networks. In: M. Berthold, D.J. Hand. (eds.). Intelligent Data Analysis. Chapter 7. Springer Verlag 645
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
Data Mining Techniques Chapter 7: Artificial Neural Networks
Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................
NEURAL NETWORKS IN DATA MINING
NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Chapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Neural Networks and Support Vector Machines
INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Chapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks
Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks Ph. D. Student, Eng. Eusebiu Marcu Abstract This paper introduces a new method of combining the
Data Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption
NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS
NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor
EVALUATION OF NEURAL NETWORK BASED CLASSIFICATION SYSTEMS FOR CLINICAL CANCER DATA CLASSIFICATION
EVALUATION OF NEURAL NETWORK BASED CLASSIFICATION SYSTEMS FOR CLINICAL CANCER DATA CLASSIFICATION K. Mumtaz Vivekanandha Institute of Information and Management Studies, Tiruchengode, India S.A.Sheriff
Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *
Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network
Neural Networks algorithms and applications
Neural Networks algorithms and applications By Fiona Nielsen 4i 12/12-2001 Supervisor: Geert Rasmussen Niels Brock Business College 1 Introduction Neural Networks is a field of Artificial Intelligence
Data Mining and Neural Networks in Stata
Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca [email protected] [email protected]
How To Use Neural Networks In Data Mining
International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and
Visualization of Breast Cancer Data by SOM Component Planes
International Journal of Science and Technology Volume 3 No. 2, February, 2014 Visualization of Breast Cancer Data by SOM Component Planes P.Venkatesan. 1, M.Mullai 2 1 Department of Statistics,NIRT(Indian
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Role of Neural network in data mining
Role of Neural network in data mining Chitranjanjit kaur Associate Prof Guru Nanak College, Sukhchainana Phagwara,(GNDU) Punjab, India Pooja kapoor Associate Prof Swami Sarvanand Group Of Institutes Dinanagar(PTU)
SEARCH AND CLASSIFICATION OF "INTERESTING" BUSINESS APPLICATIONS IN THE WORLD WIDE WEB USING A NEURAL NETWORK APPROACH
SEARCH AND CLASSIFICATION OF "INTERESTING" BUSINESS APPLICATIONS IN THE WORLD WIDE WEB USING A NEURAL NETWORK APPROACH Abstract Karl Kurbel, Kirti Singh, Frank Teuteberg Europe University Viadrina Frankfurt
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
NEURAL NETWORKS A Comprehensive Foundation
NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments
An Introduction to Artificial Neural Networks (ANN) - Methods, Abstraction, and Usage
An Introduction to Artificial Neural Networks (ANN) - Methods, Abstraction, and Usage Introduction An artificial neural network (ANN) reflects a system that is based on operations of biological neural
TRAIN AND ANALYZE NEURAL NETWORKS TO FIT YOUR DATA
TRAIN AND ANALYZE NEURAL NETWORKS TO FIT YOUR DATA TRAIN AND ANALYZE NEURAL NETWORKS TO FIT YOUR DATA September 2005 First edition Intended for use with Mathematica 5 Software and manual written by: Jonas
Recurrent Neural Networks
Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time
Classification algorithm in Data mining: An Overview
Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH
330 SURVIVABILITY ANALYSIS OF PEDIATRIC LEUKAEMIC PATIENTS USING NEURAL NETWORK APPROACH T. M. D.Saumya 1, T. Rupasinghe 2 and P. Abeysinghe 3 1 Department of Industrial Management, University of Kelaniya,
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,
Self Organizing Maps: Fundamentals
Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen
Data Mining using Artificial Neural Network Rules
Data Mining using Artificial Neural Network Rules Pushkar Shinde MCOERC, Nasik Abstract - Diabetes patients are increasing in number so it is necessary to predict, treat and diagnose the disease. Data
K-Means Clustering Tutorial
K-Means Clustering Tutorial By Kardi Teknomo,PhD Preferable reference for this tutorial is Teknomo, Kardi. K-Means Clustering Tutorials. http:\\people.revoledu.com\kardi\ tutorial\kmean\ Last Update: July
degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].
1.3 Neural Networks 19 Neural Networks are large structured systems of equations. These systems have many degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. Two very
Machine Learning using MapReduce
Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous
Impelling Heart Attack Prediction System using Data Mining and Artificial Neural Network
General Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Impelling
Neural Network Add-in
Neural Network Add-in Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Pre-processing... 3 Lagging...
1. Classification problems
Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification
An Artificial Neural Networks-Based on-line Monitoring Odor Sensing System
Journal of Computer Science 5 (11): 878-882, 2009 ISSN 1549-3636 2009 Science Publications An Artificial Neural Networks-Based on-line Monitoring Odor Sensing System Yousif Al-Bastaki The College of Information
Neural network software tool development: exploring programming language options
INEB- PSI Technical Report 2006-1 Neural network software tool development: exploring programming language options Alexandra Oliveira [email protected] Supervisor: Professor Joaquim Marques de Sá June 2006
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
Machine Learning and Data Mining -
Machine Learning and Data Mining - Perceptron Neural Networks Nuno Cavalheiro Marques ([email protected]) Spring Semester 2010/2011 MSc in Computer Science Multi Layer Perceptron Neurons and the Perceptron
203.4770: Introduction to Machine Learning Dr. Rita Osadchy
203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:
Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks
Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trajkovski [email protected] Ensembles 2 Learning Ensembles Learn multiple alternative definitions of a concept using different training
Design of an FX trading system using Adaptive Reinforcement Learning
University Finance Seminar 17 March 2006 Design of an FX trading system using Adaptive Reinforcement Learning M A H Dempster Centre for Financial Research Judge Institute of Management University of &
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
Training Methods for Adaptive Boosting of Neural Networks for Character Recognition
Submission to NIPS*97, Category: Algorithms & Architectures, Preferred: Oral Training Methods for Adaptive Boosting of Neural Networks for Character Recognition Holger Schwenk Dept. IRO Université de Montréal
Specific Usage of Visual Data Analysis Techniques
Specific Usage of Visual Data Analysis Techniques Snezana Savoska 1 and Suzana Loskovska 2 1 Faculty of Administration and Management of Information systems, Partizanska bb, 7000, Bitola, Republic of Macedonia
3 An Illustrative Example
Objectives An Illustrative Example Objectives - Theory and Examples -2 Problem Statement -2 Perceptron - Two-Input Case -4 Pattern Recognition Example -5 Hamming Network -8 Feedforward Layer -8 Recurrent
A New Approach For Estimating Software Effort Using RBFN Network
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 008 37 A New Approach For Estimating Software Using RBFN Network Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,
The relation between news events and stock price jump: an analysis based on neural network
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 The relation between news events and stock price jump: an analysis based on
Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms
Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms Scott Pion and Lutz Hamel Abstract This paper presents the results of a series of analyses performed on direct mail
Machine Learning. 01 - Introduction
Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge
The Research of Data Mining Based on Neural Networks
2011 International Conference on Computer Science and Information Technology (ICCSIT 2011) IPCSIT vol. 51 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V51.09 The Research of Data Mining
Power Prediction Analysis using Artificial Neural Network in MS Excel
Power Prediction Analysis using Artificial Neural Network in MS Excel NURHASHINMAH MAHAMAD, MUHAMAD KAMAL B. MOHAMMED AMIN Electronic System Engineering Department Malaysia Japan International Institute
Novelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department
DOI: 10.5769/C2012010 or http://dx.doi.org/10.5769/c2012010 Neural Network Predictor for Fraud Detection: A Study Case for the Federal Patrimony Department Antonio Manuel Rubio Serrano (1,2), João Paulo
Data Mining. Supervised Methods. Ciro Donalek [email protected]. Ay/Bi 199ab: Methods of Computa@onal Sciences hcp://esci101.blogspot.
Data Mining Supervised Methods Ciro Donalek [email protected] Supervised Methods Summary Ar@ficial Neural Networks Mul@layer Perceptron Support Vector Machines SoLwares Supervised Models: Supervised
Machine Learning: Overview
Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave
How To Perform An Ensemble Analysis
Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY 10598 Outlier Ensembles Keynote, Outlier Detection and Description Workshop, 2013 Based on the ACM SIGKDD Explorations Position Paper: Outlier
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the
Price Prediction of Share Market using Artificial Neural Network (ANN)
Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter
Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems
2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems
How To Predict Stock Price With Mood Based Models
Twitter Mood Predicts the Stock Market Xiao-Jun Zeng School of Computer Science University of Manchester [email protected] Outline Introduction and Motivation Approach Framework Twitter mood model
Introduction to Artificial Neural Networks
POLYTECHNIC UNIVERSITY Department of Computer and Information Science Introduction to Artificial Neural Networks K. Ming Leung Abstract: A computing paradigm known as artificial neural network is introduced.
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier
A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier G.T. Prasanna Kumari Associate Professor, Dept of Computer Science and Engineering, Gokula Krishna College of Engg, Sullurpet-524121,
LVQ Plug-In Algorithm for SQL Server
LVQ Plug-In Algorithm for SQL Server Licínia Pedro Monteiro Instituto Superior Técnico [email protected] I. Executive Summary In this Resume we describe a new functionality implemented
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca [email protected] Spain Manuel Martín-Merino Universidad
Event driven trading new studies on innovative way. of trading in Forex market. Michał Osmoła INIME live 23 February 2016
Event driven trading new studies on innovative way of trading in Forex market Michał Osmoła INIME live 23 February 2016 Forex market From Wikipedia: The foreign exchange market (Forex, FX, or currency
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Classification of Engineering Consultancy Firms Using Self-Organizing Maps: A Scientific Approach
International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol:13 No:03 46 Classification of Engineering Consultancy Firms Using Self-Organizing Maps: A Scientific Approach Mansour N. Jadid
New Ensemble Combination Scheme
New Ensemble Combination Scheme Namhyoung Kim, Youngdoo Son, and Jaewook Lee, Member, IEEE Abstract Recently many statistical learning techniques are successfully developed and used in several areas However,
TIETS34 Seminar: Data Mining on Biometric identification
TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland [email protected] Course Description Content
Data Mining. Concepts, Models, Methods, and Algorithms. 2nd Edition
Brochure More information from http://www.researchandmarkets.com/reports/2171322/ Data Mining. Concepts, Models, Methods, and Algorithms. 2nd Edition Description: This book reviews state-of-the-art methodologies
GLOVE-BASED GESTURE RECOGNITION SYSTEM
CLAWAR 2012 Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Baltimore, MD, USA, 23 26 July 2012 747 GLOVE-BASED GESTURE
Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016
Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00
Ensemble Data Mining Methods
Ensemble Data Mining Methods Nikunj C. Oza, Ph.D., NASA Ames Research Center, USA INTRODUCTION Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
In this presentation, you will be introduced to data mining and the relationship with meaningful use.
In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine
PLAANN as a Classification Tool for Customer Intelligence in Banking
PLAANN as a Classification Tool for Customer Intelligence in Banking EUNITE World Competition in domain of Intelligent Technologies The Research Report Ireneusz Czarnowski and Piotr Jedrzejowicz Department
A Content based Spam Filtering Using Optical Back Propagation Technique
A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong) Abstract Algorithmic trading, high frequency trading (HFT)
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
American International Journal of Research in Science, Technology, Engineering & Mathematics
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-349, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629
Learning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION
LJMS 2008, 2 Labuan e-journal of Muamalat and Society, Vol. 2, 2008, pp. 9-16 Labuan e-journal of Muamalat and Society APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED
Application of Neural Networks to Character Recognition
Proceedings of Students/Faculty Research Day, CSIS, Pace University, May 4th, 2007 Application of Neural Networks to Character Recognition Abstract Dong Xiao Ni Seidenberg School of CSIS, Pace University,
A simple application of Artificial Neural Network to cloud classification
A simple application of Artificial Neural Network to cloud classification Tianle Yuan For AOSC 630 (by Prof. Kalnay) Introduction to Pattern Recognition (PR) Example1: visual separation between the character
