Alternate Arm Converter Operation of the Modular Multilevel Converter
|
|
|
- Julius Parrish
- 9 years ago
- Views:
Transcription
1 Alternate Arm Converter Operation of the Modular Multilevel Converter Yashoda.R.Perkar 1, Santhosh Kumar Rayarao 2 P.G. Student, Department of Electrical Engineering, MSS s College of, Jalna, India Asst. Professor, Department of Electrical Engineering, MSS s College of Jalna, India ABSTRACT: A new operating mode of the Modular Multilevel Converter (MMC) using modified arm current waveforms inspired from the working principle of the Alternate Arm Converter (AAC) is presented in this paper. A reduction in the cell voltage deviation is observed at power factors close to unity at the cost of an increase in power, especially when reactive power is required. This gain in voltage margin is then used in further optimizations of the MMC performance, mainly focusing on either increasing the number of redundant cells or improving the overall power efficiency of the converter. KEYWORDS: AC DC power converters, emerging topologies, fault tolerance, HVDC transmission, multilevel converters, power system faults, STATCOM I. INTRODUCTION The Modular Multilevel Converter (MMC), illustrated in Fig. 1, was the first modular Voltage Source Converter (VSC) to provide both low switching and low AC current distortion; these features contribute to the higher power efficiency and the significant reduction in the size of the AC filters of recent VSC power stations. A number of MMC converter stations are now in operation and more are planned in the next couple of years with power ratings ever increasing. Over the last few years, a new family of hybrid topologies, such as the Alternate Arm Converter (AAC), drawn in Fig. 2, has emerged. Figure 1 - Half-bridge MMC topology Copyright to IJIRSET DOI: /IJIRSET
2 These topologies essentially combine both the 2-level VSC and the MMC together in order to improve on some characteristics such as smaller overall volume, better power efficiency and, in some topologies, DC-side fault blocking capability. It has also been shown that the AAC has a better temperature distribution between the IGBT modules of a cell in comparison to the MMC. Extensive studies have also presented different modeling approaches of the electrical dynamics of these multilevel converters and it has been shown that reduced dynamic models have an acceptable level of accuracy while offering an appreciable boost in computing speed. Figure 2 - AAC topology The AAC has a relatively similar electrical topology to the MMC with the main difference being the presence of director switches, i.e. series-igbts, in its arms in series with the stack of cells. The switching state of these director switches determines which arms are both generating the converter voltage waveform and carrying the AC current to the respective DC terminal. This approach has proven, to be both power and volume effective, resulting in (i) the number of cells be significantly reduced, e.g. up to half the number of cells compared to the MMC, (ii) the average cell voltage deviation is lower allowing smaller capacitors in the cells and (iii) the use of full H-bridge cells instead of half-bridge cells, thus the AAC is able to block DC-side faults without compromising its overall power efficiency. In the case of the MMC, it was observed rapidly after the topology was proposed that unplanned circulating currents were running between the legs. This issue was later solved by implementing additional feedback loops in charge of monitoring the arm currents. Besides, it has also been observed that this circulating current can be used to reduce the cell voltage deviation of the cell capacitor or by adding a 2nd harmonic filter at the midpoint of the arm inductors. This paper presents an original arm current waveform for the in the MMC, inspired by the working mechanism of the AAC. This study focuses on the effects of changing the arm current waveforms which only implies an update of the control system (software) but not the converter itself (hardware) which thus stays the same. This implies that (i) both the AC and DC quantities (e.g. power, voltage and current magnitudes) remain unchanged, (ii) the cells are still of the half-bridge type and (iii) the passive components (e.g. cell capacitors and arm inductors) Copyright to IJIRSET DOI: /IJIRSET
3 keep the same values. Furthermore only the top level part of the controller is affected but the low-level control stays the same thus this does not require changes in either the wiring or the communication with the cells. Finally the benefits of this update both in terms of cell capacitor voltage deviation and power efficiency will be explored and margins for further optimizations are discussed. Finally, modular VSC topologies such as the MMC and the AAC can also be connected in front-to-front arrangements (meaning that the AC sides are facing each others) in order to form a DC/DC converter. Therefore the current modulation concept introduced in this paper can potentially also be used in such DC/DC topologies with equivalent pros and cons as discussed in this paper. II. ARM CURRENT WAVEFORMS In its classic operating mode, the MMC distributes equally (i) the AC current between its upper and lower arms and (ii) the DC current between the three different legs. The complete set of equations describing the arm currents is given in (1)-(6). The signs present in these equations depend on the direction of the currents, using what is illustrated in Fig 1 and 2 IA+ = IA/2 + IDC/3 (1) IA = IA/2 + IDC/3 (2) IB+ = IB/2 + IDC/3 (3) IB = IB/2 + IDC/3 (4) IC+ = IC/2 + IDC/3 (5) IC = IC/2 + IDC/3 (6) The AAC distributes its AC currents in a different pattern as only one arm in each leg carries the full AC current while the other has its director switch opened, blocking any current from flowing through the arm. Using the variables αa,b,c {0,1} which represent whether the AC current of a particular leg is passing either through the top or bottom arm, the set of equations describing the arm currents in AAC mode are given in (7)-(12): IA+=αA IA IF/3 (7) IA = (1 αa)ia IF/3 (8) IB+=αB IB IF/3 (9) IB = (1 αb)ib IF/3 (10) IC+=αC IC IF/3 (11) IC = (1 αc)ic IF/3 (12) However the AAC inherently generates a 6-pulse ripple on top of the DC current waveform as a consequence of the alternating nature of the arm conduction periods. Since the objective of this study is to migrate an already existing MMC converter to an AAC mode of operation without having to change the hardware but only by updating the control system (i.e. software), installing a DC filter is out of question. To resolve this issue, an additional active filtering current is added to the arm currents in order to keep the DC current smooth. This filtering current IF (13) is obtained by calculating the ripple component of the DC current waveform resulting from AAC operation in order to suppress it by adding a circulating current of opposing sign through all three legs. IF=IA++IB++IC+ IDC =IA +IB +IC IDC =αa IA+αB IB+αC IC IDC (13) The addition of this active filtering current alters the original nature of the AAC mode as the arms will now continuously run a current through them as opposed to for only one half of the cycle and no current during the other half of the cycle because the director switches would be closed. However the magnitudes of the arm currents will be small for a large proportion of the time, while the arm is not carrying the main AC current, compared to the MMC mode of operation, as shown in the simulation section below. Finally, only the arm current waveform will be different Copyright to IJIRSET DOI: /IJIRSET
4 because the currents seen at both the AC and DC terminals of the converter will be the same as under the normal MMC mode of operation. A. Simulation Model: III. SIMULATION Fig.3- Optimization Scenarios Matlab model Fig.4-Arm converter outputs Copyright to IJIRSET DOI: /IJIRSET
5 Fig.5- Source outputs In order to assess the benefits of the AAC mode of operation, shown in fig.3 a 120 MW MMC converter has been simulated using Simulink and the Artemis toolbox in order to simulate a reasonably large number of half-bridge cells. The characteristics of this simulation model are listed in Table 1. In order to better match realistic MMC converter, triplen harmonic voltage injection has been used (about 15% of the fundamental magnitude) in order to shape the converter voltage waveform into an almost trapezoidal waveform and to push the power rating to its theoretical maximum while still using only half-bridge cells. Furthermore, a power loss analysis has also been performed by post-processing the voltage and current waveforms in each cells using the power loss data from the datasheet of the 3.3 kv 1.2 ka HiPak IGBT device 5SNA 1200E In the later part of the simulation section, the steady state junction temperature of the different semiconductor devices in a cell (e.g. top and bottom IGBT and diode modules) by applying the individual power loss figure of each device into a power-thermal model derived in ANSIS and assuming a coolant temperature of 60ºC shared by all the semiconductor devices. Table 1 - Characteristics of the simulated MMC model Rated power DC bus 120 MW ±50 kv AC line AC frequency 55 kv 50 Hz Triplen harmonic voltage 15% Number of cells per stack 56 Cell capacitor Phase inductor Arm inductor 8 mf 8 mh 6 mh Copyright to IJIRSET DOI: /IJIRSET
6 B. Arm Current Waveforms: The arm current waveforms resulting from this mode of operation are observed in this section. Fig. 6 shows the top arm current waveform in both MMC and AAC operating modes (respectively the red and green curves) under unity power factor rectifier mode. The third curve (blue) is the result of the difference between the two waveforms and can be interpreted as the equivalent circulating current which can be injected in the converter to move from the MMC mode to the AAC mode of operation. It can be observed that at unity power factor a large amount of the fundamental cycle is spent with a small amount of current magnitude in AAC mode as opposed to the MMC mode. As more reactive power is involved in the conversion process as shown in Fig 7 (same amount of active and reactive power) and in Fig. 8 (reactive power only), the arm current waveform becomes more and more distorted in AAC mode with still a significant portion of the cycle used by low magnitude current but at the expense of an increasing peak values to attain twice the value in the MMC mode. The power have computed for different operating points and the results listed in Table 2 with the total power loss values plotted in accordance to the angular value of their respective operating points in Fig. 9. Figure 6 - Arm A+ current waveform in MMC (red), AAC (green) modes and the resulting circulating current (blue) with active power only Figure 7 - Arm A+ current waveform in MMC (red), AAC (green) modes and the resulting circulating current (blue) with both active and reactive powers Copyright to IJIRSET DOI: /IJIRSET
7 Figure 8 - Arm A+ current waveform in MMC (red), AAC (green) modes and the resulting circulating current (blue) with reactive power only Figure 9 - Power as percent of the total apparent power in MMC and AAC modes for different operating points Copyright to IJIRSET DOI: /IJIRSET
8 Active Power Reactive Power 1 pu 0 pu 0.7pu 0.7 pu 0 pu 1 pu -0.7pu 0.7 pu -1 pu 0 pu -0.7pu -0.7pu 0 pu -1 pu 0.7pu -0.7pu MMC mode AAC mode Conduction Switching Total Conduction Switching 0.50% 0.44% 0.36% 0.37% 0.38% 0.37% 0.35% 0.45% 0.15% 0.14% 0.13% 0.13% 0.15% 0.15% 0.15% 0.16% 0.65% 0.58% 0.49% 0.51% 0.53% 0.52% 0.50% 0.60% 0.53% 0.56% 0.51% 0.43% 0.38% 0.40% 0.49% 0.53% 0.16% 0.22% 0.24% 0.20% 0.17% 0.26% 0.30% 0.32% Total 0.69% 0.78% 0.75% 0.63% 0.55% 0.66% 0.79% 0.85% Table 2 Power of the MMC model depending on the mode of operation and operating point relative to the apparent power C. Observation at unity power factor: The previous set of results indicates that this new AAC mode is only potentially attractive for unity power factor only as both the arm current peak values and the power are increase dramatically when reactive power is involved in the conversion process. The next part of this paper assumes that only these two operating points (inverter and rectifier active power only) are considered with the results focusing on the rectifier mode mainly since the inverter mode is merely an opposite phase angle version of the former. Copyright to IJIRSET DOI: /IJIRSET
9 Figure 10 - Arm current waveforms in MMC mode Figure 11 - Arm current waveforms in AAC mode Fig. 10 and 11 show the arm current waveforms respectively in MMC and AAC modes of operation. On one hand, the MMC mode results in the arms continuously conducting a large amount of current as opposed to the AAC mode where a significant part of the cycle is spent with only a small amount of current (around -150 A). This remaining low magnitude current mainly consists of the filtering current IF (13). On the other hand, the peak value of the arm current currents is lower in the MMC mode compared to the AAC mode (respectively 1.3 ka and 1.6 ka thus 23% higher in the AAC case). Copyright to IJIRSET DOI: /IJIRSET
10 IV. CONCLUSION The AAC mode of operation of an existing MMC station has been presented in this paper. This new mode of operation does not require any hardware modification of the converter station but rather an update of the control system, hence mainly software. Generally the power increase in the AAC mode of operation compared to the MMC mode but are approximately the same when operating close to unity power. Given this fact, the study focused only on active power conversion operating points. In this condition, the AAC-mode still exhibits higher peak arm current combined with a significant part of the cycle at low current magnitudes but, most importantly, smaller cell voltage deviations (e.g. 30% lower) compared to the classic MMC mode are observed. This last fact can be used to further optimize the performance of the MMC converter station in two different ways. First, reducing the switching frequency of the PWM signal will result in a substantial decrease in the switching, hence a higher power efficiency figure for the converter station. This leads also to an increase of the individual cell voltage deviations but those are still contained within the same limits set during the previous MMC mode. Second, increasing slightly the nominal voltage of the cells results in having some cells being made redundant (approximately 5% of the cells in each stack) since the stacks are able to produce more voltage than normally required. Despite the higher nominal voltage, the maximum peak value hit by the cell voltages is still the same maximum value set during the previous MMC mode of operation. From here, either (i) these redundant cells are electrically bypassed in order to further improve the power efficiency of the converter station, or (ii) they can be used as back-up cells in case of other cell failures, thus further improving the overall reliability of the MMC. ACKNOWLEDGMENT I am greatly indebted forever to my HOD and principle of my college for their continues encouragement, support, ideas, most constructive suggestions, valuable advice and confidence in me. He gave me complete freedom to persue all my interest and also provided so many exciting direction to explore. I sincerely thank to all my faculty members of MSS s collage of engineering and technology, jalna for their continues encouragement and active interest in my progress that they gave throughout the work. REFERENCES [1] D. R. Trainer, C. C. Davidson, C. D. M. Oates, N. M. MacLeod, D. R. Critchley, and R. W. Crookes, A new hybrid voltage-sourced converter for HVDC power transmission, CIGRE Paris Sess. 2010, [2] A. Lesnicar and R. Marquardt, An innovative modular multilevel converter topology suitable for a wide power range, in PowerTech Conference Proceedings, 2003 IEEE Bologna, vol. 3, jun 2003 [3] Sellick, R. L., and M. Åkerberg. "Comparison of HVDC Light (VSC) and HVDC Classic (LCC) Site Aspects, for a 500MW 400kV HVDC Transmission Scheme." ACDC 2012, Birmingham UK. [4] Merlin, M.M.C.; Green, T.C.; Mitcheson, P.D.; Trainer, D.R.; Critchley, R.; Crookes, W.; Hassan, F., "The Alternate Arm Converter: A New Hybrid Multilevel Converter With DC-Fault Blocking Capability," Power Delivery, IEEE Transactions on, vol.29, no.1, pp , Feb [5] Adam, Grain Philip, et al. "New breed of network fault-tolerant voltage-source-converter HVDC transmission system." Power Systems, IEEE Transactions on 28.1 (2013): BIOGRAPHY Miss.Yashoda Rambhau Perkar B.E.(EEP)BAMU University, Aurangabad M.E.(EPS)BAMU University, Aurangabad Mr.Santosh Rayarao (B.Tech, M.Tech) JNTU, Hyderabad Asst.Prof Electrical Engineering Department Mastodary Shikshan Sanstha s, College of, Jalna, Maharashtra, India Copyright to IJIRSET DOI: /IJIRSET
HVDC-VSC: transmission technology of the future
A bi-pole ± 285 kv HVDC line sandwiched between 3-phase 400 kv HVAC lines. HVDC-VSC: transmission technology of the future A new hybrid HVDC circuit technology using voltage source converters is only half
2012 San Francisco Colloquium
2012 San Francisco Colloquium http : //www.cigre.org HVDC and Power Electronic Systems for Overhead Line and Insulated Cable Applications B4-8 Trans Bay Cable A Breakthrough of VSC Multilevel Converters
Variable Frequency Drives - a Comparison of VSI versus LCI Systems
Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been
Control Development and Modeling for Flexible DC Grids in Modelica
Control Development and Modeling for Flexible DC Grids in Modelica Andreas Olenmark 1 Jens Sloth 2 Anna Johnsson 3 Carl Wilhelmsson 3 Jörgen Svensson 4 1 One Nordic AB, Sweden, [email protected].
Parametric variation analysis of CUK converter for constant voltage applications
ISSN (Print) : 232 3765 (An ISO 3297: 27 Certified Organization) Vol. 3, Issue 2, February 214 Parametric variation analysis of CUK converter for constant voltage applications Rheesabh Dwivedi 1, Vinay
SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER
SIMULATION OF CLOSED LOOP CONTROLLED BRIDGELESS PFC BOOST CONVERTER 1M.Gopinath, 2S.Ramareddy Research Scholar, Bharath University, Chennai, India. Professor, Jerusalem college of Engg Chennai, India.
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager
Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS
Smart Grid and Renewable Energy Grid Integration. Jian Sun, Professor and Director Department of ECSE & Center for Future Energy Systems
Smart Grid and Renewable Energy Grid Integration Jian Sun, Professor and Director Department of ECSE & Center for Future Energy Systems 1 How Smart Can We Make This Grid? 2 Smart Grid Drivers Need to Use
Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor
International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 445-449 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/
A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER
A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER 1 KARUNYA CHRISTOBAL LYDIA. S, 2 SHANMUGASUNDARI. A, 3 ANANDHI.Y 1,2,3 Electrical
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION
AN ULTRA-CHEAP GRID CONNECTED INVERTER FOR SMALL SCALE GRID CONNECTION Pramod Ghimire 1, Dr. Alan R. Wood 2 1 ME Candidate Email: [email protected] 2 Senior Lecturer: Canterbury University
Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder
Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction
Considering the effects of UPS operation with leading power factor loads
Considering the effects of UPS operation with leading power factor loads Over the past five years, a new generation of data processing and communications equipment has become prevalent in modern data centers
Bridgeless PFC Implementation Using One Cycle Control Technique
Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061
Recent Siemens HVDC Activities Yuriy Kazachkov Siemens PTI
IEEE PES 2008 HVDC & FACTS Subcommittee Recent Siemens HVDC Activities Yuriy Kazachkov Siemens PTI 660MW 500kV in operation since July 2007 Commercial Operation Neptune RTS Costumer Project Name Location
Analysis of AC-DC Converter Based on Power Factor and THD
Website: www.ijetae.com (SSN 50-459, SO 900:008 Certified Journal, Volume 3, ssue, February 03) Analysis of AC-DC Converter Based on Power Factor and THD Shiney.S.Varghese, Sincy George Department of Electrical
Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements
International Journal of Electrical and Computer Engineering (IJECE) Vol.1, No.1, September 2011, pp. 31~ 42 ISSN: 2088-8708 31 Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current
Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
Topics. HVDC Fundamentals
Topics HVDC Fundamentals Conventional Converters Capacitor Commutated Converters Voltage Source Converters Reactive Power Requirements System Configurations Tapping Control basics High Power Transmission
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES
UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi
Magnus Callavik, ABB Power Systems, HVDC, 721 64 Västerås, Sweden Phone: +46(0)21323226. e-mail: [email protected]
HVDC GRIDS FOR OFFSHORE AND ONSHORE TRANSMISSION Magnus Callavik, ABB Power Systems, HVDC, 721 64 Västerås, Sweden Phone: +46(0)21323226. e-mail: [email protected] SUMMARY The objective with this
Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application
Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology
Application Guide. Power Factor Correction (PFC) Basics
Power Factor Correction (PFC) Basics Introduction Power Factor, in simple terms, is a number between zero and one that represents the ratio of the real power to apparent power. Real power (P), measured
Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter
Closed Loop PWM Control for Induction Motor Drive Using Dual Output Three Phase Inverter Archana.P 1, Karthick.R 2 Pg Scholar [PED], Department of EEE, CSI College of Engineering, Ketti, Tamilnadu, India
DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS
DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS by Gunnar Asplund, Kjell Eriksson, Hongbo Jiang, Johan Lindberg, Rolf Pålsson, Kjell Svensson ABB Power Systems AB Sweden SUMMARY Voltage Source Converters
High Power Factor Boost Converter with Bridgeless Rectifier
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676 Volume 4, Issue 3 (Jan. - Feb. 2013), PP 33-38 High Power Factor Boost Converter with Bridgeless Rectifier Kavithamani
98% Efficient Single-Stage AC/DC Converter Topologies
16 POWER CONVERTERS www.teslaco.com 98% Efficient Single-Stage AC/DC Converter Topologies A new Hybrid Switching Method is introduced in this article which for the first time makes possible AC/DC power
Submarine Cable Power Transmission using DC High-Voltage Three-Level Converters
Submarine Cable Power Transmission using DC High-Voltage Three-Level Converters João Antunes, IST ([email protected]) Astract This paper is about multilevel converters used in High Voltage Direct Current
The design and performance of Static Var Compensators for particle accelerators
CERN-ACC-2015-0104 [email protected] The design and performance of Static Var Compensators for particle accelerators Karsten Kahle, Francisco R. Blánquez, Charles-Mathieu Genton CERN, Geneva, Switzerland,
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)
00-00-//$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part
High Intensify Interleaved Converter for Renewable Energy Resources
High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group
An Efficient AC/DC Converter with Power Factor Correction
An Efficient AC/DC Converter with Power Factor Correction Suja C Rajappan 1, K. Sarabose 2, Neetha John 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62,
New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar
New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar Abstract In this paper, various types of speed control methods for the three
The Grid Interconnection of Renewable Energy at Distribution Level with the Features of High Power-Quality Improvement
The Grid Interconnection of Renewable Energy at Distribution Level with the Features of High Power-Quality Improvement Surendar Nagarapu 1, Shaik Khamuruddin 2, and Durgam. Kumara Swamy 3 1 M.Tech, Scholar
Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)
Development of High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC) Dr. Prasad Enjeti Power Electronics Laboratory Department of Electrical Engineering College Station, TX -
The Facts About Harmonics and Power Factor. Power Quality: Harmonics & Power Factor Correction
The Facts About Harmonics and Power Factor Power Quality: Harmonics & Power Factor Correction 1 Agenda I. Harmonic Basics II. Harmonic Mitigation Methods III. Active Harmonic Filters IV. Applications V.
How To Improve Power Quality
Power Quality Improvement Of Three Phase Four Wire Distribution System Using VSC With A Zig-Zag Transformer Sajith Shaik *, I.Raghavendar ** *(Department of Electrical Engineering, Teegala Krishna Reddy
Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions
Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,
Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement
American Journal of Applied Sciences 3 (1): 1649-1654, 2006 ISSN 1546-9239 2006 Science Publications Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement
Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive
International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 7, Number 10 (2014), pp. 1027-1035 International Research Publication House http://www.irphouse.com Simulation and
DC Voltage Regulation by Buck Converter Applicable for Stand Alone Micro Hydro Power Generation
International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 1 (2014), pp. 37-42 International Research Publication House http://www.irphouse.com DC Voltage Regulation
Control of a Three Phase Induction Motor using Single Phase Supply
Control of a Three Phase Induction Motor using Single Phase Supply G. R. Sreehitha #1, A. Krishna Teja *2, Kondenti. P. Prasad Rao #3 Department of Electrical & Electronics Engineering, K L University,
Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique
Grid Interconnection of Renewable Energy Sources Using Modified One-Cycle Control Technique NKV.Sai Sunil 1, K.Vinod Kumar 2 PG Student, GITAM University, Visakhapatnam, India. Asst.Professor, Department
Harmonic Reduction and Load Balancing of Three Phase Four Wire DSTATCOM using Three Leg VSC and a Zig Zag Transformer
IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 Harmonic Reduction and Load Balancing of Three Phase Four Wire DSTATCOM using Three Leg
Renewable Energy Grid Integration
Renewable Energy Grid Integration Jian Sun Professor and Director Grid Integration Issues Cost, Reliability & Efficiency of Grid Interface Grid Congestion, Weak Grids Variability of Renewable Production
Chapter 20 Quasi-Resonant Converters
Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms
DC-DC Converter Basics
Page 1 of 16 Free Downloads / Design Tips / Java Calculators / App. Notes / Tutorials / Newsletter / Discussion / Components Database / Library / Power Links / Software / Technical Articles / On-Line Textbook
Output Ripple and Noise Measurement Methods for Ericsson Power Modules
Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and
High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST
Session 4a Enjeti 1 High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST Dr. Prasad Enjeti TI TI Professor Power Electronics Laboratory College
7-41 POWER FACTOR CORRECTION
POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential
CONVENTIONALLY reduced order models are being
Co-Simulation of an Electric Traction Drive Christoph Schulte and Joachim Böcker Abstract For the simulation of electrical drives, reducedorder models or simple look-up tables are often used in order to
Design of an Auxiliary Power Distribution Network for an Electric Vehicle
Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
Project description. Power Electronics for Reliable and Energy efficient Renewable Energy Systems
Project description Title: Power Electronics for Reliable and Energy efficient Renewable Energy Systems OBJECTIVES Principal objective Provide competence and decision basis for enabling reliable and energy
COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS
COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS Afshin LASHKAR ARA Azad University of Dezfoul - Iran [email protected] Seyed Ali NABAVI NIAKI University of Mazandaran
Analysis and Control of Three Phase Multi level Inverters with Sinusoidal PWM Feeding Balanced Loads Using MATLAB
Analysis and Control of Three Phase Multi level s with Sinusoidal PWM Feeding Balanced Loads Using MATLAB Rajesh Kumar Ahuja 1, Amit Kumar 2 Department of Electrical Engineering, YMCA University of Science
National Semiconductor Power Products - Seminar 3 (LED Lighting)
National Semiconductor Power Products - Seminar 3 (LED Lighting) Dr. Iain Mosely Converter Technology Ltd. Slide 1 Overview Background on LEDs Power Electronics for Driving LEDs LED Driver Specific Solutions
Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction
Analysis and Experimentation of Interleaved Boost Converter with Ripple Steering for Power Factor Correction A. Inba Rexy, R. Seyezhai Abstract Through the fast growing technologies, design of power factor
A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars
Journal of International Council on Electrical Engineering Vol. 3, No. 2, pp.164~168, 2013 http://dx.doi.org/10.5370/jicee.2013.3.2.164 A Design of DC/DC Converter of Photovoltaic Generation System for
Design and Simulation of Soft Switched Converter Fed DC Servo Drive
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.
Introduction to Power Supplies
Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power
NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM
NEURO-FUZZY BASED POWER QUALITY IMPROVEMENTS IN A THREE PHASE FOUR WIRE DISTRIBUTION SYSTEM USING DSTATCOM E.Babu 1,R.Subramanian 2 1, Department of Electrical and electronics engg 2 Department of Electrical
POWER TRANSMISSION FROM OFFSHORE WIND FARMS
POWER TRNSMISSION FROM OFFSHORE WIND FRMS Thorsten Völker University of pplied Sciences Bremerhaven Germany BSTRCT The future for wind power generation in Germany is offshore wind energy. The preferred
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,
DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, Mr.C.Anandaraj Assistant Professor -EEE Thiruvalluvar college of Engineering And technology, Ponnur
FREQUENCY CONTROLLED AC MOTOR DRIVE
FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources
An Isolated Multiport DC-DC Converter for Different Renewable Energy Sources K.Pradeepkumar 1, J.Sudesh Johny 2 PG Student [Power Electronics & Drives], Dept. of EEE, Sri Ramakrishna Engineering College,
POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS
A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...
Microcontroller based speed control of three phase induction motor using v/f method
International Journal of Scientific and Research Publications, Volume 3, Issue 2, February 2013 1 Microcontroller based speed control of three phase induction motor using v/f method Mrs.DeepaliS.Shirke,
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at:
Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at: How switch mode drivers work, switch mode driver topologies,
Modeling Grid Connection for Solar and Wind Energy
1 Modeling Grid Connection for Solar and Wind Energy P. J. van Duijsen, Simulation Research, The Netherlands Frank Chen, Pitotech, Taiwan Abstract Modeling of grid connected converters for solar and wind
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
Bi-directional Power System for Laptop Computers
Bi-directional Power System for Laptop Computers Terry L. Cleveland Staff Applications Engineer Microchip Technology Inc. [email protected] Abstract- Today the typical laptop computer uses
UNINTERRUPTIBLE POWER SUPPLIES >9900AUPS UNINTERRUPTIBLE POWER SUPPLIES
UNINTERRUPTIBLE POWER SUPPLIES 9900A >9900AUPS UNINTERRUPTIBLE POWER SUPPLIES 9900A The 9900A UPS system uses the most advanced IGBT in both the converter and inverter with Digital Signal Processor (DSP)
DC-DC high gain converter applied to renewable energy with new proposed to MPPT search
European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 12) Santiago de Compostela
Hybrid Power System with A Two-Input Power Converter
Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,
CURRICULUM VITAE. 9. Academic Qualifications : Degree University Specialization Year. Jawaharlal Nehru Technological University, Hyderabad
CURRICULUM VITAE 1. Name of the Faculty : Dr. Satish Kumar Peddapelli 2. Father s Name : P. Shankar 3. Date of Birth : 28-10-1974 4. Designation : Assistant Professor 5. Department : Electrical Engineering
Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique
Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.
HVDC PLUS and SVC PLUS: Reliable and Cost-effective Power Transmission Solutions with Modular Multilevel Converters
HVDC PLUS and SVC PLUS: Reliable and Cost-effective Power Transmission Solutions with Modular Multilevel Converters C. Bartzsch, Dr. H. Huang, T. Westerweller - Siemens, Germany Dr. M. Davies - High Electrical
T.FRANCIS, D.NARASIMHARAO
Applications (IJERA) ISSN: 48-96 wwwijeracom ol, Issue 3, May-Jun 0, pp40-46 A Soft-Switching DC/DC Converter With High oltage Gain for Renewable Energy Application TFRANCIS M-Tech Scholar, Power electronics
Lab 3 Rectifier Circuits
ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct
MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS
, pp. 7-1 MODELING AND SIMULAION OF A HREE-PHASE INERER WIH RECIFIER-YPE NONLINEAR LOADS Jawad Faiz 1 and Ghazanfar Shahgholian 2 1 School of Electrical and Computer Engineering, Faculty of Engineering,
AC/DC Power Supply Reference Design. Advanced SMPS Applications using the dspic DSC SMPS Family
AC/DC Power Supply Reference Design Advanced SMPS Applications using the dspic DSC SMPS Family dspic30f SMPS Family Excellent for Digital Power Conversion Internal hi-res PWM Internal high speed ADC Internal
Product Data Bulletin
Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system
Power supply output voltages are dropping with each
DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated
Chapter 4. LLC Resonant Converter
Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power
Input and Output Capacitor Selection
Application Report SLTA055 FEBRUARY 2006 Input and Output Capacitor Selection Jason Arrigo... PMP Plug-In Power ABSTRACT When designing with switching regulators, application requirements determine how
Precision Diode Rectifiers
by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic
Low Frequency AC Transmission System
, pp. 315-326 http://dx.doi.org/10.14257/ijsip.2015.8.5.32 Low Frequency AC Transmission System G. Sirisha Kumari 1 and K.Veerendranath 2 1 M. Tech student in EEE Department 2 Asst. Professor in EEE Department
Design And Implementation Of Seven Level Inverter With Solar Energy Genration System
Ravula Sateesh,B.Venugopal Reddy 195 Design And Implementation Of Seven Level Inverter With Solar Energy Genration System RAVULA SATEESH 1 B.VENUGOPAL REDDY 2 EMAIL: [email protected] EMAIL:[email protected]
Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink
Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. [email protected]
Pulse Width Modulated (PWM)
Control Technologies Manual PWM AC Drives Revision 1.0 Pulse Width Modulated (PWM) Figure 1.8 shows a block diagram of the power conversion unit in a PWM drive. In this type of drive, a diode bridge rectifier
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques
Drives AC Drives Using PWM Techniques Power Conversion Unit The block diagram below shows the power conversion unit in Pulse Width Modulated (PWM) drives. In this type of drive, a diode bridge rectifier
