Datawarehousing and Analytics. Data-Warehouse-, Data-Mining- und OLAP-Technologien. Advanced Information Management
|
|
|
- Evan Russell
- 10 years ago
- Views:
Transcription
1 Anwendersoftware a Datawarehousing and Analytics Data-Warehouse-, Data-Mining- und OLAP-Technologien Advanced Information Management Bernhard Mitschang, Holger Schwarz Universität Stuttgart Winter Term 2014/2015
2 Departments of Institute of Parallel and Distributed Systems (IPVS) Applications of Parallel and Distributed Systems Prof. B. Mitschang, Prof. M. Herschel Machine Learning and Robotics Prof. M. Toussaint Parallel Systems Prof. S. Simon Simulation of Large Systems Prof. M. Mehl, Jun.-Prof. D. Pflüger Distributed Systems Prof. K. Rothermel 2 Infrastructure Dipl.-Inf. M. Matthiesen Universität Stuttgart
3 Applications of Parallel and Distributed Systems Data and Metadata Repository Technologies, Data Warehouse and Data Mining, Domain-specific query optimization and processing, Product Data Management, Data Integration Content and Semantics Focussed Semantic Search, Scalable Content Management Information Systems and Applications Database Middleware, Information Services, Generative Application Development, Model-driven Engineering, Technical Information Systems Data in the Cloud Federated Systems / Application Integration Metadata Management Content Management Business Intelligence / Business Processes Query Optimization 3 Universität Stuttgart
4 How to contact us Anwendersoftware a Lecture Bernhard Mitschang Office: Tel.: [email protected] Exercises and assignments Holger Schwarz Office: Tel.: [email protected] 4
5 Planned Schedule Anwendersoftware a Monday 9/29/14 Tuesday 9/30/14 Wednesday 10/1/14 Thursday 10/2/14 Tuesday 10/7/14 Wednesday 10/8/14 09:00 11:15 Chapter 1 Introduction Chapter 2 Data Warehouse Architecture Chapter 3 Design Process Conceptual Design Logical Design Chapter 4 Monitoring Extraction Transformation Load Tools Chapter 6 Data Mining Introduction Applications KDD Chapter 7 SQL & OLAP SQL & Mining Database Support Materialized Summary Data Derivability Break 12:00 14:15 Chapter 2 Data Marts Operational Data Store Meta Data Chapter 3 Extended Dimension Table Design Extended Fact Table Design Physical Design Chapter 5 OLAP Architecture Storage of Data Cubes Chapter 6 Assoc. Rules Clustering Classification Regression Tools and Trends Chapter Examples and Miscellaneous Wrap up Intro to Assignments Break 15:00 16:30 Intro SQL and ODPS Issues of data integration Data Warehouse Architecture Conceptual and Logical Data Warehouse Design Monitoring Storage of Data Cubes ETL Transformation Cleansing 15:00 17:15 Data Mining Classification Clustering Association Rules Lectures Exercises 5
6 Exercises and Assignments Anwendersoftware a Type Description Date Exercise Assignment Assignment Detailed discussion of major topics, case studies, examples etc. (all) Hands-on training for topics related to dbms (groups of 2-3 students) Hands-on training for ETL, OLAP and data mining (groups of 2-3 students) September 29 October 8 Introduction on October 8 Due: TBA Introduction on October 8 Due: TBA 6
7 Anwendersoftware a Teaching Materials General information: Slides, exercises, assignments, Login to ILIAS: Search and Join the course "Data Warehousing and Analytics" Repository -> Engineering -> Computer Science -> Lehrveranstaltungen WS 14/15 7
8 Anwendersoftware a Exams IMSE Exam: Friday, December 12 Informatik / Softwaretechnik / Infotech / Wirtschaftsinformatik / Register at your examination office Make an appointment for the oral exam Appointments for oral exams Annemarie Roesler Tel [email protected] 8
9 Anwendersoftware a Books [BG04] A. Bauer, H. Günzel: Data Warehouse Systeme. 2. Aufl., dpunkt, [Len03] [KR+98] W. Lehner: Datenbanktechnologie für Data-Warehouse-Systeme. dpunkt, R. Kimball, L. Reeves, M. Ross, W. Thornthwaite: The Data Warehouse Lifecycle Toolkit. Wiley, [Inm05] W. H. Inmon: Building the Data Warehouse. 4th Edition, Wiley, [HK00] J. Han, M. Kamber: Data Mining Concepts and Techniques. Morgan Kaufmann, 2nd Edition, [JL+02] M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis: Fundamentals of Data Warehouses. Springer, [Kim96] R. Kimball: The Data Warehouse Toolkit. Wiley, 1996 [LN07] U. Leser, F. Naumann: Informationsintegration, dpunkt, [Wes01] P. Westerman: Data Warehousing. Morgan Kaufmann
10 Anwendersoftware a Papers [Ber98] [CD97] [HLV00] [Zeh03] P. Bernstein: Repositories and Object Oriented Databases, SIGMOD Record 27(1):88-96, S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP Technology, SIGMOD Record 26(1):65-74, B. Hüsemann, J. Lechtenbörger, G. Vossen: Conceptual Data Warehouse Design. Proc. of the Second International Workshop on Design and Management of Data Warehouses, Stockholm, T. Zeh: Data Warehousing als Organisationskonzept des Datenmanagements. In: Informatik Forschung und Entwicklung, Band 18, Heft 1, August
SENG 520, Experience with a high-level programming language. (304) 579-7726, [email protected]
Course : Semester : Course Format And Credit hours : Prerequisites : Data Warehousing and Business Intelligence Summer (Odd Years) online 3 hr Credit SENG 520, Experience with a high-level programming
Data-Warehouse-, Data-Mining- und OLAP-Technologien
Data-Warehouse-, Data-Mining- und OLAP-Technologien Chapter 2: Data Warehouse Architecture Bernhard Mitschang Universität Stuttgart Winter Term 2014/2015 Overview Data Warehouse Architecture Data Sources
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Data warehouses. Data Mining. Abraham Otero. Data Mining. Agenda
Data warehouses 1/36 Agenda Why do I need a data warehouse? ETL systems Real-Time Data Warehousing Open problems 2/36 1 Why do I need a data warehouse? Why do I need a data warehouse? Maybe you do not
Subject Description Form
Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives
Indexing Techniques for Data Warehouses Queries. Abstract
Indexing Techniques for Data Warehouses Queries Sirirut Vanichayobon Le Gruenwald The University of Oklahoma School of Computer Science Norman, OK, 739 [email protected] [email protected] Abstract Recently,
Data Integration and ETL Process
Data Integration and ETL Process Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master studies, second
Course Design Document. IS417: Data Warehousing and Business Analytics
Course Design Document IS417: Data Warehousing and Business Analytics Version 2.1 20 June 2009 IS417 Data Warehousing and Business Analytics Page 1 Table of Contents 1. Versions History... 3 2. Overview
An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction
Dimensional Modeling for Data Warehouse
Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or
COURSE SYLLABUS. Enterprise Information Systems and Business Intelligence
MASTER PROGRAMS Autumn Semester 2008/2009 COURSE SYLLABUS Enterprise Information Systems and Business Intelligence Instructor: Malov Andrew, Master of Computer Sciences, Assistant,[email protected] Organization
INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS
INTEGRATION OF HETEROGENEOUS DATABASES IN ACADEMIC ENVIRONMENT USING OPEN SOURCE ETL TOOLS Azwa A. Aziz, Abdul Hafiz Abdul Wahid, Nazirah Abd. Hamid, Azilawati Rozaimee Fakulti Informatik, Universiti Sultan
What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research?
What is Management Reporting from a Data Warehouse and What Does It Have to Do with Institutional Research? Emily Thomas Stony Brook University AIRPO Winter Workshop January 2006 Data to Information Historically
Upon successful completion of this course, a student will meet the following outcomes:
College of San Mateo Official Course Outline 1. COURSE ID: CIS 364 TITLE: Enterprise Data Warehousing Semester Units/Hours: 4.0 units; a minimum of 48.0 lecture hours/semester; a minimum of 48.0 lab hours/semester
8. Business Intelligence Reference Architectures and Patterns
8. Business Intelligence Reference Architectures and Patterns Winter Semester 2008 / 2009 Prof. Dr. Bernhard Humm Darmstadt University of Applied Sciences Department of Computer Science 1 Prof. Dr. Bernhard
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Data Warehousing and Data Mining
Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong [email protected] Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus
MIS636 AWS Data Warehousing and Business Intelligence Course Syllabus I. Contact Information Professor: Joseph Morabito, Ph.D. Office: Babbio 419 Office Hours: By Appt. Phone: 201-216-5304 Email: [email protected]
Towards Real-Time Data Integration and Analysis for Embedded Devices
Towards Real-Time Data Integration and Analysis for Embedded Devices Michael Soffner, Norbert Siegmund, Mario Pukall, Veit Köppen Otto-von-Guericke University of Magdeburg {soffner, nsiegmun, pukall, vkoeppen}@ovgu.de
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Outline Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications
Outline Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications Introduction to the BI Roadmap Business Intelligence Framework DW role in BI From Chaos to Architecture
Data Mining - Introduction
Data Mining - Introduction Peter Brezany Institut für Scientific Computing Universität Wien Tel. 4277 39425 Sprechstunde: Di, 13.00-14.00 Outline Business Intelligence and its components Knowledge discovery
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
The Evolution of the Data Warehouse Systems in Recent Years
Jacek Maślankowski * The Evolution of the Data Warehouse Systems in Recent Years Introduction Although data warehouses are used in enterprises for a long time, they has evaluated recently. In the last
Data Integration and ETL Process
Data Integration and ETL Process Krzysztof Dembczyński Institute of Computing Science Laboratory of Intelligent Decision Support Systems Politechnika Poznańska (Poznań University of Technology) Software
OLAP, Knowledge Discovery from Database, Social Security Fund, Oracle Warehouse Builder, Oracle Discoverer.
ABSTRACT Mohamed Salah GOUIDER 1, Amine FARHAT 2 BESTMOD Laboratory Institut Supérieur de Gestion 41, rue de la liberté, cite Bouchoucha Bardo, 2000, Tunis, TUNISIA [email protected] 1, [email protected]
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Big Data Governance Certification Self-Study Kit Bundle
Big Data Governance Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Governance Certification.
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
Microsoft Data Warehouse in Depth
Microsoft Data Warehouse in Depth 1 P a g e Duration What s new Why attend Who should attend Course format and prerequisites 4 days The course materials have been refreshed to align with the second edition
Valuation Factors for the Necessity of Data Persistence in Enterprise Data Warehouses on In-Memory Databases
Valuation Factors for the Necessity of Data Persistence in Enterprise Data Warehouses on In-Memory Databases Author: Supervisor: Thorsten Winsemann Otto-von-Guericke Universität Magdeburg, Germany Kanalstraße
Syllabus. HMI 7437: Data Warehousing and Data/Text Mining for Healthcare
Syllabus HMI 7437: Data Warehousing and Data/Text Mining for Healthcare 1. Instructor Illhoi Yoo, Ph.D Office: 404 Clark Hall Email: [email protected] Office hours: TBA Classroom: TBA Class hours: TBA
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 2 A Few Words About
BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE. Prepared by:
BIG DATA COURSE 1 DATA QUALITY STRATEGIES - CUSTOMIZED TRAINING OUTLINE Cerulium Corporation has provided quality education and consulting expertise for over six years. We offer customized solutions to
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
ETL-EXTRACT, TRANSFORM & LOAD TESTING
ETL-EXTRACT, TRANSFORM & LOAD TESTING Rajesh Popli Manager (Quality), Nagarro Software Pvt. Ltd., Gurgaon, INDIA [email protected] ABSTRACT Data is most important part in any organization. Data
The University of Jordan
The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Data Warehousing, Data Mining, OLAP and OLTP Technologies Are Essential Elements to Support Decision-Making Process in Industries
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-6, May 2013 Data Warehousing, Data Mining, OLAP and OLTP Technologies Are Essential Elements
Week 3 lecture slides
Week 3 lecture slides Topics Data Warehouses Online Analytical Processing Introduction to Data Cubes Textbook reference: Chapter 3 Data Warehouses A data warehouse is a collection of data specifically
Data warehouse life-cycle and design
SYNONYMS Data Warehouse design methodology Data warehouse life-cycle and design Matteo Golfarelli DEIS University of Bologna Via Sacchi, 3 Cesena Italy [email protected] DEFINITION The term data
BUILDING OLAP TOOLS OVER LARGE DATABASES
BUILDING OLAP TOOLS OVER LARGE DATABASES Rui Oliveira, Jorge Bernardino ISEC Instituto Superior de Engenharia de Coimbra, Polytechnic Institute of Coimbra Quinta da Nora, Rua Pedro Nunes, P-3030-199 Coimbra,
Overview. DW Source Integration, Tools, and Architecture. End User Applications (EUA) EUA Concepts. DW Front End Tools. Source Integration
DW Source Integration, Tools, and Architecture Overview DW Front End Tools Source Integration DW architecture Original slides were written by Torben Bach Pedersen Aalborg University 2007 - DWML course
The GOBIA Method: Towards Goal-Oriented Business Intelligence Architectures
The GOBIA Method: Towards Goal-Oriented Business Intelligence Architectures David Fekete 1 and Gottfried Vossen 1,2 1 ERCIS, Leonardo-Campus 3, 48149 Münster, Germany, [email protected] 2 University
Data Warehouse Schema Design
Data Warehouse Schema Design Jens Lechtenbörger Dept. of Information Systems University of Münster Leonardo-Campus 3 D-48149 Münster, Germany [email protected] 1 Introduction A data warehouse
Big Data Governance Certification Self-Study Kit Bundle
Big Data Governance Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Governance Certification.
Middleware for Heterogeneous and Distributed Information Systems
Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Geb. 36, Raum 329 Tel. 0631/205 3275 [email protected] Middleware for Heterogeneous and Distributed Information Systems http://wwwlgis.informatik.uni-kl.de/cms/courses/middleware/
A Comparative Study on Operational Database, Data Warehouse and Hadoop File System T.Jalaja 1, M.Shailaja 2
RESEARCH ARTICLE A Comparative Study on Operational base, Warehouse Hadoop File System T.Jalaja 1, M.Shailaja 2 1,2 (Department of Computer Science, Osmania University/Vasavi College of Engineering, Hyderabad,
CASE STUDY - BUILDING A DATA WAREHOUSE FOR HIGHER EDUCATION IN THE COURSE OF MICROSTRATEGY S UNIVERSITY PROGRAM
CASE STUDY - BUILDING A DATA WAREHOUSE FOR HIGHER EDUCATION IN THE COURSE OF MICROSTRATEGY S UNIVERSITY PROGRAM Michael Boehnlein University of Bamberg, Feldkirchenstr. 21, D-96045 Bamberg, Germany +49-951-863-2514
Data Warehouses and Business Intelligence ITP 487 (3 Units) Fall 2013. Objective
Data Warehouses and Business Intelligence ITP 487 (3 Units) Objective Fall 2013 While the increased capacity and availability of data gathering and storage systems have allowed enterprises to store more
Key organizational factors in data warehouse architecture selection
Key organizational factors in data warehouse architecture selection Ravi Kumar Choudhary ABSTRACT Deciding the most suitable architecture is the most crucial activity in the Data warehouse life cycle.
SQL Server 2012 Business Intelligence Boot Camp
SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations
Establish and maintain Center of Excellence (CoE) around Data Architecture
Senior BI Data Architect - Bensenville, IL The Company s Information Management Team is comprised of highly technical resources with diverse backgrounds in data warehouse development & support, business
IST722 Syllabus. Instructor Paul Morarescu Email [email protected] Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST
IST722 Syllabus Instructor Paul Morarescu Email [email protected] Phone 315-443-4371 Office hours (phone) Thus 10:00-12:00 EST Course Description This course provides concepts, principles, and tools for
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
Analysis Patterns in Dimensional Data Modeling
Analysis Patterns in Dimensional Data Modeling Stephan Schneider 1, Dirk Frosch-Wilke 1 1 University of Applied Sciences Kiel, Institute of Business Information Systems, Sokratesplatz. 2, 24149 Kiel, Germany
How To Learn Data Analytics
COURSE DESCRIPTION Spring 2014 COURSE NAME COURSE CODE DESCRIPTION Data Analytics: Introduction, Methods and Practical Approaches INF2190H The influx of data that is created, gathered, stored and accessed
BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT
ISSN 1804-0519 (Print), ISSN 1804-0527 (Online) www.academicpublishingplatforms.com BUSINESS INTELLIGENCE AS SUPPORT TO KNOWLEDGE MANAGEMENT JELICA TRNINIĆ, JOVICA ĐURKOVIĆ, LAZAR RAKOVIĆ Faculty of Economics
Jagir Singh, Greeshma, P Singh University of Northern Virginia. Abstract
224 Business Intelligence Journal July DATA WAREHOUSING Ofori Boateng, PhD Professor, University of Northern Virginia BMGT531 1900- SU 2011 Business Intelligence Project Jagir Singh, Greeshma, P Singh
CSE532 Theory of Database Systems Course Information. CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.
CSE532 Theory of Database Systems Course Information CSE 532, Theory of Database Systems Stony Brook University http://www.cs.stonybrook.edu/~cse532 Course Description The 3 credits course will cover advanced
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 See Markers-ORDER-DB Logically Related Tables Relational Approach: Physically Related Tables: The Relationship Screen
An Approach for Facilating Knowledge Data Warehouse
International Journal of Soft Computing Applications ISSN: 1453-2277 Issue 4 (2009), pp.35-40 EuroJournals Publishing, Inc. 2009 http://www.eurojournals.com/ijsca.htm An Approach for Facilating Knowledge
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
Module compendium of the Master s degree course of Information Systems
Module compendium of the Master s degree course of Information Systems Information Management: Managing IT in the Information Age Information Management: Theories and Architectures Process Management:
Data W a Ware r house house and and OLAP Week 5 1
Data Warehouse and OLAP Week 5 1 Midterm I Friday, March 4 Scope Homework assignments 1 4 Open book Team Homework Assignment #7 Read pp. 121 139, 146 150 of the text book. Do Examples 3.8, 3.10 and Exercise
Data Search. Searching and Finding information in Unstructured and Structured Data Sources
1 Data Search Searching and Finding information in Unstructured and Structured Data Sources Erik Fransen Senior Business Consultant 11.00-12.00 P.M. November, 3 IRM UK, DW/BI 2009, London Centennium BI
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
Course Outline: Course: Implementing a Data Warehouse with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning
Course Outline: Course: Implementing a Data with Microsoft SQL Server 2012 Learning Method: Instructor-led Classroom Learning Duration: 5.00 Day(s)/ 40 hrs Overview: This 5-day instructor-led course describes
A Review of Data Warehousing and Business Intelligence in different perspective
A Review of Data Warehousing and Business Intelligence in different perspective Vijay Gupta Sr. Assistant Professor International School of Informatics and Management, Jaipur Dr. Jayant Singh Associate
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
Data Mining and Business Intelligence CIT-6-DMB. http://blackboard.lsbu.ac.uk. Faculty of Business 2011/2012. Level 6
Data Mining and Business Intelligence CIT-6-DMB http://blackboard.lsbu.ac.uk Faculty of Business 2011/2012 Level 6 Table of Contents 1. Module Details... 3 2. Short Description... 3 3. Aims of the Module...
Big Data Architect Certification Self-Study Kit Bundle
Big Data Architect Certification Bundle This certification bundle provides you with the self-study materials you need to prepare for the exams required to complete the Big Data Architect Certification.
COMM 437 DATABASE DESIGN AND ADMINISTRATION
COMM 437 DATABASE DESIGN AND ADMINISTRATION If you are reading this, you would have already read countless articles about the power of information in improving decision making, enhancing strategic position
DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM
DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM MOHAMMED SHAFEEQ AHMED Guest Lecturer, Department of Computer Science, Gulbarga University, Gulbarga, Karnataka, India (e-mail:
A Survey of ETL Tools
RESEARCH ARTICLE International Journal of Computer Techniques - Volume 2 Issue 5, Sep Oct 2015 A Survey of ETL Tools Mr. Nilesh Mali 1, Mr.SachinBojewar 2 1 (Department of Computer Engineering, University
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
Dynamic Data in terms of Data Mining Streams
International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
